
Concurrent Red-Black Trees

Franck van Breugel

Department of Computer Science and Engineering, York University

4700 Keele Street, Toronto, Ontario, Canada, M3J 1P3

February 9, 2011

Abstract

Three concurrent implementations of red-black trees are presented. Only the operations
Contains and Add are considered. The first implementation exploits monitors. The second
implementation is based on a solution of the readers-writers problem, where the readers are
threads that perform the Contains operation and the writers are the threads that perform the
Add operation. The third implementation is an adaptation of the concurrent implementation
of AVL trees by Ellis to the setting of red-black trees. In this implementation, the threads lock
nodes of the tree. A node can be locked in three different ways and different threads can have
a lock on a node simultaneously.

1 Introduction

Data structures such as sets can be efficiently implemented by means of red-black trees. For
example, the class TreeSet of the package java . util of the Java class library has been implemented
by means of a red-black tree. A red-black tree is a special type of binary search tree. Such a tree is
approximately balanced by colouring the nodes of the tree and placing certain restrictions on the
way the nodes can be coloured.

With the arrival of multicore machines, there is a need for concurrent implementations of
fundamental data structures such as sets. In this paper, we present a sequential implementation
and three different concurrent implementations of red-black trees. We first present the sequential
implementation as can be found in [3]. The first concurrent implementation is a simple modification
of the sequential implementation by representing the red-black tree as a monitor. The second
concurrent implementation allows for more concurrency by modifying a solution to the readers-
writers problem [4]. The third and final concurrent implementation uses fine grain locking to allow
even more concurrency. In this implementation, we adapt the approach proposed by Ellis [5] for
concurrent AVL trees to red-black trees.

2 Red-Black Trees

We assume that the reader is familiar with binary search trees (their definition can be found in, for
example, [3, Section 13.1]). A red-black tree is a binary search tree where each node has a colour.
A node is either coloured red or black. By restricting the way nodes can be coloured, the tree
becomes approximately balanced. These trees were first introduced as symmetric binary B-trees by

1

Bayer [1]. Guibas and Sedgewick [6] characterized these trees by colouring the nodes red or black,
leading to the following definition.

Definition 1 A red-black tree is a binary search tree where each node is either coloured red or

black and

• the root is black,

• each leaf is black,

• if a node is red, then both its children are black, and

• for every node, every path from that node to a leaf contains the same number of black nodes.

For example, the binary search tree

3

1

is a red-black tree. Note that only the internal nodes contain elements. Red-black trees have the
following key property.

Theorem 2 A red-black tree with n internal nodes has height at most 2 log2(n+ 1).

A proof of this result can be found in, for example, [3, Section 14.1]. Since a red-black tree is
approximately balanced, the operations Contains and Add can be implemented efficiently. More
precisely, both Contains and Add can be implemented in O(log2(n)), where n is the number of
internal nodes of the red-black tree.

3 Sequential Implementation

The Contains operation for red-black trees can be implemented in exactly the same way as for
binary search trees. Its pseudocode can be found in Appendix A. Also the Add operation for
red-black trees is similar to that for binary search trees. If the element e, which is to be added, is
not already part of the red-black tree, then the appropriate leaf is replaced with the tree

e

This modification does not violate condition 1, 2 and 4 of Definition 1, but it may violate condition 3.
To reestablish this condition, the colour of some of the nodes may have to be changed and the
structure of the tree may have to be modified. The details can be found in Appendix A. For

2

example, if we add the element 2 to the red-black tree depicted in Section 2, then we first replace
the right child of the node containing the element 1 with the tree

2

obtaining the tree

3

1

2

Note that this is not a red-black tree, since the red node labelled 1 has a red child. After restruc-
turing the tree, we obtain the following red-black tree.

2

1 3

We believe that multiple threads manipulating a red-black tree concurrently using the operations
Contains and Add may lead to counter-intuitive results. Consider the following concurrent program.

1 Add(3)
2 Add(1)
3 (Add(2) ‖ Contains (1))

Starting from an empty red-black tree, we first add the elements 3 and 1. This results in the red-
black tree depicted in the previous section. Subsequently, one threads adds the element 2 whereas
the other thread checks if the tree contains the element 1. One would expect the Contains operation
to always return true. However, we believe that by interleaving the elementary operations of the
operations Add and Contains in a particular way, the operation Contains may return false. When
the Add operation modifies the structure of the tree, the Contains operation may not be able to
find the element 1. We plan to confirm this conjecture by our implementation or our verification
effort. In the following sections, we present three ways to rule out this undesirable behaviour.

3

4 The Monitors Approach

A simple way to ensure that the Add operation does not interfere with the Contains operation is
to implement the red-black tree as a monitor. Monitors were introduced by Brinch Hansen and
Hoare in [8, 9]. Below we use the syntax as used in [9].

1 RedBlackTree : monitor

2 begin

3 root : node
4 procedure con ta in s (element : int , result con ta in s : boolean)
5 begin

6 . . .

7 end

8 procedure add (element : int , result added : boolean)
9 begin

10 . . .

11 end

12 root := b lack node
13 end

Within the body of the procedures Contains and Add we place the code presented in Appendix A.
Since monitor procedures are always mutually exclusive, the Add procedure never interferes with
the Contains procedure.

5 The Readers-Writers Approach

The solution presented in the previous section ensures that one operation at a time is performed on
the red-black tree. However, multiple Contains operations can be performed concurrently without
giving rise to undesirable results. To accomplish this, we can easily modify a solution to the
readers-writers problem [4]. In our setting, the threads that perform the Contains operation are
the readers and the threads that perform the Add operation are the writers. For a solution to the
readers-writers problem in which no reader waits because a writer is waiting for other readers to
finish, we refer the reader to [4].

6 Locking Nodes

In an attempt to increase concurrency even more, we adapt the approach proposed by Ellis [5] for
concurrent AVL trees to red-black trees.

The key idea of this implementation is that individual nodes are locked. A node can be locked in
three different ways. A thread that searches for an element (by performing the Contains operation)
ρ-locks a node of the tree to ensure that the locked node is not part of a restructuring of the tree.
A thread that searches for a leaf to add an element (as part of the Add operation) α-locks a node
of the tree to prevent another thread, which also wants to add an element, access to the subtree
rooted at the locked node. Just before a thread restructures the tree (as part of the Add operation),
it ξ-locks the nodes that are part of the restructuring. This prevents other threads from accessing
these nodes.

4

Different threads can hold a lock on the same node at the same time. However, there are some
restrictions. The following graph [5] captures those restrictions.

ρ α

ξ

If there is an edge between two lock types, then two threads can have a lock of the given type on
a particular node at the same time. For example, multiple threads can ρ-lock a node and a single
thread can α-lock that node all at the same time.

6.1 The Contains Operation

While searching for an element in the tree, we ρ-lock nodes on the path from the root of the tree
to either a leaf (if the element is not stored in the tree) or the node containing the element. We
start to ρ-lock the root of the red-black tree. Assume that, during the search, we have ρ-locked
a particular node. Before releasing the lock, we first ρ-lock the appropriate child of that node.
This lock coupling should avoid deadlock. We will try to confirm this with our implementation or
verification effort. The details of the implementation of the Contains operation can be found in
Section B.1.

6.2 The Add Operation

The Add operation consists of two parts. The first part is very similar to the Contains operation.
In the first part, we locate the leaf where the element is to be inserted. While searching for that
leaf, we α-lock nodes on the path from the root to the leaf. An α-lock on a node prevents other
threads, which also want to add elements to the tree, access to the subtree rooted at that node,
so that this subtree can be modified. We want to keep this subtree as small as possible to allow
as much concurrency as possible. Initially, we α-lock the root. If we encounter two consecutive
black nodes on the path from the root to the leaf, we know that the potential restructuring will be
limited to the subtree rooted at the first black node (the one closest to the root). Hence, we α-lock
this node and we release the lock on the previously α-locked node. In this way, the subtree rooted
at the α-locked node becomes smaller, therefore, allowing more concurrency.

After we have inserted the element at a leaf of the tree, we may have to modify the structure of
the tree and change the colour of some of the nodes. These changes will be limited to the subtree
rooted at the α-locked node. Whenever, we change the structure of the tree, we ξ-lock all the nodes
involved in the restructuring. We lock them in a top-down fashion to avoid deadlock.

The details can be found in Section B.2.

7 Conclusion

A lot of work has been done on the concurrent implementation of data structures. We refer the
reader to, for example, [10] for an overview. The concurrent red-black tree implementation described
in Section 6 is an adaptation of the concurrent implementation of AVL trees as introduced by Ellis
in [5]. Hanke [7] also mentions that the implementation of Ellis can be adapted to red-black trees.

5

Nurmi and Soisalon-Soininen [11] present a slightly different concurrent implementation of red-
black trees. Also their work is based on the original work of Ellis. Although the work of Ellis is
more than thirty years old, the quest for efficient concurrent implementations of balanced binary
search trees is still ongoing (see, for example, [2]).

We have presented three concurrent implementations of red-black trees. The implementation in
Section 5 allows for more concurrency than the one in Section 4. The implementation in Section 6
gives rise to even more concurrency. However, as the concurrency increases, so does the complexity
of the implementation.

There seem to be opportunities to increase the amount of concurrency of the implementation in
Section 6. First of all, rather than locking nodes, we could lock only “half a node.” For example,
instead of locking a node, we can lock only its left part. In this way, its right child is still available.
Secondly, there seem opportunities to decrease the lock granularity. For example, line 73–87 of
Section B.2 can be modified as follows.

1 ξ−l o ck grandparent
2 ξ−l o ck parent
3 ξ−l o ck node
4 Left−Child (node , parent)
5 Right−Child (node , grandparent)
6 root ← node
7 ξ−unlock node
8 Left−Child (grandparent , r i gh t)
9 ξ−unlock grandparent

10 Right−Child (parent , l e f t)
11 ξ−unlock parent

Note that left and right are not locked at all. Also notice that grandparent and node are locked
for a “smaller amount of time.” Thirdly, we may attempt to avoid using locks completely by using
atomic operations such as “compare and swap.”

References

[1] Rudolf Bayer. Symmetric binary B-trees: data structure and maintenance algorithms. Acta

Informatica, 1:290–306, 1972.

[2] Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. A practical concur-
rent binary search tree. In R. Govindarajan, David A. Padua, and Mary W. Hall, editors,
Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, pages 257–268, Bangalore, India, January 2010. ACM.

[3] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms.
The MIT Press, Cambridge, MA, USA, 1990.

[4] P.J. Courtois, F. Heymans, and D.L. Parnas. Concurrent control with “reader” and “writers”.
Communications of the ACM, 14(10):667–668, October 1971.

[5] Carla Schlatter Ellis. Concurrent search and insertion in AVL trees. IEEE Transactions on

Computers, 29(9):811–817, September 1980.

6

[6] Leo J. Guibas and Robert Sedgewick. A dichromatic framework for balanced trees. In Proceed-

ings of the 19th Annual Symposium on Foundations of Computer Science, pages 8–21, Ann
Arbor, MI, USA, October 1978. IEEE Computer Society.

[7] Sabine Hanke. The performance of concurrent red-black tree algorithms. In Jeffrey Scott
Vitter and Christos D. Zaroliagis, editors, Proceedings of the 3rd International Workshop on

Algorithm Engineering, volume 1668 of Lecture Notes in Computer Science, pages 286–300,
London, UK, July 1999. Springer-Verlag.

[8] Per Brinch Hansen. Operating System Principles. Prentice Hall, Englewood Cliffs, NJ, USA,
1973.

[9] C.A.R. Hoare. Monitors: an operating system structuring concept. Communications of the

ACM, 17(10):549–557, October 1974.

[10] Mark Moir and Nir Shavit. Concurrent data structures. In Dinesh P. Mehta and Sartaj
Sahni, editors, Handbook of Data Structures and Applications, chapter 47, pages 47–1–47–23.
Chapman & Hall/CRC Press, Boca Raton, FL, USA, 2005.

[11] Otto Nurmi and Eljas Soisalon-Soininen. Chromatic binary search trees: a structure for
concurrent rebalancing. Acta Informatica, 31(6):547–557, September 1996.

A Pseudocode for the Sequential Implementation

A.1 Pseudocode for the Contains Operation

The following pseudocode is based on the pseudocode found in [3, Section 13.2].

1 Contains (e)
2 found ← fa l se

3 node ← root
4 while node i s not a l e a f ∧ ¬ found do

5 i f e = element o f node then

6 found ← true

7 else i f e < element o f node then

8 node ← l e f t ch i l d o f node
9 else

10 node ← r i gh t ch i l d o f node
11 return found

A.2 Pseudocode for the Add Operation

The following pseudocode is based on the pseudocode found in [3, Section 14.3]. Before presenting
the pseudocode for Add, we first present some simple operations that will be used in the pseudocode
for Add.

The operation Left−Child(p, c) ensures that the node c becomes the left child of the node p.

7

1 Left−Child (p , c)
2 parent o f c ← p
3 l e f t ch i l d o f p ← c

Similarly, the operation Right−Child(p, c) ensures that the node c becomes the right child of
the node p.

1 Right−Child (p , c)
2 parent o f c ← p
3 r i gh t ch i l d o f p ← c

1 Add(e)
2 found ← fa l se

3 node ← root
4 while node i s not a l e a f ∧ ¬ found do

5 i f e = element o f node then

6 found ← true

7 else i f e < element o f node then

8 node ← l e f t ch i l d o f node
9 else

10 node ← r i gh t ch i l d o f node
11 i f ¬ found then

12 co lou r o f node ← red
13 element o f node ← e
14 l e f t ← b lack node
15 r i gh t ← b lack node
16 Left−Child (node , l e f t)
17 Right−Child (node , r i gh t)
18 while node 6= root ∧ parent o f node i s red do

19 parent ← parent o f node
20 grandparent ← parent o f parent
21 i f parent i s l e f t ch i l d o f grandparent then

22 aunt ← r i gh t ch i l d o f grandparent
23 i f aunt i s red then

24 co lou r o f aunt ← b lack
25 co lou r o f parent ← b lack
26 co lou r o f grandparent ← red
27 node ← grandparent
28 else i f node i s l e f t ch i l d o f parent then

29 co lou r o f parent ← b lack
30 co lou r o f grandparent ← red
31 s i s t e r ← r i gh t ch i l d o f parent
32 Right−Child (parent , grandparent)
33 Left−Child (grandparent , s i s t e r)
34 i f grandparent = root then

35 root ← parent
36 else

8

37 grandgrandparent ← parent o f grandparent
38 i f grandparent i s a l e f t ch i l d o f grandgrandparent then

39 Left−Child (grandgrandparent , parent)
40 else

41 Right−Child (grandgrandparent , parent)
42 else (node i s r i gh t ch i l d o f parent)
43 co lou r o f node ← b lack
44 co lou r o f grandparent ← red
45 l e f t ← l e f t ch i l d o f node
46 r i gh t ← r i gh t ch i l d o f node
47 Left−Child (node , parent)
48 Right−Child (node , grandparent)
49 Right−Child (parent , l e f t)
50 Left−Child (grandparent , r i gh t)
51 i f grandparent = root then

52 root ← node
53 else

54 grandgrandparent ← parent o f grandparent
55 i f grandparent i s a l e f t ch i l d o f grandgrandparent then

56 Left−Child (grandgrandparent , node)
57 else

58 Right−Child (grandgrandparent , node)
59 else (parent i s r i gh t ch i l d o f grandparent)
60 aunt ← l e f t ch i l d o f grandparent
61 i f aunt i s red then

62 co lou r o f aunt ← b lack
63 co lou r o f parent ← b lack
64 co lou r o f grandparent ← red
65 node ← grandparent
66 else i f node i s r i gh t ch i l d o f parent then

67 co lou r o f parent ← b lack
68 co lou r o f grandparent ← red
69 s i s t e r ← l e f t ch i l d o f parent
70 Left−Child (parent , grandparent)
71 Right−Child (grandparent , s i s t e r)
72 i f grandparent = root then

73 root ← parent
74 else

75 grandgrandparent ← parent o f grandparent
76 i f grandparent i s a l e f t ch i l d o f grandgrandparent then

77 Left−Child (grandgrandparent , parent)
78 else

79 Right−Child (grandgrandparent , parent)
80 else (node i s l e f t ch i l d o f parent)
81 co lou r o f node ← b lack

9

82 co lou r o f grandparent ← red
83 l e f t ← l e f t ch i l d o f node
84 r i gh t ← r i gh t ch i l d o f node
85 Right−Child (node , parent)
86 Left−Child (node , grandparent)
87 Left−Child (parent , r i gh t)
88 Right−Child (grandparent , l e f t)
89 i f grandparent = root then

90 root ← node
91 else

92 grandgrandparent ← parent o f grandparent
93 i f grandparent i s a l e f t ch i l d o f grandgrandparent then

94 Left−Child (grandgrandparent , node)
95 else

96 Right−Child (grandgrandparent , node)
97 co lou r o f root ← b lack
98 return ¬ found

Note that line 59–96 is the mirror image of line 21–58.

B Pseudocode for the Concurrent Implementation

We augment the pseudocode of Appendix A with the locking of nodes.

B.1 Pseudocode for the Contains Operation

We modify the implementation of the Contains operation as follows.

1 Contains (e)
2 found ← fa l se

3 node ← root
4 ρ−l o ck node
5 while node i s not a l e a f ∧ ¬ found do

6 parent ← node
7 i f e = element o f node then

8 found ← true

9 else i f e < element o f node then

10 node ← l e f t ch i l d o f node
11 else

12 node ← r i gh t ch i l d o f node
13 ρ−l o ck node
14 ρ−unlock parent
15 ρ−unlock node
16 return found

Note that line 4, 6, 13, 14 and 15 are new.

10

B.2 Pseudocode for the Add Operation

We modify the implementation of the Add operation as follows.

1 Add(e)
2 found ← fa l se

3 node ← root
4 α−l o ck node
5 l ocked ← node
6 while node i s not a l e a f ∧ ¬ found do

7 parent ← node
8 i f e = element o f node then

9 found ← true

10 else i f e < element o f node then

11 node ← l e f t ch i l d o f node
12 else

13 node ← r i gh t ch i l d o f node
14 i f node and parent are b lack and parent 6= locked then

15 α−l o ck parent
16 α−unlock locked
17 l ocked ← parent
18 i f ¬ found then

19 ξ−l o ck node
20 co lou r o f node ← red
21 element o f node ← e
22 l e f t ← b lack node
23 r i gh t ← b lack node
24 Left−Child (node , l e f t)
25 Right−Child (node , r i gh t)
26 ξ−unlock node
27 while node 6= root ∧ parent o f node i s red do

28 parent ← parent o f node
29 grandparent ← parent o f parent
30 i f parent i s l e f t ch i l d o f grandparent then

31 aunt ← r i gh t ch i l d o f grandparent
32 i f aunt i s red then

33 co lou r o f aunt ← b lack
34 co lou r o f parent ← b lack
35 co lou r o f grandparent ← red
36 node ← grandparent
37 else i f node i s l e f t ch i l d o f parent then

38 co lou r o f parent ← b lack
39 co lou r o f grandparent ← red
40 s i s t e r ← r i gh t ch i l d o f parent
41 i f grandparent = root then

42 ξ−l o ck grandparent

11

43 ξ−l o ck parent
44 ξ−l o ck s i s t e r
45 root ← parent
46 Right−Child (parent , grandparent)
47 Left−Child (grandparent , s i s t e r)
48 ξ−unlock s i s t e r
49 ξ−unlock parent
50 ξ−unlock grandparent
51 else

52 grandgrandparent ← parent o f grandparent
53 ξ−l o ck grandgrandparent
54 ξ−l o ck grandparent
55 ξ−l o ck parent
56 ξ−l o ck s i s t e r
57 i f grandparent i s a l e f t ch i l d o f grandgrandparent then

58 Left−Child (grandgrandparent , parent)
59 else

60 Right−Child (grandgrandparent , parent)
61 Right−Child (parent , grandparent)
62 Left−Child (grandparent , s i s t e r)
63 ξ−unlock s i s t e r
64 ξ−unlock parent
65 ξ−unlock grandparent
66 ξ−unlock grandgrandparent
67 else (node i s r i gh t ch i l d o f parent)
68 co lou r o f node ← b lack
69 co lou r o f grandparent ← red
70 l e f t ← l e f t ch i l d o f node
71 r i gh t ← r i gh t ch i l d o f node
72 i f grandparent = root then

73 ξ−l o ck grandparent
74 ξ−l o ck parent
75 ξ−l o ck node
76 ξ−l o ck l e f t
77 ξ−l o ck r i gh t
78 root ← node
79 Left−Child (node , parent)
80 Right−Child (node , grandparent)
81 Right−Child (parent , l e f t)
82 Left−Child (grandparent , r i gh t)
83 ξ−unlock r i gh t
84 ξ−unlock l e f t
85 ξ−unlock node
86 ξ−unlock parent
87 ξ−unlock grandparent

12

88 else

89 grandgrandparent ← parent o f grandparent
90 ξ−l o ck grandgrandparent
91 ξ−l o ck grandparent
92 ξ−l o ck parent
93 ξ−l o ck node
94 ξ−l o ck l e f t
95 ξ−l o ck r i gh t
96 i f grandparent i s a l e f t ch i l d o f grandgrandparent then

97 Left−Child (grandgrandparent , node)
98 else

99 Right−Child (grandgrandparent , node)
100 Left−Child (node , parent)
101 Right−Child (node , grandparent)
102 Right−Child (parent , l e f t)
103 Left−Child (grandparent , r i gh t)
104 ξ−unlock r i gh t
105 ξ−unlock l e f t
106 ξ−unlock node
107 ξ−unlock parent
108 ξ−unlock grandparent
109 else (parent i s r i gh t ch i l d o f grandparent)
110 aunt ← l e f t ch i l d o f grandparent
111 i f aunt i s red then

112 co lou r o f aunt ← b lack
113 co lou r o f parent ← b lack
114 co lou r o f grandparent ← red
115 node ← grandparent
116 else i f node i s r i gh t ch i l d o f parent then

117 co lou r o f parent ← b lack
118 co lou r o f grandparent ← red
119 s i s t e r ← l e f t ch i l d o f parent
120 i f grandparent = root then

121 ξ−l o ck grandparent
122 ξ−l o ck parent
123 ξ−l o ck s i s t e r
124 root ← parent
125 Left−Child (parent , grandparent)
126 Right−Child (grandparent , s i s t e r)
127 ξ−unlock s i s t e r
128 ξ−unlock parent
129 ξ−unlock grandparent
130 else

131 grandgrandparent ← parent o f grandparent
132 ξ−l o ck grandgrandparent

13

133 ξ−l o ck grandparent
134 ξ−l o ck parent
135 ξ−l o ck s i s t e r
136 i f grandparent i s a l e f t ch i l d o f grandgrandparent then

137 Left−Child (grandgrandparent , parent)
138 else

139 Right−Child (grandgrandparent , parent)
140 Left−Child (parent , grandparent)
141 Right−Child (grandparent , s i s t e r)
142 ξ−unlock s i s t e r
143 ξ−unlock parent
144 ξ−unlock grandparent
145 ξ−unlock grandgrandparent
146 else (node i s l e f t ch i l d o f parent)
147 co lou r o f node ← b lack
148 co lou r o f grandparent ← red
149 l e f t ← l e f t ch i l d o f node
150 r i gh t ← r i gh t ch i l d o f node
151 i f grandparent = root then

152 ξ−l o ck grandparent
153 ξ−l o ck parent
154 ξ−l o ck node
155 ξ−l o ck l e f t
156 ξ−l o ck r i gh t
157 root ← node
158 Right−Child (node , parent)
159 Left−Child (node , grandparent)
160 Left−Child (parent , r i gh t)
161 Right−Child (grandparent , l e f t)
162 ξ−unlock r i gh t
163 ξ−unlock l e f t
164 ξ−unlock node
165 ξ−unlock parent
166 ξ−unlock grandparent
167 else

168 grandgrandparent ← parent o f grandparent
169 ξ−l o ck grandgrandparent
170 ξ−l o ck grandparent
171 ξ−l o ck parent
172 ξ−l o ck node
173 ξ−l o ck l e f t
174 ξ−l o ck r i gh t
175 i f grandparent i s a l e f t ch i l d o f grandgrandparent then

176 Left−Child (grandgrandparent , node)
177 else

14

178 Right−Child (grandgrandparent , node)
179 Right−Child (node , parent)
180 Left−Child (node , grandparent)
181 Left−Child (parent , r i gh t)
182 Right−Child (grandparent , l e f t)
183 ξ−unlock r i gh t
184 ξ−unlock l e f t
185 ξ−unlock node
186 ξ−unlock parent
187 ξ−unlock grandparent
188 ξ−unlock grandgrandparent
189 co lou r o f root ← b lack
190 α−unlocked locked
191 return ¬ found

15

