
Implementing and Verifying a Concurrent Heap
Algorithm

Shouzheng Yang

Department of Computer Science and Engineering, York University
4700 Keele Street, Toronto, Ontario, Canada, M3J 1P3

Abstract. We implement an efficient concurrent heap algorithm in Java
(jdk 1.6) originally proposed by Hunt et al . The algorithm successfully
avoids deadlock and allows insertions and deletions proceeding in oppo-
site directions as typical sequential heaps do. A bit-reversal technique
is applied to scatter consecutive insertion accesses across the leaves of
the tree. The code is carefully refined from the original pseudo-code to
improve the level of concurrency. Our experimental results of running
the implementation on Java PathFinder and the Intel Manycore Test-
ing Lab further verify the correctness and evaluate the performance of
the algorithm, respectively. In a word, although there is a great amount
of overhead cost of the concurrent implementation, the algorithm can
achieve more concurrency as the number of cores or threads increases.

1 Introduction

Heap, as one of the widely used data structures, plays very important roles
in a variety of algorithms such as branch and bound [1], sorting, multi-processor
scheduling and so on. A binary heap is a binary tree in which the key (priority
value) at any node is higher than that of any of its child node(s). Many basic
data structures such as array and linked-list can be used to store a binary heap.
The paper [2] discusses a concurrent algorithm of binary heap based on an array
due to the convenience of arrays for implementation. In an array, the root of
the heap occupies position 1, and the left and the right child of any node at
position i occupy position 2i and 2i+1, respectively. Items can exist in level L
only if level L-1 is full. The basic operations on a binary heap are insertion
(enqueue) and deletion (dequeue), which are inserting a new item into the heap
and returning the highest priority item from the heap, respectively. In a typical
sequential implementation, both insertion and deletion can be achieved within
O(log n) time on an n-item heap.

We implement the algorithm in Java with the help of a few concurrency mech-
anisms but mainly relying on the java.util.concurrent.locks.ReentrantLock
class for this lock-based algorithm. A few efforts have been made to improve
concurrency both in the scope of the algorithm design and the implementation
phase. For example, the code is highly refined and no lock will be acquired until
we do immediately need it. We also verify some of the key issues in the algorithm
to ensure the correctness of the algorithm and explore some important issues in

2

the algorithm such as a particular way of using locks, etc. In this paper, we will
describe the algorithm in detail, discuss our implementation and experimental
methodology, analyze the testing results and show our efforts of exploring Java
PathFinder to verify the implementation.

2 Related work

A number of concurrent algorithms on binary heaps based on different tech-
niques have been proposed so far. As pointed out in [2], Biswas and Browne [3]
proposed a method relying on the presence of a FIFO work queue to store sub-
operations placed by processes performing insertions and deletions on a heap.
In this way, the FIFO work queue allows consecutive insertions and deletions by
a simple window-locking scheme. Rao and Kumar [4] have introduced a scheme
that manipulates insertions in a top-down direction, the same as the direction of
deletions, in order to avoid deadlocks. Jones [5] has proposed a concurrent pri-
ority queue algorithm using a skew heap whose binary tree representation does
not require that all the intermediate levels are fully filled. Some researchers focus
on non-blocking algorithms, either lock-free or wait-free. Such algorithms ensure
that at least one operation will make progress no matter the contention or inter-
leaving caused by concurrent operations. For example, Israeli and Rappoport [6]
have proposed a wait-free algorithm for concurrent priority queues, which makes
use of strong atomic synchronization primitives. Barnes [7] attempts to intro-
duce another wait-free algorithm that uses existing atomic primitives. Another
method of executing many insertions (or deletions) in parallel can be achieved by
using pipelining [8, 9], which is not suitable for frequently alternating insertions
and deletions. Sundell and Tsigas [10] present a lock-free priority queue that is
based on a sorted skip-list. It employs an aided strategy that allows a task to
continue even though another task has unfinished work. In addition, a new pro-
gramming paradigm called STM [11] has recently introduced a new concept for
handling concurrency. The basic idea of STM draws from the experience of trans-
actions. Transactions are atomic blocks. If a conflict between two transactions
occurs, the computation is discarded and the blocks are re-executed from the
beginning. In the paper [12], a STM-based binary heap has been implemented
and evaluated.

3 The Algorithm

Basically, the algorithm is a lock-based concurrent heap algorithm. It places
mutual-exclusive locks on the heap’s size and each node of the heap. A tag is
associated with each node indicating its state. States can be EMPTY (currently
the node is NULL), AVAILABLE (normal state by default), or in a transient state
denoted by the Process Identifier (pid) of the inserting process if the node is
being carried on the way to its place.

The two basic operations, deletion and insertion, are both processed in the
same directions as a typical sequential heap algorithm does. A delete operation

3

starts by popping the root node and replacing it with the one in the rightmost
position in the lowest level of the heap. Then the delete operation will ”heapify”
the heap. To handle concurrency, locks on individual nodes are placed during
the phase of ”heapifying.” In each step, it first acquires the lock on the root
node of the sub-tree and then the locks on its left and right child’s will be
further acquired. If swapping is not performed, the delete operation is completed.
Otherwise, the lock on the swapped child is retained for the next step while
the locks on the parent and the un-swapped child are released. This series of
steps will be continue until swapping is not necessary or a leaf node has been
reached. An insert operation first adds the newly inserted node to the leftmost
vacant position in the last level of the heap. It then compares the priority of the
inserted node with its parent’s and performs swapping if necessary. To handle
concurrency, each step of the bottom-up comparison, the lock on the parent
node is first acquired followed by the lock on the inserted node. Both locks will
be released after comparison and swapping. In this way, although the lock on
the inserted node always needs to be re-acquired again in every step, locks are
acquired in the same order as the delete operation in order to avoid deadlocks.

In addition, the algorithm employs a bit-reversal technique [13] to reduce
lock contention. In a typical definition of a heap, nodes in the lowest level are
compact to the left. In the algorithm, it relaxes this restriction since this does not
affect any main property of binary heaps. Under the relaxed model, consecutive
insertions will traverse different sub-trees. For example, in the third level of a
heap (nodes 8-15, where node 1 is the root), eight consecutive insertions would
start from the nodes 8, 12, 10, 14, 9, 13, 11 and 15, respectively. Hence, lock
contention is reduced because any two consecutive insertion paths do not have
any common node other than the root. This insertion sequence is achieved by
reversing the binary representation (without the first bit) of the current heap
size plus one.

Above description is the main idea of insert and delete operation. Details of
the algorithm such as the usage of tags will be discussed in detail in Section 3.2
via analysis of the implementation.

3.1 The ReentrantLock

As can be seen from the related work section, different heap algorithms re-
quire different techniques of concurrency. A number of alternative techniques are
available in Java such as semaphore, monitor, compare and swap, etc. Since the
algorithm is based on locks, java.util.concurrent.locks.ReentrantLock is
the main mechanism that the implementation relies on. According to the docu-
mentation of the Java class library1, the ReentrantLock implements the interface
Lock in Java and provides the same functionalities as synchronized methods and
blocks, but with extended capabilities. Here, the same functionalities refer to
two aspects. One is ”visible” which can guarantee that variable modification is

1 See download.oracle.com/javase/6/docs/api/java/util/concurrent/locks/

ReentrantLock.html

4

immediately visible to all threads. Since each thread has its local memory, visi-
bility is important for ensuring that threads are always reading the most recently
updated values. The other is mutual exclusion.

Besides these, the ReentrantLock constructor offers a ”fairness” option. By
default, it is unfair. If fair is set, threads are able to obtain a lock in the order that
they request. In this way, a newly requesting thread may wait for all the other
previous threads that wait on a particular lock but the lock could be currently
free. This situation happens that when the previous requesting threads tried to
acquire the lock, the lock was somehow being held, and when the lock becomes
free, the processors have not turned to any of these previous requesting threads.
Therefore, the unfair option results in better performance. Since our algorithm
does not rely on fair queuing, the implementation of the algorithm uses the
”unfair” option to avoid significant performance cost due to the overhead of
suspending and resuming jobs.

3.2 Algorithm Details

Figure 1
Figure 1 shows the class-diagram as an overview of the implementation. Con-

currentHeap is the class that supports concurrent insertions (insert()) and dele-
tions (delete()) of an array-based binary heap. It associates a number of heap
nodes, which are defined by the HeapNode class and these heap nodes form the
array-based binary heap data structure in the ConcurrentHeap class. Each node
has its own data, priority, tag and node lock. The heap size and the corresponding
size locks are further declared in the ConcurrentHeap class. As the bit-reversal
technique is applied, nodes in the lowest level of the heap tree may not be com-
pact. MaxSize is a variable used for possible maximal size of the heap tree. The
variables size and maxSize are maintained in the methods incrementSize() or
decrementSize() where the bit-reversal technique is applied.

Besides the description of the basic ideas of insertion and deletion mentioned
before, a number of cases need to be considered in order to ensure the correctness

5

of the algorithm as well as avoiding deadlock. As this is the most intricate part
of the algorithm, we explain it using code, in particular, the use of tags for
insertion.

heapNode [parent] . nodeLock . l o ck () ;
i f (heapNode [parent] . tag==HeapNode .EMPTY) {

//
heapNode [parent] . nodeLock . unlock () ;
hasParentLock=fa l se ;

}
else i f (heapNode [parent] . tag==Thread . currentThread () .

ge t Id ()) {
//
heapNodes [parent] . nodeLock . unlock () ;
hasParentLock=fa l se ;

}
else i f (heapNode [parent] . tag !=HeapNode .AVAILABLE) {

//
heapNodes [parent] . nodeLock . unlock () ;
hasParentLock=fa l se ;

}
else hasParentLock=true ;
heapNode [c h i l d] . nodeLock . l o ck () ;
i f (heapNode [c h i l d] . tag==Thread . currentThread () . ge t Id ()) {

i f (hasParentLock) . . .
else . . .

}
else i f (hasParentLock) heapNode [parent] . nodeLock . unlock () ;
heapNodes [c h i l d] . nodeLock . unlock () ;

As can be seen from the code snippet, the usage of tags for insertion is in
the following manner.

1. If the tag of the parent node is EMPTY, the insert operation is completed
because the inserted item must have been moved to the root of the heap. So
we terminate this insert operation.

2. If the tag of the parent node is the current thread’s pid, the inserted node
must have been moved one position upwards by a delete operation. So we
move the inserting thread one position upwards in pursuit of the inserted
item.

3. If the tag of the parent node is NOT AVAILABLE, that means the value
must be a pid of another thread. In this case, we release the lock on the parent
node and give the upper inserting thread priority to finish its insertion first.

4. If all above cases are not met, the tag of the parent node must be AVAIL-
ABLE. We then try to acquire the locks of its child’s nodes. If the tag of
the child node is the current thread’s pid, then no interference has occurred
and the insertion operation can proceed normally. Otherwise, we move the

6

inserting thread upwards because the inserted item must have been moved
by delete operations upwards at least twice.

From the above code snippet we can also see one of the efforts made from
the original paper to improve concurrency. In the pseudo-code written in the
paper, a child lock will be soon acquired after the acquisition of its parent node.
This does no good to concurrency. Hence, in our implementation, only essential
statements are being put within the lock holding period and no lock will be
acquired until we do really need them.

The usage of tags for deletion is much more straightforward. A lock of a
node can be acquired as long as it is not EMPTY. We do not need to consider
other cases for deletion since insert operations have addressed all the conditions.
Another point in the algorithm that needs to be emphasized is that we don’t
release the lock of the heap size until we have acquired the lock of the first
corresponding manipulated node. For insertion this means we need to acquire
the node at the inserting position before we release the lock of the heap size,
while for deletion this refers to the node that is going to replace the root in the
first step. This guarantees that the heap size is kept unchanged before it starts
working on the right node. A verification test is done to check the importance
of obeying this lock manipulation sequence in Section 4.5.

3.3 Other Implementation Related Concerns

In addition to the implementation of a heap, HeapOperator, as shown in
the class diagram (Figure 1), is the class which contains the main method. It
acts as a coordinator class. Within the main method, it employs a concurrent
heap as well as a number of instances of HeapDeleter and HeapInserter objects.
Each of these deleters or inserters, inherits from java.lang.Thread class, and
has its own run() method to invoke the insert() and delete() methods written
in the ConcurrentHeap. Hence, in class HeapDeleter and HeapInserter, there
need to be a reference to the concurrent heap. The variables ”numOfDeletion”
and ”numOfInsertion” specify the number of deletions or insertions that are
performed each time when a new thread is created. Furthermore, a number of
inserters and deleters will be created in the main method and start their threads
in the main method.

Apart from using reentrant locks, other concurrency mechanisms used in the
implementation are the volatile keyword and atomic variables. The volatile

keyword ensures the declared variable always to be visible to all threads. Atomic
variables support lock-free thread-safe programming on single variables and they
are lighter-weight in terms of performance compared to synchronized blocks
or reentrant locks. Most hardware infrastructures nowadays also support such
atomic operations. In the implementation, atomic variables are used for the
purpose of testing such as time counter, etc.

Also, CyclicBarrier is applied in the implementation to increase concurrency
for testing purpose. Threads of inserters and deleters are waiting for each other
until they all reach a common barrier and then start their run() methods. In

7

addition, in the main() method, the program waits for all inserters and deleters
finishing their jobs before starting the next round of testing.

4 Testing and Verification

4.1 Check Heap Property During Runtime

As shown in the class diagram (Figure 1), we implement the HeapTest class
which aims at checking the heap property during runtime. Basically, it creates
another thread and always checks whether the heap still maintains the definition
of a heap while the program is running. More concretely, it checks whether a
parent node has higher priority than its children’s priority during the runtime
for any nodes. Since there may be some nodes under processing at the time that
HeapTest is running, HeapTest ignores those nodes with tag value other than
AVAILABLE. With regard to the implementation of the HeapTest class, it is
designed based on ReentrantLock like the ConcurrentHeap class.

4.2 Verification Preparations

In order to verify the algorithm and our implementation, we employ Java
PathFinder2(JPF) and test a few key issues in the algorithm. Before we start
running JPF, we make a few preparations in order to verify the code within a
reasonable running time since the state space which JPF relies on for searching
different interleavings and variable states is quite large. All the following steps are
aiming at reducing the state space. First, we either remove unrelated variables
for each specific experiment or use the FilterField annotation in JPF to filter
some running variables that are not related to the core of the algorithm, such
as loop counters, etc. Second, we decrease the number of nodes to be at most
twenty nodes in the heap and most of our experiments are running with about
five nodes. Finally, the experiments that we have made are based on at most two
inserter threads and two deleter threads, and for each thread, involves no more
than five operations, either insert or delete. From the class diagram we can see
that it is easy to make these changes by setting certain values to the variable
such as ”numOfInsertion”, etc.

4.3 Data Race Detection

A data race always occurs when one event makes a change to its next state
before a second one has had sufficient time to latch. As far as we know, in terms
of bad programming, there are two possibilities that could lead to a data race.
The first one is lack of a correct timing mechanism, especially an inappropriate
synchronization manner, so that events could happen in unpredictable orders.
For example, this could result in an ambiguous order of reading/writing a par-
ticular piece of data. The second possibility relates to visibility. Even if events

2 http://babelfish.arc.nasa.gov/trac/jpf/wiki

8

are executed in a desired way, a data race could still occur if a certain piece of
data is not immediately visible to other threads after a change has been made
to it because it is not guaranteed that the reading thread will see a value writ-
ten by another thread on a timely basis in Java. Therefore, based on these two
possibilities, we try to find data races in the algorithm.

Inappropriate Scheduling We first consider an inappropriate scheduling as
the reason leading to data races. In the algorithm, besides the program flow,
the synchronization manner plays the role to schedule the threads and ensure
the correctness of the executing order of manipulating the heap during runtime.
So, our experiment first runs JPF with the PreciseRaceDetector listener to
detect any existing data races. Nothing is found since whenever the algorithm
needs to access a node, it locks the node to guarantee both mutual exclusion and
visibility. We then remove the lock of the root node of the heap and run JPF
again in order to show the importance of the lock. Not to our surprised, JPF
successfully finds a data race at the root node. As we can see in Figure 2, two
threads are executing two delete operations at the same time. Thread-1 tries to
replace the root node value with the rightmost node in the last level of the heap.
So it performs a write operation indicated as putfield. Meanwhile, thread-2
tries to read the tag value of the root node at one of the very first steps of
deletion to check if the root is EMPTY, indicated as getfield. Hence, a data
race is found from this ambiguous order of read/write of the root node.

Figure 2

Non-instant Visibility In the second experiment, we try to run JPF to find
any program bug regarding to visibility. Since the ReentrantLock and most of
the other synchronization mechanisms in Java support instant visibility, the
volatile keyword is only used in the program to assist the output generation.
More concretely, in the program, we define a volatile output array to record
the time spent per 10000 insertions for performance measurement. Each time
a 10000-insertion is finished, we record the elapsed time into the output array
and increment the array subscript index (current size). No lock is involved to
ensure synchronization for the array but the subscript index is set to be of
type AtomicInteger. (In this way, there hides a bug actually but the program
keeps running correctly. We will discuss the bug at the end of this section.) So,
we remove the volatile keyword and try to test if JPF can find a data race.

9

The answer is no. After careful consideration, it makes sense because a data
race requires read/write or write/write performed simultaneously. This does not
exist in our program for the output array. Furthermore, the program contains a
mechanism such as the ReentrantLock which always updates the threads’ local
memory. This can be a side-effect that influences our test for finding a data
race related to missing the volatile keyword. However, out of curiosity how JPF
reacts to the volatile keyword, we have further designed a simple example as
follows.

public class Volat i leDataRace {
// wi thout v o l a t i l e keyword
stat ic int v=0;
public stat ic void main (St r ing args []) {

v= 1 ;
new MyThread () . s t a r t () ;

}
public stat ic class MyThread extends Thread {

public void run () {
a s s e r t v==1;

}
}

}

In the example, if the variable is not set to be volatile, v=1 could be either
visible or invisible to MyThread during the runtime when it prints out the value
of v. So, we expect that JPF could find an error in the above example, but JPF
detects nothing. Due to lack of proper documentation, we don’t know if JPF
sets up multiple states to correlate the two versions of variables in main memory
and local memory, but anyway, as far as we understand, this might be a future
improvement for JPF.

Finally, regarding the hidden bug, the program seems to always run correctly
because the subscript index (AtomicInteger) is obtained and incremented in an
atomic way. Furthermore, it is very unlikely that the program accesses the same
array slot twice to write the time spent for two consecutive 1000-insertion be-
fore the subscript gets incremented because a 10000-insertion takes much longer
time. However, in theory, this is a bug that may happen depending on the Java
scheduler. In order to produce the bug, we set the interval sufficiently small, i.e.
one insertion. Errors due to simultaneously write/write, can be seen if we add
some assertions of the array and run JPF to enumerate all different interleavings.

However, to our surprise, although JPF can successfully enumerate all dif-
ferent interleavings, it still cannot report the data race. Later, we found the
fact that JPF reports data races on a single variable but not on array elements
unless a certain property is set, because by default JPF does not want to cause
a serious state space explosion. Finally, JPF is able to detect the data race on
this array after we add the property "cg.threads.break_arrays=true" for the
data race listener.

10

4.4 Deadlock Detection

We run our program in JPF with the listener DeadlockAnalyzer. As ex-
pected, no deadlock is found since the algorithm is designed with particular
concerns on avoiding deadlock. More precisely, although the fact that concur-
rent insertions and deletions proceed in opposite directions, they all acquire the
parent node lock and the child node lock in the same order. In addition, the
insert operations release the parent node lock and child node lock at the end
of each parent-child comparison iteration and re-acquire the parent node lock
again which is the child node lock in the next iteration to avoid deadlock.

Therefore, based on the algorithm, we attempt to verify that releasing and
re-acquiring the parent node lock after swapping at each iteration is essential
to guarantee deadlock freedom. According to this, we simply remove the cor-
responding code that releases the parent node lock if a swap is performed, and
JPF successfully locates the code stuck in the insert() and delete() methods that
cause the deadlock.

Figure 3

Further, we attempt to combine JUnit3 and JPF to detect deadlocks. A code
snippet is shown below:

public class JPFInJUnit extends TestJPF{
public stat ic void main (St r ing [] testMethods) {

runTestsOfThisClass (testMethods) ;
}
@Test public void Test1 () . . .
@Test public void Test2 () . . .
@Test
public void TestDeadLock ()
{

i f (! isJPFRun ())
{

/∗ running ou t s i d e the VM of JPF ∗/
}
i f (ve r i fyDead lock (”+l i s t e n e r =. l i s t e n e r .

DeadlockAnalyzer ” ,
”+deadlock . format=e s s e n t i a l ” ,

3 www.junit.org

11

”+repor t . c on so l e . p r o p e r t y v i o l a t i o n=error ,
t race , snapshot ”))

{
// Invoke threads f o r i n s e r t i o n and d e l e t i o n .
System . out . p r i n t l n (”There i s no deadlock ! ”) ;

}
else System . out . p r i n t l n (”A deadlock i s found ! ”) ;

}
}

First, the JUnit test class needs to extend gov.nasa.jpf.util.test.TestJPF

in order to combine them together. Second, we need to create a main method with
the statement runTestsOfThisClass(command line arguments) inside. These two
steps together ensure that all tests are running in a JUnit-JPF combined environ-
ment. Third, a few verification methods such as deadlock detection, unhandled
exception detection and property violation are available in JPF for JUnit test.
Listeners can be further specified to perform the verification. Fourth, as in the
code snippet, isJPFRun() is a method provided by JPF to give options to specify
whether running the code inside the normal JVM or the VM of JPF.

Finally, we test the deadlock problem again that releasing and re-acquiring
the parent node lock after swapping is essential to guarantee deadlock freedom.
The same result is reported by JPF as in Figure 3.

4.5 Testing With the Help of JPF

In this section, we show an example how can we conduct better testing with
JPF’s power of state space searching. As mentioned in Section 3.2, there is an
important point in the code, where the lock of the heap size is released after
the lock of the next corresponding manipulated node is acquired. We can easily
understand this from the code snippet of the delete() method.

heapSizeLock . l o ck () ;
// Apply the b i t−r e v e r s a l t e chn i que to c a l c u l a t e
// the corresponding node index t ha t w i l l be used
// to r ep l a c e the roo t node .
bottom=decrementSize (heapSize) ;

heapNodes[bottom].nodeLock.lock();

heapSizeLock.unlock();

// Ret r i eve bottom node in format ion .
heapNodes [bottom] . nodeLock . unlock () ;

Failure of this locking sequence may result in an error. An example of the
error is shown in Figure 4. From the figure we can see that a delete operation
pops the root node and tries to replace it with node-3 which is indicated as
the ”bottom” node in the code. If we switch the two highlighted lines (lock
bottom node and release heap size lock) in the above code, it could happen

12

that, right after the heap size lock is released, the Java scheduler turns to an
insert operation and the insert operation will put the newly inserted node in the
position of node-3. Therefore, we loose the node with value 2 in this example.

As far as we know, it is not easy for JPF to directly report such bugs in the
code because JPF does not know the specific idea of the algorithm. In addition,
this bug occurs without any deadlock or data race phenomenon, etc. However,
we can still find such bugs with the help of JPF. More concretely, we add an
assertion of the heap size to the program when JPF enumerates all interleavings.
For this example, the assertion of the remaining nodes that equals to three fails.
Hence, the capability of state space searching provides JPF additional strong
power for program testing.

Figure 4

5 Algorithm Performance Evaluation

Evaluation for performance is performed on the Intel Manycore Testing Lab
(MTL) with memory set to be 12G. Two experiments are designed. Each ex-
periment takes 100 rounds for testing and the first few results are discarded in
order to give the JVM a chance to optimize the code. The Java garbage collector
is called before each round to eliminate some side effects. Experiments are as
follow.

The first one evaluates the performance of the algorithm under different levels
of contention. Figure 5 shows the result. In all experiments, cores are equally
loaded. We studied the performance of insertion-only, deletions-only and mixed
insertion/deletion workloads. We set the number of threads always to be four
times of the number of cores. In each round, every thread performs 10000 insert
or delete operations. In insertion/deletion mixed workload, half of the threads are
created for insertion and the other half are for deletion. The average throughput
is measured per second.

As shown in Figure 5, insertion-only performs faster than deletion-only. One
reason is that an insertion traverses less height of the tree in average compared
to a deletion because deletions are likely to traverse the whole height of the tree.
In addition, deletions suffer more from contention on the topmost nodes of the
heap. This point is not only one of the reasons why insertion-only outperforms
deletion-only, but also the reason why deletion-only increases slower and slower
as the number of cores grows. In the case of alternating insertion and deletion,

13

contentions are raised due to both top-down and bottom-up direction operations.
In addition, after a number of insertion/deletion cycles, the nodes remaining in
the heap tend to have low priorities, so newly inserted nodes have to traverse
longer and longer paths toward the root, which will reduce the throughput. This
affects the line for insertion/deletion mixed in the diagram to become a little bit
flat when the workload is increasing.

Figure 5

Figure 6

Anyway, one positive aspect from the result is that all of the three tests show
that as the number of cores increases, the algorithm can achieve more or less
concurrency. This confirms the result shown in the original paper [2].

Figure 6 shows the result of the evaluation of overhead when using our con-
currency mechanism. Besides a few facts such as concurrent implementation

14

requires more resource consumption can help to explain the high overhead, the
cost of acquiring/releasing locks is undoubtedly the most essential reason for this
result. Another clue which was found after the experiments may also confirm the
reason. Since the main concurrency mechanism applied for the implementation
is based on the Java’s ReentrantLock. The book [14, page 282], suggests that
using ReentrantLock is not a good idea for performance reason because it is not
built into JVM in Java 1.5 so that no JVM optimization is gained for this kind
of lock mechanism in Java 1.5. However, to be honest, I am not able to find
out if it has been built into Java 1.6 or not. In addition, JPF re-implements the
ReentrantLock and we have also tested this version. No significant performance
improvement has been observed in terms of 100000 lock/unlock operations.

6 Conclusion

In the paper, we have addressed the algorithm that uses multiple locks to
allow consistent accesses to an array-based binary heap. We have also discussed
our ways of verifying and evaluating the algorithm on the Java PathFinder and
the Intel Manycore Testing Lab, respectively. Our experiments of running the
program on JPF systematically verify the correctness of the algorithm and show
the importance of some issues in our implementation such as the way of guaran-
teeing deadlock freedom. On the other hand, along with our exploration of JPF,
we hope that JPF could be improved in the future for a few things including
the capability of checking algorithms of a larger number of threads within an
acceptable time. Furthermore, the evaluation experiments show that the algo-
rithm achieves more concurrency when the number of cores or threads increases.
It is a successful sign for a concurrent algorithm although there exists a great
amount of overhead cost of the concurrent implementation. However, some of
the overhead cost is due to the concurrency mechanisms in Java. We hope that,
if these costs such as the cost of using locks can be reduced in programming
languages like Java, then concurrent algorithms would become more and more
efficient and applicable in the future.

6.1 Acknowledgements

Thanks to the management, staff, and facilities of the Intel R© Manycore Test-
ing Lab4.

References

1. Mohan, J.: Experience with Two Parallel Programs Solving the Traveling Sales-
man Problem. In: Proceedings of the 1983 International Conference on Parallel
Processing, IEEE (1983) 191

4 www.intel.com/software/manycoretestinglab

15

2. Hunt, G., Michael, M., Parthasarathy, S., Scott, M.: An efficient algorithm for
concurrent priority queue heaps. Information Processing Letters 60(3) (1996) 151–
157

3. Biswas, J., Browne, J.: Simultaneous update of priority structures. Technical Re-
port DOE/ER/25010-T2, Texas Univ., Austin (USA). Dept. of Computer Sciences
(1987)

4. Rao, V., Kumar, V.: Concurrent Access of Priority Queues. IEEE Transactions
on Computers 37(12) (1988) 1657–1665

5. Jones, D.W.: Concurrent operations on priority queues. Communications of the
ACM 32(1) (1989) 132–137

6. Israeli, A., Rappoport, L.: Efficient Wait-Free Implementation of a Concurrent
Priority Queue. In: Proceedings of the 7th International Workshop on Distributed
Algorithms, Springer-Verlag (1993) 1–17

7. Barnes, G.: Wait-free algorithms for heaps. Computer Science and Engineering,
University of Washington, Tech. Rep TR-94-12-07 (1994)

8. Quinn, M., Yoo, Y.: Data structures for the efficient solution of graph theoretic
problems on tightly-coupled MIMD computers. In: Proceedings of the 1984 Inter-
national Conference on Parallel Processing. (1984) 431–438

9. Quinn, M.: Designing Efficient Algorithms for Parallel Computers. McGraw-Hill
Companies (1987)

10. Sundell, H., Tsigas, P.: Fast and lock-free concurrent priority queues for multi-
thread systems. In: Proceedings of the 17th International Parallel and Distributed
Processing Symposium, IEEE Computer Society (2003) 609–627

11. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the
fourteenth annual ACM symposium on Principles of distributed computing, ACM
(1995) 204–213

12. Dragicevic, K., Bauer, D.: A survey of concurrent priority queue algorithms.
In: IEEE International Symposium on Parallel and Distributed Processing, 2008.,
IEEE 1–6

13. Leiserson, C., Rivest, R., Stein, C.: Introduction to algorithms. The MIT press
(2001)

14. Brian, G., Tim, P., Joshua, B., Joseph, B., David, H., Doug, L.: Java concurrency
in practice. Addison-Wesley (2006)

