
Parallel First-Fit Graph Coloring in Java

Loutfouz Zaman

Department of Computer Science and Engineering, York University
4700 Keele Street, Toronto, Ontario, Canada, M3J 1P3

Abstract. We implemented an existing parallel First-Fit graph coloring algo-
rithm using JCSP in Java and present the results of its execution on a 32 core
machine. An average speedup of 12.31 was observed with 32 cores and 140 par-
allel CSP processes as compared to the sequential execution. The algorithm was
found to perform best when the number of processes exceeded the number of
cores by an order of magnitude. On a four core laptop computer a peak perfor-
mance was found for a graph of 2000 nodes and 999001 edges when between
128 and 256 parallel processes were used. Some properties of the implementa-
tion were checked using the Java PathFinder model checker, which detected a
bug.

1 Introduction

Vertex coloring is an assignment of labels or colors to each vertex of a graph such that no
edge connects two identically colored vertices, see e.g. Figure 1. A k-coloring of graph
G is an assignment of integers {1,2,..,k} to elements of G in such a way that neighbors
receive different integers [1]. Graph coloring in general has a number of applications.
The most notable are scheduling, register allocation [2], and the popular game Sudoku.
Today, graph coloring is an active area of research.

The chromatic number of graph G, denoted χ(G), is the smallest k such that G
has a k-coloring [1,3]. Determining the chromatic number of a graph is an NP-hard
problem and one cannot expect to solve it efficiently for large graphs. Thus approxi-
mation is often used, which produces fast but not necessarily minimal colorings. One
of such approximations is First-Fit, a greedy on-line coloring algorithm, which assigns
the smallest possible integer as color to the current vertex of the graph without look-
ing ahead or changing the colors previously assigned. This algorithm is often called
inherently sequential because of its strictly ordered procedure. However, Umland [3]
presented a parallel variant, which in practice yielded satisfactory speedup results on a
four processor shared memory machine. In this paper, we present runtime and speedup
results of our implementation of this algorithm in Java using JCSP1. Some properties
of our implementation were checked by means of the model checker Java PathFinder2.
JPF was able to detect a bug in our implementation and in JCSP.

The remainder of this paper is structured as follows. Section 2 discusses the im-
portance of graph coloring in general and of First-Fit in particular. It also describes the

1 http://www.cs.kent.ac.uk/projects/ofa/jcsp/
2 http://babelfish.arc.nasa.gov/trac/jpf/

2 Loutfouz Zaman

history of graph coloring and the current state-of-the-art randomized algorithms. Sec-
tion 3 describes a sequential First-Fit coloring algorithm and two of its parallel versions
as introduced by Umland [3]. Our implementation is also briefly described. Section 5
describes our verification efforts.

2 Related work

2.1 Applications of Graph Coloring

The use of graph coloring algorithms can be found in scheduling. We refer the reader to
a paper by Marx [1] who provides numerous examples. Register allocation, which is a
compiler optimization where frequently used values of the compiled program are kept
in the fast processor registers, is another example where graph coloring is applied. Koes
and Goldstein [2] restate the traditional approach as follows. An interference graph of
the program is built. If variables interfere, they cannot be assigned to the same register.
Thus, if there are k registers, register allocators attempt to solve the problem of finding a
k-coloring of the graph. If not all the variables can be colored with a register assignment,
some variables are spilled to memory and the process is repeated. Interestingly, the
authors argue that contrary to intuition, the quality of the register allocation found by a
graph coloring register allocator would not be primarily dictated by the performance of
the coloring algorithm. Moreover, the authors found that a heuristic coloring algorithm
usually finds an optimal coloring, but an optimal coloring algorithm performs poorly as
it lacks extensions to the pure graph coloring model specific to register allocation.

Sudoku can be viewed as a graph coloring problem. Sudoku is a number placement
puzzle where the objective is to fill a 9×9 grid with digits so that each column, each
row, and each of the nine 3×3 sub-grids that compose the grid contain all of the digits
from 1 to 9. Davis3 expresses it as follows. Imagine that every one of the 81 squares
is a vertex in a graph, and there is an edge connecting every pair of vertices whose
squares are buddies. Each vertex will be connected to 20 other vertices, thus the Sudoku
graph will consist of 81 × 20 / 2 = 810 edges. Finding a valid Sudoku grid amounts to
finding a way to color the vertices of the graph with nine different colors such that
no two adjacent vertices share the same color. Essentially, the aim of the puzzle is to
perform a 9-coloring. Note that this is also a pre-coloring extension problem described
by Marx [1], since a Sudoku puzzle starts with a partially completed grid (typically
having a unique solution).

2.2 History of Graph Coloring

The problem of graph coloring dates back to the 19th century when it was tackled in the
context of planar graphs. Francis Guthrie first posed the Four Color Problem4, which
states that any map in a plane can be colored using four colors or less in such a way
that regions sharing a common boundary (other than a single point) do not share the
same color. It remained unproven until 1977 when Appel and Haken constructed a

3 http://geometer.org/mathcircles/sudoku.pdf
4 http://mathworld.wolfram.com/four-colortheorem.html

Parallel First-Fit Graph Coloring in Java 3

computer-assisted proof, see an online article5. Graph coloring has been studied as an
algorithmic problem since the early 1970s. Christofides [4] introduced a minimal vertex
coloring algorithm using brute-force search. Another brute-force search algorithm was
later introduced by Wilf [5]. Determining the chromatic number of a graph is an NP-
hard problem and one cannot expect to solve it efficiently for large graphs [1]. That
is why approximation algorithms, which guarantee performance at the expense of the
quality of the produced solution can be used. Brelaz’s Heuristic Algorithm [6] can be
used to find a good, but not necessarily minimal edge or vertex coloring for a graph.
However, the algorithm does minimally color complete k-partite graphs. Some of the
modern research in graph coloring is directed towards pushing the limits of the trade-
off between performance and the maximum number of colors. For example, recently
Schneider and Wattenhofer [7] introduced a new technique for distributed symmetry
breaking, which produces ∆ + 1 coloring in O(log∆ +

√
logn) time and obtains an

O(∆ + log1+1/log∗nn) coloring in O(log∆ +
√

logn) time (∆ - maximum vertex degree,
n - number of vertices).

2.3 On-line coloring and First-Fit

On-line coloring refers to heuristic algorithms used to produce a proper graph coloring,
which is not necessarily minimal. An on-line coloring algorithm immediately colors the
vertices of a graph G taken from a list without looking ahead or changing colors already
assigned [8]. On-line coloring has been widely studied in the past. Zarrabi [9] sum-
marized the history of obtaining competitive ratios of on-line coloring over the years.
Halldórsson and Szegedy [10] proved that the performance ratio of any deterministic
on-line coloring algorithm is at least O(2n/log2n) and the expected performance ratio
of any randomized on-line coloring algorithm is at least O(n/(16log2n)), where n is the
number of vertices.

The simplest and most intuitive of all on-line coloring algorithms is First-Fit, which
works by assigning the smallest possible integer as color to the current vertex of the
graph [8]. The simplicity of First-Fit has made it one of the main choices for the purpose
of coloring, but the competitive analysis of First-Fist is not complete [11]. First-Fit col-
oring appears extensively with interval graphs. A graph is an interval graph if it captures
the intersection relation for some set of intervals on the real line, see an online article6.
On-line coloring of interval graphs is motivated by the scenario where resource requests
arrive dynamically in an unpredictable order and the First-Fit algorithm, in particular,
allocates the lowest color to the current interval that respects the constraints imposed
by the intervals that have been colored [11]. Let χFF(G) denote the maximum number
of colors used among the colorings of a graph G produced by First-Fit for all orderings
of the vertices of G. Basically, it indicates the worst-case behavior of the algorithm.
Gyárfás and Lehel [8] define performance ratio of First-Fit as RFF = χFF(G)/χ(G).
Today, part of the research on First-Fit is directed at finding a smaller interval for RFF
than current. Recently, Pemmaraju et al. [12] found that RFF ≤ 8 and Smith [13] found

5 http://www.maa.org/devlin/devlin_01_05.html
6 http://mathworld.wolfram.com/intervalgraph.html

4 Loutfouz Zaman

that RFF ≥ 5. The use of First-Fit also appears in the literature outside of the theory do-
main. Wan et al. used First-Fit scheduling as an approximation algorithm for minimum
latency beaconing schedule [14].

3 The First-Fit Algorithm

3.1 Sequential Algorithm

Umland [3] presented a two-step algorithm for sequential First-Fit coloring using the
procedures below:

1. Build(Li,v j): Determine a list of all possible colors for vertex vi by excluding colors
used by vertex v j, j < i adjacent to vi. A Boolean possibility list Li of vertex vi is
used with the property Li[k] = f alse⇔∃v j such that j < i,(vi,v j) ∈ E, f (v j) = k.

2. Color(Li,vi): Determine the smallest of all possible colors for vertex vi. Look for
the smallest entry in Li with Li[k] = true and assign color k to vi.

Using an example, the contents of Li for each vertex and each vertex color after the final
step of the algorithm is executed are illustrated in Figure 1.

L1 = {t, t, t, t} L3 = { f , t, t, t} L5 = { f , f , t, t} L7 = { f , f , f , t}

1 2 3 4

1 2 3 5

L2 = {t, t, t, t} L4 = { f , t, t, t} L6 = { f , f , t, t} L8 = { f , f , f , f}

Fig. 1: An example showing the state of the system after the final step of sequential FF
is executed.

3.2 Parallel Algorithm

Figure 2 illustrates an example of how sequential First-Fit coloring described previously
can be parallelized given 4 vertices and 4 processors. The actions of each column in
the picture have to be executed sequentially on the corresponding processor while the
actions listed in each row can take place in parallel at the specified time step of the
algorithm. The control over Li between two processors changes in the following two
situations:

Parallel First-Fit Graph Coloring in Java 5

– between Build(Li,v j) and Color(Li,vi) when i = j+1
– between Build(Li,v j1) and Build(Li,v j2) when j2 = j1 +1

In this representation the control over the possibility lists flows through the processors
in a pipelined fashion.

Step Processor1 Processor2 Processor3 Processor4

1 Color(L1,v1)

2 Build(L2,v1)
**

3 Build(L3,v1)
**
Color(L2,v2)

4 Build(L4,v1)
**
Build(L3,v2)

**
5 Build(L4,v2)

**
Color(L3,v3)

6 Build(L4,v3)
**

7 Color(L4,v4)

Fig. 2: Parallel First-Fit coloring with 4 vertices and 4 processors.

3.3 General Parallel Algorithm

The parallel algorithm described above has a major disadvantage since it requires as
many processors as there are vertices in the graph [3]. Therefore, a generalized algo-
rithm is necessary for any number of processors (P1, ...,PN) and any number of vertices
n in the graph such that 1≤ N ≤ n. In this case, every processor is responsible for col-
oring a whole subgraph with bn/Nc vertices instead of coloring a single vertex as in the
previous version of the algorithm. The function Build(Li,Vj) used in the general version
performs the exclusion of the colors of all vertices Vj =

{
v1+(j−1)n/N , ...,v jn/N

}
con-

tained in the jth subgraph from the possibility list Li of vertex vi, which will be colored
later by another processor. Figure 3 illustrates an example of how the general parallel
algorithm is executed with 4 processors and 8 vertices assuming that N divides n and
L1 and L2 are already prepared for v1 and v2 using the previous algorithm. The flow
of control over Li for subgraphs between two different processors occurs in the same
manner as described for vertices in the earlier algorithm.

3.4 Limitations

If we look at the graphical representation of the pipeline flow of this algorithm in Fig-
ure 2, we can tell that roughly 50% of the resources are unused throughout the execution
of the algorithm (the area below the last active step for each processor). Even though
in the generalized version of the algorithm (Figure 3) the pipeline does not empty as
quickly as in the first version of the algorithm, it is unlikely that the speedup can signif-
icantly exceed half the number of processors used.

6 Loutfouz Zaman

3.5 An Implementation of the General Parallel Algorithm

We refer the reader to section A in the appendix for details of our implementation.
Here, we explain the procedure using an example illustrated in Figure 4. Each CSP
process is responsible for coloring a subgraph and building the possibility lists, which
are later used by next processes in coloring vertices and building the possibility lists of
vertices of the subgraphs assigned to them. The procedure starts by obtaining the lowest
and highest indices of the subraph scheduled for coloring with the given process. The
obtained indices are stored in the variables named bottom and top respectively. The
scheduling distributes dN/ne vertices for each of the first N − 1 processes, and the
remainder for the last process if N mod n 6= 0. Here, n is the number of processes. Next,
if the current process is the first process with identity = 0, the first top vertices are
colored using the sequential algorithm. Otherwise, they are colored using the general
parallel algorithm. Each CSP process has two One2One channels communicating with
the next and previous processes. For each vertex, the coloring operation is preceded by
a read, which synchronizes the coloring by waiting on a token being passed from the
previous process. If the current process is the last process, then the process terminates
as the last process doesn’t need to build any lists. Otherwise, the building phase of
the process starts, which is split in two parts. The first part builds dependencies for
V2 taking into account the colors used in V1 and the interdependencies. V2 is later
colored by the next process. The second part excludes colors used in V1 from all the
remaining vertices beyond V2. Each iteration of the subgraph is synchronized by being
encapsulated within a token read from the previous process and a token write to the
next process.

4 Performance Tests

We ran a performance test on MTL which featured a 32 core CPU. A random graph with
a pre-defined seed was pre-generated using a random graph generator provided by the
yFiles™Graph Visualization Library7. The graph featured 2000 vertices and 999001
edges in line with the previous work [3]. The algorithm was executed for ncores in
{1,4,8,12,16,20,24,28,32}, for nprocesses in {1,4,8,12,16,20,24,28,32,64,128,140},
where nprocesses ≥ ncores, and for niterations = 12. The results of the first iterations were
not included in the performance analysis below, but were included in the analysis of the
number of obtained colors.

4.1 Number of Obtained Colors

For the 864 reported executions of the algorithm, the number of obtained colors aver-
aged µ = 222.74, σ = 1.62, min = 219, max = 227. The distinct obtained numbers of
colors are explained by the fact that the algorithm was executed using different number
of processes. The obtained subgraphs were different each time as the subgraph depends
on the number of processes, which determines the partitioning of the graph.

7 www.yworks.com

Parallel First-Fit Graph Coloring in Java 7

Processor1 Processor2 Processor3 Processor4

Color(L1,v1)

Color(L2,v2)

Build(L3,V1)
++

Build(L4,V1)
++
Color(L3,v3)

Color(L4,v4)

Build(L5,V1)
++

Build(L6,V1)
++
Build(L5,V2)

++
Build(L6,V2)

++
Color(L5,v4)

Build(L7,V1)
++

Color(L6,v5)

Build(L8,V1)
++
Build(L7,V2)

++
Build(L8,V2)

++
Build(L7,V3)

++
Build(L8,V4)

++
Color(L7,v7)

Color(L8,v8)

Fig. 3: General parallel First-Fit coloring with 4 processors and 8 vertices.

Fig. 4: An example illustrating an execution of the general parallel First-Fit graph col-
oring algorithm.

8 Loutfouz Zaman

4.2 Runtime

Figure 5 illustrates overall runtimes for each core and each number of parallel CSP
processes. Interestingly, a single core and process execution outperformed the one with
four cores and processes. It can be inferred that the parallelization overhead outweighs
the benefits at that level. On a single core, using more than a single process resulted
in slower runtime, initially. Interestingly, as the number of processes increased, the
runtime decreased and matched that of the purely sequential execution. This can be
partially explained by the decreasing impact of the sequential algorithm. The exact
reason is unclear. However, using more parallel processes may provide further hints.

Number of parallel CSP processes

14012864322824201612841

R
u

n
ti

m
e
 (

s
e
c
o

n
d

s
)

120.0000

100.0000

80.0000

60.0000

40.0000

20.0000

0.0000

32

28

24

20

16

12

8

4

1

32

28

24

20

16

12

8

4

1

Number of cores

Fig. 5: General parallel FF runtime on MTL.

4.3 Speedup

We define the speedup for a given number of cores and processes as the average runtime
for a single core and a process divided by the average runtime for the given number of

Parallel First-Fit Graph Coloring in Java 9

cores and processes, see below:

Speedupncores,nprocesses =
µRuntime1,1

µRuntimencores ,nprocesses

A more compact scale can be obtained by visualizing the results using this method
where the performance differences appear more prominent. Figure 6 illustrates speedup
for each combination of core and process. It can be inferred from the figure that the
number of cores is clearly a factor affecting the speedup of the algorithm and it is most
prominent for nprocesses = 140 where an average speedup of 12.31 was observed with 32
cores. Here, the highest speedup can also be observed when fewer cores were used. A
detailed look at the speedup for each number of concurrent CSP processes starting from
16 is presented in Figure 7. Interestingly at 20-64 processes, the performance cannot be
observed as continuously improving with the addition of cores. However, at 128 and
140 processes, a steady improvement can be clearly seen. It can be inferred that the
algorithm performs best when nprocesses exceeds ncores by an order of magnitude.

Number of parallel CSP processes

1401286432282420161284

S
p

e
e
d

u
p

13.0000

12.0000

11.0000

10.0000

9.0000

8.0000

7.0000

6.0000

5.0000

4.0000

3.0000

2.0000

1.0000

0.0000

32

28

24

20

16

12

8

4

32

28

24

20

16

12

8

4

Number of cores

Fig. 6: Speedup on MTL.

10 Loutfouz Zaman

Number of concurrent CSP processes

16

M
e

a
n

 S
p

e
e

d
u

p

3.0000

2.0000

1.0000

0.0000

Error Bars: +/- 1 SD

16

12

8

4

1

number of cores

Number of concurrent CSP processes

24

M
e

a
n

 S
p

e
e

d
u

p

4.0000

3.0000

2.0000

1.0000

0.0000

Error Bars: +/- 1 SD

24

20

16

12

8

4

1

number of cores

Number of concurrent CSP processes

28

M
e

a
n

 S
p

e
e

d
u

p

5.0000

4.0000

3.0000

2.0000

1.0000

0.0000

Error Bars: +/- 1 SD

28

24

20

16

12

8

4

1

number of cores

Number of concurrent CSP processes

32

M
e

a
n

 S
p

e
e

d
u

p

6.0000

5.0000

4.0000

3.0000

2.0000

1.0000

0.0000

Error Bars: +/- 1 SD

32

28

24

20

16

Number of concurrent CSP processes

64

M
e

a
n

 S
p

e
e

d
u

p

10.0000

8.0000

6.0000

4.0000

2.0000

0.0000

Error Bars: +/- 1 SD

32

28

24

20

16

12

Number of concurrent CSP processes

128

M
e

a
n

 S
p

e
e

d
u

p

12.0000

10.0000

8.0000

6.0000

4.0000

2.0000

0.0000

Error Bars: +/- 1 SD

32

28

24

20

16

Number of concurrent CSP processes

140

M
e

a
n

 S
p

e
e

d
u

p

15.0000

10.0000

5.0000

0.0000

Error Bars: +/- 1 SD

32

28

24

20

16

12

8

4

1

number of cores

Fig. 7: Speedup for each number of concurrent CSP processes starting from 16

Parallel First-Fit Graph Coloring in Java 11

4.4 Peak Performance

By looking at Figure 6 it is apparent that the peak performance for this algorithm
was not achieved at 140 processes. Executing more than 140 concurrent processes on
MTL could potentially affect the stability of the system negatively, and, as a result,
the peak performance test was not conducted. Instead, for this purpose a high end lap-
top with Intel®Core i7 720QM @ 1.60 GHz CPU, 6 Gb of DDR3 RAM and running
Microsoft®Windows™7 Pro 64-bit SP1 was used. The CPU features 4 cores with hy-
perthreading. The test was performed for nprocesses in

{
22,23, ..,210,1 1

2 ·2
10,211

}
for

five iterations. A graph with the same properties was used as described in Section 4.
This peak performance test was conducted twice: the second time after a bug in the
implementation was fixed (see Section 5.1). The results of the first four iterations when
the test was performed for the second time are summarized in Figure 8. Both times,
224 colors were obtained and the results did not appear to be drastically different from
the earlier results and a slight improvement was observed. Both times, the benefits of
parallelization appeared to diminish somewhere between 128 and 256 processes mark.

Number of parallel CSP processes

2048

1536

1024

512

256

128

64

32

28

24

20

16

12

8

4

R
u

n
ti

m
e

 (
s

e
c

o
n

d
s

)

70

60

50

40

30

20

10

0

General Parallel FF Runtime on Laptop

Sequential

Parallel

Breakdown

Fig. 8: Runtime of general parallel FF on laptop.

Figure 6 illustrates dramatic increases in speedup as the number of processes in-
creases. Part of the speedup is due to the decreasing impact of the sequential algorithm
used to color the initial vertices as the number of concurrent processes increases. This is
illustrated in Figure 8 with a breakdown of the runtime the algorithm spends executing

12 Loutfouz Zaman

sequential and parallel procedures. As the number of concurrent processes increases,
the time the algorithm spends executing sequential procedures decreases. Somewhere
between 128 and 256 processes the peak performance is reached. The parallelization
overhead starts to increase resulting in the overall performance decrease. This is also
demonstrated in Figure 8.

5 Model Checking with the Java PathFinder

We used the Java PathFinder to perform model checking. Two bugs were detected: one
in the implementation and the other in the JCSP library.

5.1 Bug in the Implementation

JPF was able to detect a java.lang.NullPointerException in the line that was
accessing the list of assigned colors in the first iteration of the building part of the
algorithm. The bug was initially detected by running the algorithm with a randomly
generated graph of 10 nodes and 20 edges through JPF with four parallel CSP processes
using the DFSearch algorithm. We then encapsulated the problematic Java statement
within try and catch (java.lang.NullPointerException e) blocks and made
the catch block print a message describing variables used locally as follows: process id,
possibility list, excluded node, mapping of colors to nodes, and the bottom, top and
next_top values. However, at 10 nodes and 20 edges three statements were produced,
so we reduced the graph size to 9 nodes and 12 edges. At this threshold exactly one
statement was printed, which made it easier to analyze the problem. A layout of the
targeted graph and a produced proper coloring are shown in Figure 9. Note that the
last of the four processes was not assigned any nodes for coloring. For this scenario,
the possibility list for node 7 could not be built because the color for node 6 was not
available yet. The printout of assigned colors indicated that exactly the first five nodes
were colored. This suggested that the process was simply “ahead” and attempted to
build a possibility list using a node, which did not have a color assigned yet. As it
turned out, synchronization using token passing was not enough in the first iteration
of the algorithm as there may be interdependencies between the nodes in the current
subgraph, which need to be taken care of with additional synchronization. The issue was
easily fixed by encapsulating the entire statement within a while loop, which would
make the process wait for the color to become available before proceeding further. See
pseudo Java code below:

int color = -1;
while (color == -1)
{
try
{
color = getColor(i);

}
catch (java.lang.NullPointerException e)

Parallel First-Fit Graph Coloring in Java 13

{
System.err.println("Waiting for color from node " + i

+ "to build" + "L["+j+"]");
}

}
build(color, j);

(a) Minimal graph producing the bug. (b) The produced proper coloring.

Fig. 9: The minimal graph used in detection and correcting of the bug. The last of the
four processes was not assigned any nodes for coloring.

5.2 Correctness Tests

Two tests for correctness were performed. The first one was performed on small graphs
prior to the full-scale evaluation on the MTL machine. The goal of the test was to make
sure that the graph was properly partitioned among the available processes. The cor-
rectness of graph partitioning was challenged in this test. Random small graphs with
certain distinct properties, such as a star arrangement among others, were created using
a graph visualization and editing tool implemented for this purpose. The correctness of
the partitioning method was tested for nprocesses in {1,2, ..,N +1}, where N is the num-
ber of vertices in the graph. The second test was included in the JPF tests and featured
an execution of a polynomial time algorithm at the end of each trial on a laptop. The test
checked if a proper coloring was produced. The source code is presented in Section B.1
of the appendix. No errors were observed for all search methods that successfully ter-
minated.

JPF Tests Initially, running the test on the graph with 2000 nodes and 999001 edges
(as done previously on a regular JVM) made JPF cause a stack overflow error. The same

14 Loutfouz Zaman

was observed for a graph with 10 times as fewer nodes and edges. However, JPF was
able to handle a 20 node and 190 edge graph for up to 32 parallel CSP processes using
the DFSearch. Beyond 32 CSP processes the test was not conducted. In reality, only up
to n + 1 CSP processes are required in testing the algorithm for a graph of size n, as the
remaining processes will not be doing any work and only one of such processes needs
to be checked. The results of the tests are summarized in Table 1b of the appendix.
Another group of tests were conducted with the graph in Figure 9 for some search
strategies. The results are summarized in Table 1a of the appendix. No data races were
found with the search strategies that terminated. This finding supports the fact that data
races are not supposed to occur in CSP applications, where low level synchronization
constructs are abstracted from the programmer.

Bug in JCSP A suspicious error gov.nasa.jpf.jvm.NotDeadlockedProperty was
thrown by JPF pointing to the lines originating from the JCSP library. The error would
be thrown even for a unit graph of a single node. Exactly the same error was thrown
for a much simpler JCSP application of a similar kind. The application used a single
One2One channel to transfer integers from 0 to 10 between two processes. Because of
the simplicity of this application, it is unlikely the deadlock is due to the higher level
code of the application and likely can be explained by a bug in JCSP.

6 Conclusion

In this paper, we discussed why graph coloring in general and First-Fit coloring in par-
ticular are important problems. We described an implementation of a parallel First-Fit
graph coloring algorithm using the CSP approach, which was previously proposed by
Umland [3]. We presented the results of its execution on a 32 core machine and con-
firmed that the number of cores was indeed a factor that determined the performance
of the algorithm. We also found that the algorithm performed best when nprocesses ex-
ceeded ncores by an order of magnitude. A peak performance was found for a graph of
2000 nodes and 999001 edges on a four core laptop. Some properties of the implemen-
tation were checked using the JPF model checker, which was able to detect a bug in
the implementation. Another bug was found in the JCSP library. Arguably, it would be
hard to find the bugs without using this tool.

7 Future Work

There is another correctness test that can be done to verify the earlier mentioned prop-
erty 5 ≤ RFF ≤ 8. This, however, requires an implementation of a minimal coloring
algorithm to obtain χ(G). Also, in future, modeling can be applied for predicting opti-
mal nprocesses given ncores, nvertices, and nedges.

Acknowledgements

Thanks to the management, staff, and facilities of the Intel®Manycore Testing Lab8.
8 www.intel.com/software/manycoretestinglab

Parallel First-Fit Graph Coloring in Java 15

References

1. Marx, D.: Graph coloring problems and their applications in scheduling. Periodica Poly-
technica Ser. El. Eng. 48(1-2) (2004) 5–10

2. Koes, D., Goldstein, S.C.: An analysis of graph coloring register allocation. Technical Report
CMU-CS-06-111, Carnegie Mellon University (March 2006)

3. Umland, T.: Parallel graph coloring using JAVA. In: Architectures, Languages and Patterns
for Parallel and Distributed Applications, IOS Press (1998) 211–218

4. Christofides, N.: An algorithm for the chromatic number of a graph. The Computer Journal
14(1) (1971) 38–39

5. Wilf, H.S.: Backtrack: An O(1) expected time algorithm for the graph coloring problem.
Information Processing Letters 18(3) (1984) 119–121

6. Brélaz, D.: New methods to color the vertices of a graph. Communications of the ACM
22(4) (April 1979) 251–256

7. Schneider, J., Wattenhofer, R.: A new technique for distributed symmetry breaking. In: Pro-
ceeding of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed com-
puting, ACM (2010) 257–266

8. Gyárfás, A., Lehel, J.: On-line and first fit colorings of graphs. Journal of Graph Theory
12(6) (1988) 217–227

9. Zarrabi-Zadeh, H.: Online coloring co-interval graphs. Scientia Iranica 12(6) (2009) 1–7

10. Halldórsson, M.M., Szegedy, M.: Lower bounds for on-line graph coloring. Theoretical
Computer Science 130 (1994) 163–174

11. Narayanaswamy, N., Babu, R.: A note on first-fit coloring of interval graphs. Order 25
(2008) 49–53

12. Pemmaraju, S.V., Raman, R., Varadarajan, K.: Buffer minimization using max-coloring.
In: Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms,
Philadelphia, PA, USA, Society for Industrial and Applied Mathematics (2004) 562–571

13. Smith, D.A.: The First-Fit Algorithm Uses Many Colors on Some Interval Graphs. PhD
thesis, Arizona State University, United States (2010)

14. Wan, P.J., Wang, Z., Du, H., Huang, S.C.H., Wan, Z.: First-fit scheduling for beaconing in
multihop wireless networks. In: Proceedings of the 29th conference on Information commu-
nications, Piscataway, NJ, USA, IEEE Press (2010) 2205–2212

16 Loutfouz Zaman

A Details of the Implemention

The class diagram of the system is shown in Figure 10. FF is an abstract class which
contains the implementation of build and color methods. SharedFFData is the class
which contains the shared data such as the boolean possibility list L, the hashtable
which stores the assignment of colors for each vertex and the shared graph. The two
classes SequentialFirstFit and ParallelFirstFit extend FF. These two classes
implement the corresponding algorithms. Each of them also implements the abstract
method obtain_coloring inherited from the parent class. The method is responsible
for performing the actual coloring operation. The parallel implementation of the method
creates a parallel CSP process and runs it as follows. It creates a One2OneChannel be-
tween the current process and the previous process and another such channel between
the current process and the next process. The first process doesn’t have a pointer to the
previous channel and the last process doesn’t have a pointer to the next channel.

There are two more classes, FFProcess and the extending FFGeneralProcess de-
clared inside the class ParallelFirstFit, see Figure 10. FFProcess extends
CSProcess from the JCSP library. The two classes implement the corresponding par-
allel (vertex-based) and general parallel (subgraph-based) First-Fit coloring algorithms.
Every instance of FFGeneralProcess (and FFProcess) has an identity of type
Integer associated with it, which is used in the run method for controlling the logic
and partitioning the graph. The partitioning is obtained using the methods get_bottom
and get_top.

B Correctness Tests and Model Checking

B.1 The Correctness Test for Proper Coloring

int size = ff.sffd.nodeArray.length;
for (int k = 0; k < size; k++)
{
Node node = ff.sffd.nodeArray[k];
int node_color = ff.sffd.hashtable_coloring.get(k);
for (NodeCursor nc = node.neighbors(); nc.ok(); nc.next())
{
Node neighbour = nc.node();
int neighbour_index = neighbour.index();
int neighbour_color =
ff.sffd.hashtable_coloring.get(neighbour_index);

//if fails then improper coloring is produced
assert(neighbour_color != node_color);

}
}

B.2 Detailed Results of the JPF Tests

RandomSearch and RandomHeuristic resulted in a [SEVERE] JPF out of memory
warning message and did not finish. The premature termination explains the fact that

Parallel First-Fit Graph Coloring in Java 17

Fig. 10: The class diagram of the implementation

18 Loutfouz Zaman

a bug in the JCSP was not reported for these two search strategies. Encapsulating the
sequential part of the algorithm within the Verify.beginAtomic() and
Verify.endAtomic() sped up the search process but did not solve the issue. Both
search strategies used up around 1362 MB of memory before terminating.

DFSearch DFSHeuristic RandomSearch MostBlocked RandomHeuristic
Time: 0:00:04 0:00:07 0:04:25 0:00:47 0:36:15

New states: 1689 4388 1255 24749 221706
Visited states: 3 4 230934 24151 225642

Backtracked states: 10 4391 0 48899 447347
End states: 8 8 0 1 0
maxDepth: 1681 1680 0 370 192
Threads: 1682 1681 232190 24229 119218

Heap new: 1231 1244 462033 51941 1053611
Heap free: 295 295 462033 19343 137926

Max memory: 91MB 182MB 1362MB 295MB 1361MB
JCSP bug found: Yes Yes No Yes No

(a) 9 nodes, 12 edges, 4 CSP processes

Nodes 20 20 40
Edges 190 190 400

CSP processes 20 32 20
Time: 0:00:47 0:01:41 0:04:23

New states: 24802 44777 98266
Visited states: 0 33 30

Backtracked states: 7 40 37
End states: 8 8 8
maxDepth: 24794 44769 98258

Choice generators thread#: 24795 44770 98259
Heap new: 2623 6545 4313
Heap free: 1191 4851 2347

Max memory: 453MB 994MB 1361MB
JCSP bug found: Yes Yes Yes

(b) Other graphs, all using DFSearch
Table 1: Results of JPF tests

