
Parallel Minimum Spanning Tree Algorithm

Xiwen Chen

Department of Computer Science and Engineering, York University
4700 Keele Street, Toronto, Ontario, Canada, M3J 1P3

Abstract. The Minimal Spanning Tree (MST) problem is a classical
graph problem which has many applications in various areas. In this pa-
per we discuss a concurrent MST algorithm derived from Prim’s algorith-
m presented by Setia et al. in 2009, targeting symmetric multiprocessing
(SMP) with a shared address space. The pseudocode of the algorithm is
presented, combined with three interesting heuristics in order to achieve
a high level of parallelism. We also analyze the parallel time complexity
of this algorithm and the experimental results demonstrate it is a good
time bound. In the last part of the paper, we use different methods to
test and verify our implementation, including directly testing and model
checking using Java PathFinder.

1 Introduction

A spanning tree is a sub-graph of the given undirected connected graph, which is
a tree and covers all the nodes of the graph. A Minimum Spanning Tree (MST)
is the spanning tree whose weights are less than or equal to any other spanning
trees of the graph. MST is one of the well-known classical graph problems which
has many critical applications in network organization, VLSI layout and rout-
ing, touring problems, partitioning data points into clusters and various other
fields. It was in 1926 that Bor̊uvka [1] produced the first fully realized sequential
algorithm to find the minimal spanning tree. At a later time, Kruskal and Prim
developed the two most commonly used MST algorithm, Kruskal’s algorithm [2]
and Prim’s algorithm [3], respectively.

However, with the proliferation of multicore processors, people are eager to
build the MST more quickly with the power of those multicore machines. In
this report, we discuss a parallel MST algorithm based on the paper presented
by Setia et al. [4], which focuses on symmetric multiprocessing (SMP) with a
shared address space. In this implementation multiple threads are used, running
in parallel and each of them grows its own MST concurrently by coloring the
nodes with a unique color (i.e. its id). When one thread has to add a node which
already belongs to another thread, we merge these two trees using a MergeTree
operation. Moreover, we force the tree with the larger id to merge into the tree
with the smaller id. Eventually, the thread with the smallest id will have the
MST of the whole graph.

This parallel algorithm are derived from Prim’s algorithm [3] based on the
cut property of a MST and will be discussed in Section 3.1 and Section 3.2. We

2

also present some interesting heuristics which make the algorithm perform more
efficiently. In Section 5, we analyze the parallel time complexity of the algorithm
and discuss it by using two different graph models. More importantly, since we
run the implementation on the 32 cores machine in the Intel R© Manycore Testing
Lab, we compare the differences in terms of the performance when using different
number of threads. Finally, we discuss our work on testing and verifying the
correctness of this implementation using both a traditional testing method and
a state of the art model checking tool called Java PathFinder. In the Appendix,
we also attach a brief proof [4] of the correctness of the algorithm and the
MergeTree operation.

2 Related Work

A lot of existing concurrent MST algorithm are based on Bor̊uvka’s algorithm, for
instance, Chung et al. [5] and Chong et al. [6]. Recently Bader et al. [7] discovered
a hybrid method based on Prim’s [3] and Bor̊uvka’s approach.

Grama et al. [8] pointed out that the main outer loop of Prim’s sequential
algorithm is very difficult to run in parallel. But we can find the nearest nodes
in parallel by the so called Min-Reduction in that paper, and also the update-keys
step can be done in parallel [4]. Gonina et al. [9] try to add many nodes to the
tree at a time by doing some extra computation. In that paper, the algorithm
finds locally the nearest K nodes and does a global Min-Reduction to obtain
globally the closest K nodes.

Both parallel versions of Prim’s algorithm are growing a single tree, and
find the nearest node concurrently. Bader et al. [7] developed a non-deterministic
shared memory algorithm which combines both Bor̊uvka and Prim’s algorithm.
In their approach, each thread chooses a root and grows a tree just as Prim’s
serial algorithm. The thread will stop and start with a new root when it finds
a nearest node which belongs to another thread. Eventually, we will get many
different connected components, which are trees with one or more nodes. Now
Bor̊uvka’s algorithm is used to merge those component into a tree.

The algorithm in the selected paper [4] is similar to the work that Bader
et al. [7] did before, which also concurrently grows trees using multiple threads.
However, when a collision happens between thread i and thread j (i<j), a sub-
routine will be called to merge the tree of thread j into i’s tree. Then thread i
continues to grow the tree from there and thread j randomly picks another node
to grow a new tree.

3 Prim’s Parallel Algorithm

3.1 Prim’s Algorithm

Definition 1. A cut is a partition of the nodes of a graph into two disjoint
subsets. For any cut C in a graph, an edge with the smallest weight in the cut
called a light edge.

3

Prim’s algorithm grows a node set Amst by adding a light edge that connects
Amst to an isolated node, one on which no edge of Amst is incident, to the tree
Amst. In the pseudocode below, the connected graph G and the root r of the
MST are inputs to the algorithm. During execution of the algorithm, we keep
all the nodes that are not in the tree in a priority queue Q based on a key
attribute. For each node v, the attribute v.key is the minimum weight of any
edge connecting v to a node in the tree. We assign v.key =∞ if there is no such
edge. The attribute v.π indicates the parent of v in the tree [10]. The algorithm
implicitly maintains the set Amst as

Amst = {(v, v.π) : v ∈ V − {r} −Q}.

When the algorithm terminates, the priority Q is empty and the MST Amst for
G is thus

Amst = {(v, v.π) : v ∈ V − {r}}.

MST-PRIM(G,w, r) pseudocode:
(Here G is the graph, w is the set of weight of all edges, r is root we
choose to grow the MST.)

1 for each u ∈ G.V
2 u.key ←∞
3 u.π ← NIL
4 r.key ← 0
5 Q← G.V
6 while Q 6= ∅
7 u← EXTRACT−MIN(Q)
8 for each v ∈ G.Adj[u]
9 i f v ∈ Q and w(u, v) < v.key

10 v.π ← u
11 v.key ← w(u, v)

The while loop of line 6-11 has the following properties.
1. The edge set of MST Amst = {(v, v.π) : v ∈ V − {r} −Q}.
2. The nodes already selected into the MST are those in V −Q.
3. For all the nodes v ∈ Q, if v.π 6= NIL, then v.key <∞ and v.key is

the weight of a light edge (v, v.π) connecting v to some nodes already
placed into the MST.

Line 7 chooses a node u ∈ Q incident on a light edge that crosses the cut
(V − Q,Q), removing u from the priority queue Q, implicitly adding it to the
set Amst (i.e. adding (u, u.π) to Amst). The for loop of line 8-11 updates the
key and π attributes of every node v adjacent to u but not in the tree, thereby
maintaining the third loop invariant.

The running time of Prim’s algorithm depends on how we implement the min-
priority queue Q. One can use the binary min-heap to implement the priority
queue, which will takeO(V log V+E log V) ≈ O(E log V), as the number of edges
is usually larger than the number of nodes. We can still improve the asymptotic

4

running time of the algorithm by using a Fibonacci heap [11], achieving O(E +
V log V). This will be a significant improvement if the number of edges becomes
far more than the number of nodes.

3.2 Parallel Algorithm

In this section, we present the parallel approach published by Setia et al. [4]. A
fundamental property that underlies this approach is the Cut property of MST.

Cut property of MST: For any cut C in the graph, the light edge
in the cut belongs to all MSTs of the graph. If there are multiple light
edges with the same weight in the cut, at least one of them will be in
the MST.

Intuitively, in order to take the full advantage of multiple processors, we
use multiple threads to grow their own MST simultaneously based on the cut
property of MST. Once a collision occurs, we force the tree grown by the thread
that has the larger index (j) to merge into the tree who has the smaller index (i).
Thread j will randomly choose another new node to grow a new MST, thread
i will continue growing. This eventually guarantees that thread 0 will have the
MST for the whole graph.

The Main Thread The main thread initializes the environment variables,
MSThreads, and waits for the termination of all the MSThreads.

Input: A connected graph G = (V,E) represented by an adjacency
matrix. |V | and |E| denote the number of the vertices and edges, respec-
tively. All nodes have unique ids.
Output: Minimum Spanning Tree of the Graph G.

Main Thread pseudocode:

1 for each node v
2 v.color ← −1
3 v.parent← v
4 v.rank ← 0
5 c r e a t e threads with unique thread−i d s
6 for each thread i
7 i . s t a r t ()
8 for each thread i
9 i . j o i n ()

10 return the r e s u l t o f thread 0

Line 1-4 firstly initialize all nodes as uncolored ones. Furthermore, because
we will use the disjoint set combined with path compression and balanced union
by rank [10] for the convenience of maintaining the MST set of each thread and
also for the merge operations, we create |V | disjoint sets for those nodes and set

5

the rank of them as 0. Actually, this data structure guarantees that we can union
two MSTs using at most â(n) steps, where â(n) is the inverse of Ackermann’s
function [12]. (Basically, â(n) is at most 4 for all conceivable values of n.) After
the initialization steps, we create several MSThreads and let them start. Finally,
the main thread should wait for the termination of all those children threads,
and then returns the MST found in the given graph G.

The MSThread Thread Each MSThread individually grows its MST by
selecting the light edge it encountered and try to color it with its own thread-id.
When a collision occurs, one of the trees should be merged into (colored into)
the other tree by calling the MergeTree method.

MSThread pseudocode:

1 while (true)
2 root r ← randomly choose an unco lored node
3 i f no such r exist
4 return
5 c r e a t e a Prior i tyQueue for the thread .
6 for each neighbor u o f r
7 i f PriorityQueue.decreaseKey(u,Edge[r][u])
8 u.π ← r
9 while (!PriorityQueue.empty())

10 minnode← PriorityQueue.deleteMin()
11 setidx← Graph.find(minnode)
12 lock setidx
13 i f setidx.color = −1
14 block a l l s i g n a l s
15 setidx.color ← i
16 add setidx into MST of i
17 for each neighbor v o f minnode
18 i f PriorityQueue.decreaseKey(v,Edge[minnode][v])
19 v.π ← minnode
20 unlock setidx
21 unblock a l l s i g n a l s
22 else i f setidx.color 6= i
23 j ← setidx.color
24 i f i < j
25 lock i and j
26 MergeTree (i ,j)
27 unlock setidx, i, j and r e s t a r t j
28 else i f i > j
29 lock j and i
30 MergeTree (j , i)
31 unlock setidx, j, i and r e s t a r t i
32 else
33 unlock setidx
34 continue
35 else i f setidx.color = i

6

36 unlock setidx
37 continue
38 end while
39 end while

Each thread has to randomly pick an uncolored node as its root to grow a
MST as shown in line 2-4. When the thread successfully picks a root, it updates
the node information in its priority queue. Line 9-38 are the loop the thread
grow its MST. It chooses a node from the next light edge and sees if such node is
colored or not. It’s easy if the node is uncolored as displayed in line 13-21, where
it performs similar as the Prim’s sequential algorithm. If the node is colored by
itself, the thread continues. Otherwise, we perform a MergeTree operation (line
22-34) according to the order of the two thread ids. One may also notice that the
situation in line 32-34 seems impossible to happen. However, this case actually
is so important since in a concurrent setting, we can not guarantee that once we
step into line 23 the pre-condition still holds (i.e. now setidx.color = i).

Fig. 1. MergeTree(1,3) Operation

Figure 1 [4] shows an example where we have three threads growing their own
tree and each tree was colored with its unique thread-id, and now the collision
occurs. Let’s assume that thread 1 chooses a minnode which belongs to thread
3. So thread 1 performs MergeTree(1,3). The right figure shows the result after
the merge operation. Certainly, the same result can also be obtained by calling
MergeTree(3,1) from thread 3, and merge its MST into thread 1’s. What’s more,
in the next iteration, MergeTree(1,2) may be invoked, merging the tree2 into
tree1.

7

The MergeTree Operation

pre-condition: i < j
post-condition: The MST of thread j is merged into i’s MST.

MergeTree(i, j) pseudocode:

1 merge the j′s edge l i s t i n to i′s
2 update the s i z e i n f o o f cur rent MST of thread i
3 update the weight i n f o o f cur rent MST of thread i
4 union MST s e t o f j with MST s e t o f i
5 c o l o r the new s e t with i′s id
6 update a l l the key va lue s in the p r i o r i t y queue o f thread i

Line 1-5 can be done using O(1) time easily. And line 6 will take O(n) time
if we use a Fibonacci Heap [11]. One may think that the thread with the smallest
id will always hold the final MST of the graph at the end. But we notice that
sometimes if the first thread doesn’t even get really started, the thread with the
second smallest id may have the MST of the whole graph.

4 Heuristics

We modify and implement some interesting strategies and heuristics similar to
the original paper [4], with the aim of achieving a higher degree of parallelism
for this concurrent algorithm.

4.1 Base Problem Size

Base problem size [4]: We set a threshold value for the number of
uncolored nodes. If such number falls below that threshold, we will ter-
minate the thread instead of restarting it to pick a new random root to
grow a new MST.

In our implementation, we use a similar idea which actually keeps track of the
number of the times that a thread randomly picks a node as root, but such node
was already colored. We then set a threshold for that number and if a thread fails
too many times to pick a root, it will be terminated. It is straightforward that
as long as the random number generator can uniformly generate numbers from 0
to |V |− 1, the number of failures to pick an uncolored node are probabilistically
related with the number of uncolored nodes. Furthermore, this simple change
does improve the parallelism of the algorithm a lot, since when we keep track of
the exact number of uncolored nodes, we have to lock and unlock that number
frequently. This actually makes all the threads behave sequentially, competing
the mutual exclusive access to that object with each other.

8

Fig. 2. A graph with underperforming thread

4.2 Threshold of MST Size

Figure 2 [4] displays a situation that no matter what the orange colored thread
tries, it will grow a MST of size one and get collisions immediately with the green
thread. Thus, if a thread repeatedly grows small trees, there is no incentive for
us to let the thread continue. It’s better to terminate the thread and thereby
avoiding the overhead of the MergeTree operation.

Therefore, we check the size of the MST of a thread after it merges its
tree into another thread before it restarts. If that size is consecutively under a
threshold for K times, we force such underperforming thread to be killed. In our
implementation, K is set to 2.

4.3 Wrap-around find-Min

The most interesting heuristic presented by the authors is the Wrap-around
find-Min [4] strategy. The basic idea is shown in Figure 3.

Fig. 3. Problems with symmetric KeyArray search [4]

9

As we can infer from the Figure 3, if all the threads start from beginning to
the end to find the minimum key systematically, it will result in a high probability
of collisions. Setia et al. [4] suggest that instead of always starting from the lowest
index, we start from the root and wrap around to the beginning of the array
when it reaches the end. For example, in Figure 3, thread 2 starts from node 3
instead of node 1 and finally wraps around when it reaches node 6.

In order to test the performance of such a strategy, we implemented three
different methods: the näıve approach without warp around, start from root and
start from a random node. The left part of Figure 4 illustrates the average size
of the minimum spanning tree the thread can grow when a collision happens (20
trials), and the right diagram displays the total size of MST that children can
grow in each corresponding trial.

Fig. 4. The average size of MST when collision occurs and the corresponding
total size of MST generated by children threads, tested 20 times.

The two diagrams show the same fact that with such a heuristic, threads will
have a better chance to grow a bigger MST and the probability of collision will
be reduced as well.

5 Time Complexity and Performances

By using the Fibonacci heap [11], which has a constant amortized time for the
DecreaseKey operation, combined with the disjoint set using path compression
and balanced union by rank, we can achieve an O(|E|+ |V | log |V |) time for the
sequential algorithm. For the concurrent algorithm, it’s usually hard to figure
out the exact time bound for it, since there are too many interleavings while
running the concurrent program. However, we can still roughly compute the
time if we don’t consider the overhead of locks, and assume that each thread
performs ideally and the graph is perfect for multiple threads to grow their MST
(i.e. only a few collisions). Thus, the parallel running time for this algorithm will

10

be

O(P · |V | log |V |+ |E|
P

)

where P is the number of threads. According to the above formula, it’s easy to
conclude that the concurrent algorithm will gain some speed up if the right term
dominates. Thus, we will use two types of graph to check the performance of our
implementation, one has a huge amount of edges, the other are costly for edge
access.

5.1 Graph in Adjacency-Matrix

If we store the graph in the form of an adjacency matrix, where edges are rep-
resented by an int (4 bytes), it costs 4 Gigabyte to store a complete graph with
30,000 nodes. Thus, we run our algorithm on a randomly generated complete
graph with 1,000 - 4,000 nodes, 10,000 nodes and 30,000 nodes to see how the
left term and the right term affect the running time.

Fig. 5. Execution time on different size of graph using different number of
threads stored in int matrix.

Figure 5 shows the performance of the concurrent algorithm on complete
graphs of small size. We can clearly see a linear increment in time when we

11

put more threads at work together. Another obvious fact is that once the graph
becomes larger, the algorithm is more tolerable for more threads (i.e. the linear
increment point moves to the right, gradually). These facts are more significant
when the algorithm runs on the complete graph with 10,000 nodes and 30,000
nodes as illustrated in Figure 6.

Fig. 6. Execution time on complete graph stored in int matrix with 10,000
nodes and 30,000 nodes using different threads.

As shown in Figure 6, when the algorithm is running on the graph with 30,000
nodes, the linear increment point may move to the very right part, and can’t
be seen in this diagram. What’s more, we can’t really see more improvements
in the execution time in the same graph after we use more than 32 threads.
This is because the algorithm will gain speed up if and only if those threads
run in parallel. Furthermore, the machines in the Intel R© Manycore Testing Lab
only have 32 cores. Thus, even if we create more and more threads to run the
algorithm, there are at most 32 threads who are really computing at the same
time.

5.2 Graph in Adjacency-List

If we store the graph using an adjacency list, it costs linear time to access an edge
in the graph. More realistically, we use the TreeMap<Integer,Integer> which is
implemented by a red-black tree in Java, to store the edge information. Thus, it
costs O(log |V |) time to visit an element in the red-black tree, which makes the
right term in the complexity formula dominate. However, in this case, we can’t
store too many edges by using TreeMap<Integer,Integer>, since even with a
8,000 nodes complete graph, it needs 8 Gigabytes to store the edge information.

As we can see from Figure 7, even though the size of the graph is not that
large, the algorithm still gets a speed up with a complete graph of 1,000 nodes.
What’s more, as the size of the graph increases, we can save more time by using
more threads.

12

Fig. 7. Execution time on complete graph with 1,000-7,000 nodes using dif-
ferent threads on TreeMap.

6 Testing and Verification

We try both the testing method and the model checking method to verify the
correctness of our implementation. Firstly, we directly check if the program ob-
tains the correct result based on the MST properties. A sequential version of
Kruskal’s algorithm [2] is used to compute the standard weight of the MST in a
graph. Then, we run our concurrent implementation on the same graph, testing
if the final result matches to the one computed by Kruskal’s algorithm. If the
two values are the same, we then check the edge list obtained by the concurrent
program whether it satisfies the spanning tree properties or not. The properties
of spanning tree are already defined in Section 1. Since we have an edge list
stored in the final thread, the way to verify it is simple. We firstly make |V | sets
corresponding to |V | nodes, and union |V | − 1 times according to the two end
points of an edge in the edge list. Finally if every time the sets we union are
disjoint, then the edges in the list form a spanning tree.

We tested our implementation using 80 threads on the machine in the Intel R©

Manycore Testing Lab, which has 32 cores, on two graphs. The first one is a
complete graph with 1,000 nodes and 499,500 edges and the second graph has
2,000 nodes and 1,999,000 edges. We run the test 100,000 times on each graph
and eventually find a small bug which causes a null pointer exception. That
happens at line 10 in MSThread, where even we checked the priority queue
is not empty in line 9, some interleavings can make it become empty while
executing line 10. Once we put line 10 in a critical section and check again if
the priority queue is not empty, the program pass all the tests.

Secondly, we also model check our implementation to detect if there are any
uncaught exceptions, null pointer exceptions, data races or deadlocks. Since our
implementation is written in Java, we choose a model checking tool called Java
PathFinder (JPF) [13] to directly check our Java code.

13

JPF was developed at the NASA Ames Research Center and was open
sourced in 2005. The core of JPF is a particular Java Virtual Machine (JVM)1

that is also implemented in Java. That JVM tries to identify the points where
the execution of the program becomes differently. And it stores, matches and
restores such program states in order to explore all of its execution paths. More-
over, JPF is useful to check concurrent programs, because it produces all kinds
of interleavings of the code. Thus, by adding some useful listeners, we can detect
a lot of defects such as data races and deadlocks automatically.

JPF does have a lot of advantages. However, as a model checking software,
it also suffers from the state space explosion problem, which is a bottleneck for
checking complicated concurrent programs. In our experiment, we use the Pre-
ciseRaceDetector2 listener combined with different search strategies to explore
all the states of the program and detects data races and deadlocks. Even though
we try some methods to reduce the state space of our program and achieve a
relative good result, JPF still get an out of memory error when it searches all
the execution paths of our program for which only two threads are used on a
four nodes graph. The following information shows the result.

=== results

error #1: gov.nasa.jpf.jvm.NoOutOfMemoryErrorProperty

=== statistics

elapsed time: 9:56:57

states: new=38636247, visited=53467377,

backtracked=92103147, end=1803

search: maxDepth=813, constraints hit=1

choice generators: thread=38635883 (signal=0, lock=59258,

shared ref=32751065), data=0

heap: new=5430939, released=13942116,

max live=826, gc-cycles=86662523

instructions: -940434119

max memory: 1351MB

loaded code: classes=125, methods=1916

As we can see, about 38 million execution states have been visited using around
10 hours and then JPF gets an out of memory error. However, since JPF will
terminate as long as it detects any defects, our implementation seems safe (i.e.
without uncaught exception, deadlocks nor data races) at least for those checked
38 million states.

1 A JVM running on top of standard JVM.
2 http://www.cse.yorku.ca/∼franck/research/drafts/race.pdf

14

7 Conclusion

We have presented the implementation of a parallel algorithm derived from
Prim’s algorithm based on the paper published by Setia et al. [4]. Also, three in-
teresting heuristics which can make the algorithm perform better are discussed

here. It takes O(P · |V | log |V | + |E|
P) time for this parallel implementation to

find the MST in a graph. Thus, it will become useful only when the right term
dominates. Therefore, we can use this algorithm if the graph is relatively dense
or the cost for accessing edges is expensive to achieve some speed up. Perhaps if
people want to deal with the Internet, which has a huge number of edges (URLs)
and accessing edges is expensive, this concurrent algorithm will be useful.

The verification experiments of our implementation are crippled by the no-
torious state space explosion problem, when we use a model checking tool, JPF,
to verify some properties of using multiple threads. Although, we can’t fully
explore all the execution paths of the program, we roughly believe there is no
deadlocks nor data races in our implementation, considering the states that we
have verified and the testing experiments we did. Also in the original paper p-
resented by Setia et al. [4], they have already shown the proof of the correctness
of the parallel algorithm based on the cut property of the MST. The key part of
that proof can be found in the Appendix.

8 Acknowledgements

Thanks to Professor Franck van Breugel who provided us with a marvelous
opportunity to expose ourselves to the concurrent computing world. Thanks
to the management, staff, and facilities of the Intel R© Manycore Testing Lab3.
Thanks to Trevor Brown who gave a nice talk about how to use MTL and
who discussed the memory management of Java with me. Thanks to all of my
classmates.

References

1. Bor̊uvka, O.: O jistému problému minimálńım. Prúce Mor. Pr̆́ırodovĕdecké. Spol.
v Brnĕ (in Czech.) 3 (1926) 37–58

2. Kruskal, J.B.: On the Shortest Spanning Subtree of a Graph and the Travel-
ing Salesman Problem. Proceedings of the American Mathematical Society 7(1)
(February 1956) 48–50

3. Prim, R.C.: Shortest connection networks and some generalizations. Bell System
Technology Journal 36 (1957) 1389–1401

4. Setia, R., Nedunchezhian, A., Balachandran, S.: A new parallel algorithm for
minimum spanning tree problem. In: Proceedings of International Conference on
High Performance Computing. (2009) 1–5

5. Chung, S., Condon, A.: Parallel implementation of Bor̊uvka’s minimum spanning
tree algorithm. In: Proceedings of the 10th International Parallel Processing Sym-
posium, Washington, DC, USA, IEEE Computer Society (1996) 302–308

3 www.intel.com/software/manycoretestinglab

15

6. Chong, K.W., Han, Y., Igarashi, Y., Lam, T.W.: Improving the efficiency of parallel
minimum spanning tree algorithms. Discrete Applied Mathematics 126(1) (2003)
33–54

7. Bader, D.A., Cong, G.: Fast shared-memory algorithms for computing the min-
imum spanning forest of sparse graphs. J. Parallel Distributed Computing 66
(November 2006) 1366–1378

8. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Comput-
ing. Addison Wesley (2003)

9. Gonina, E., Kalé, L.V.: Parallel Prim’s algorithm on dense graphs with a novel
extension, Department of Computer Science, University of Illionois at Urbanan-
Champaign, USA, Academic Press, Inc. (November 2007)

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. The
MIT Press, Cambridge, MA, USA (1990)

11. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM 34(3) (1987) 596–615

12. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. Journal of
the ACM 22(2) (1975) 215–225

13. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Automated Software Engineering 10(2) (April 2003) 203–232

A PROOF OF THE CORRECTNESS[4]

A.1 Lemma 1

Lemma 1. No cycles are formed during MergeTree operation.

Fig. 8. Illustration to prove Lemma 1

Proof: The simple and typical cycle that can be formed is of length 3. In Fig-
ure 8, let’s assume the cycle is created during MergeTree() operation. Then,

w3 < w1 (as for tree 3, it selects w3 as its light edge) w2 < w3 (as for
tree 2, it selects w2 as its light edge) w1 < w2 (as for tree 1, it selects w1

as its light edge) ⇒ w1 < w2 < w3 < w1

16

It is a clear contradiction. So such case is not possible. However, if w1 = w2 =
w3 then we get merge requests MergeTree(1,2), MergeTree(2,3), MegerTree(1,3).
As we do MergeTree in the critical section, only 2 out of 3 requests are actually
executed and the remaining request is not granted in lines 38-39 in the algorithm
shown in section 3.2. The proof can be extended to cycles of any length greater
than 3. Hence, no cycles are formed.

A.2 Lemma 2

Lemma 2. The edges added by the algorithm belong to MST.

Proof: Parallel Prim algorithm always converges. In the end, the tree (corre-
sponding to the smallest thread-id) keeps growing till all the nodes are part of
its tree. Tree obtained has all n nodes and n-1 edges and no cycles.

Consider threads growing tree i and tree j with t1−1 nodes and t2−1 nodes,
respectively. When they merge, there will be only one additional edge joining
the two trees. So the resulting tree will contain t1 + t2 nodes and t1 + t2 − 1
edges. Hence the graph is connected and it is a tree.

If E(v1, v2) is the lowest cost edge joining a node in tree i with a node in
tree j, then

MST (t1) +MST (t2) + E(v1, v2) = MST (t1 ∪ t2)

if and only if E(v1, v2) has its weight larger than all the edges in MST (t1) or
MST (t2). In the algorithm we presented here, the edges that are added during
MergeTree operation always satisfy this property. To prove that, consider that
an edge e exists whose weight is less than the weight of some edges in either of
the trees. Then e would have been added already to that tree in line 7 in the
algorithm shown in section 3.2. Hence no such edge exists and thereby E(v1, v2)
is the next lowest cost edge. Therefore, all the edges chosen by the algorithm
belongs to MST.

