
Inheritance, cont.

Notes Chapter 6 and AJ Chapters 7 and 8

1

Preconditions and Inheritance
 precondition
 what the method assumes to be true about the arguments

passed to it

 inheritance (is-a)
 a subclass is supposed to be able to do everything its

superclasses can do

 how do they interact?

2

Strength of a Precondition
 to strengthen a precondition means to make the

precondition more restrictive

 // Dog setEnergy

 // 1. no precondition

 // 2. 1 <= energy

 // 3. 1 <= energy <= 10

 public void setEnergy(int energy)

 { ... }

3

weakest precondition

strongest precondition

Preconditions on Overridden Methods
 a subclass can change a precondition on a method but

it must not strengthen the precondition
 a subclass that strengthens a precondition is saying that it

cannot do everything its superclass can do

4

// Dog setEnergy
// assume non-final
// @pre. none

public
void setEnergy(int nrg)
{ // ... }

// Mix setEnergy
// bad : strengthen precond.
// @pre. 1 <= nrg <= 10

public
void setEnergy(int nrg)
{
 if (nrg < 1 || nrg > 10)
 { // throws exception }
 // ...
}

 client code written for Dogs now fails when given a
Mix

 remember: a subclass must be able to do everything its
ancestor classes can do; otherwise, clients will be
(unpleasantly) surprised

5

// client code that sets a Dog's energy to zero
public void walk(Dog d)
{
 d.setEnergy(0);
}

Postconditions and Inheritance
 postcondition
 what the method promises to be true when it returns

 the method might promise something about its return value
 "returns size where size is between 1 and 10 inclusive"

 the method might promise something about the state of the
object used to call the method
 "sets the size of the dog to the specified size"

 the method might promise something about one of its parameters

 how do postconditions and inheritance interact?

6

Strength of a Postcondition
 to strengthen a postcondition means to make the

postcondition more restrictive

 // Dog getSize

 // 1. no postcondition

 // 2. 1 <= this.size

 // 3. 1 <= this.size <= 10

 public int getSize()

 { ... }

7

weakest postcondition

strongest postcondition

Postconditions on Overridden Methods
 a subclass can change a postcondition on a method but

it must not weaken the postcondition
 a subclass that weakens a postcondition is saying that it

cannot do everything its superclass can do

8

// Dog getSize
//
// @post. 1 <= size <= 10

public
int getSize()
{ // ... }

// Dogzilla getSize
// bad : weaken postcond.
// @post. 1 <= size

public
int getSize()
{ // ... }

Dogzilla: a made-up breed of dog
that has no upper limit on its size

 client code written for Dogs can now fail when given a
Dogzilla

 remember: a subclass must be able to do everything its
ancestor classes can do; otherwise, clients will be
(unpleasantly) surprised

9

// client code that assumes Dog size <= 10
public String sizeToString(Dog d)
{
 int sz = d.getSize();
 String result = "";
 if (sz < 4) result = "small";
 else if (sz < 7) result = "medium";
 else if (sz <= 10) result = "large";
 return result;
}

Exceptions
 all exceptions are objects that are subclasses of
java.lang.Throwable

10

Throwable

Exception

RuntimeException and many, many more

IllegalArgumentException and many more

AJ chapter 9

User Defined Exceptions
 you can define your own exception hierarchy
 often, you will subclass Exception

11

Exception

DogException

BadSizeException NoFoodException BadDogException

public
class DogException extends Exception

Exceptions and Inheritance
 a method that claims to throw an exception of type X is

allowed to throw any exception type that is a subclass
of X
 this makes sense because exceptions are objects and

subclass objects are substitutable for ancestor classes

// in Dog
public void someDogMethod() throws DogException

{
 // can throw a DogException, BadSizeException,
 // NoFoodException, or BadDogException

}

12

 if a subclass overrides a method that throws an exception
then it must either
1. throw the same type of exception
2. throw a subclass of the exception type
3. not throw an exception

13

// in Dog

public void someDogMethod() throws DogException

{ // ... }

// in Mix; bad, don't do this

@Override
public void someDogMethod() throws DogException,
 IOException

{ // ... }

14

// client

// works if given a Dog instance but fails if
// given a Mix instance that throws an IOException
public void someClientMethod(Dog d)

{
 try {
 d.someDogMethod();

 }
 catch(DogException ex) {
 // deal with the exception

 }
}

15

Which are Legal?
 in Mix

@Override

public void someDogMethod() throws BadDogException

@Override

public void someDogMethod() throws Exception

@Override

public void someDogMethod()

@Override

public void someDogMethod()
 throws DogException, IllegalArgumentException

16

Polymorphism
 inheritance allows you to define a base class that has

attributes and methods
 classes derived from the base class can use the public and

protected base class attributes and methods
 polymorphism allows the implementer to change the

behaviour of the derived class methods

17

// client code

public void print(Dog d) {

 System.out.println(d.toString());

}

// later on...

Dog fido = new Dog();

CockerSpaniel lady = new CockerSpaniel();

Mix mutt = new Mix();

this.print(fido);

this.print(lady);

this.print(mutt);

18

Dog toString
CockerSpaniel toString
Mix toString

// client code

public void print(Dog d) {

 System.out.println(d.toString());

}

// later on...

Dog fido = new Dog();

Dog lady = new CockerSpaniel();

Dog mutt = new Mix();

this.print(fido);

this.print(lady);

this.print(mutt);

19

Dog toString
CockerSpaniel toString
Mix toString

// client code
public void print(Object obj) {
 System.out.println(obj.toString());
}

// later on...
Dog fido = new Dog();
Dog lady = new CockerSpaniel();
Dog mutt = new Mix();
this.print(fido);
this.print(lady);
this.print(mutt);
this.print(new Date());

20

Dog toString
CockerSpaniel toString
Mix toString
Date toString

Late Binding
 polymorphism requires late binding of the method

name to the method definition
 late binding means that the method definition is

determined at run-time

21

obj.toString()
non-static method

run-time type of
the instance obj

 the declared type of an instance determines what
methods can be used

 the name lady can only be used to call methods in Dog
 lady.someCockerSpanielMethod() won't compile

 the actual type of the instance determines what

definition is used when the method is called
 lady.toString() uses the CockerSpaniel definition

of toString

22

Dog lady = new CockerSpaniel();

Abstract Classes
 often you will find that you want the API for a base

class to have a method that the base class cannot
define
 e.g. you might want to know what a Dog's bark sounds like

but the sound of the bark depends on the breed of the dog
 you want to add the method bark to Dog but only the subclasses

of Dog can implement bark
 e.g. you might want to know the breed of a Dog but only the

subclasses have information about the breed
 you want to add the method getBreed to Dog but only the

subclasses of Dog can implement getBreed

23

 if the base class has methods that only subclasses can
define and the base class has attributes common to all
subclasses then the base class should be abstract
 if you have a base class that just has methods that it cannot

implement then you probably want an interface
 abstract :

 (dictionary definition) existing only in the mind

 in Java an abstract class is a class that you cannot make
instances of

24

 an abstract class provides a partial definition of a class
 the subclasses complete the definition

 an abstract class can define attributes and methods
 subclasses inherit these

 an abstract class can define constructors
 subclasses can call these

 an abstract class can declare abstract methods
 subclasses must define these (unless the subclass is also

abstract)

25

Abstract Methods
 an abstract base class can declare, but not define, zero

or more abstract methods

 the base class is saying "all Dogs can provide a String
describing the breed, but only the subclasses know
enough to implement the method"

26

public abstract class Dog
{
 // attributes, ctors, regular methods

 public abstract String getBreed();
}

public class Mix extends Dog

{ // stuff from before...

 @Override public String getBreed() {

 if(this.breeds.isEmpty()) {

 return "mix of unknown breeds";

 }

 StringBuffer b = new StringBuffer();

 b.append("mix of");

 for(String breed : this.breeds) {

 b.append(" " + breed);

 }
 return b.toString();

}

27

PureBreed
 a purebreed dog is a dog with a single breed
 one String attribute to store the breed

 note that the breed is determined by the subclasses
 the class PureBreed cannot give the breed attribute a

value
 but it can implement the method getBreed

 the class PureBreed defines an attribute common to
all subclasses and it needs the subclass to inform it of
the actual breed
 PureBreed is also an abstract class

28

public abstract class PureBreed extends Dog

{

 private String breed;

 public PureBreed(String breed) {

 super();

 this.breed = breed;

 }

 public PureBreed(String breed, int size, int energy) {

 super(size, energy);

 this.breed = breed;

 }

29

 @Override public String getBreed()

 {

 return this.breed;

 }

}

30

Komondor
public class Komondor extends PureBreed

{

 private final String BREED = "komondor";

 public Komondor() {

 super(BREED);

 }

 public Komondor(int size, int energy) {

 super(BREED, size, energy);

 }

 // other Komondor methods...

}

31

Static Attributes and Inheritance
 static attributes behave the same as non-static

attributes in inheritance
 public and protected static attributes are inherited by

subclasses, and subclasses can access them directly by name
 private static attributes are not inherited and cannot be

accessed directly by name
 but they can be accessed/modified using public and protected

methods

 the important thing to remember about static
attributes and inheritance
 there is only one copy of the static attribute shared among

the declaring class and all subclasses

32

// the wrong way to count the number of Dogs created
public abstract class Dog {
 // other attributes...
 static protected int numCreated = 0;

 Dog() {
 // ...
 Dog.numCreated++;
 }

 public static int getNumberCreated() {
 return Dog.numCreated;
 }

 // other contructors, methods...
}

33

// the wrong way to count the number of Dogs created

public class Mix extends Dog

{

 // attributes...

 Mix()

 {

 // ...

 Mix.numCreated++;

 }

 // other contructors, methods...

}

34

// too many dogs!

public class TooManyDogs

{

 public static void main(String[] args)

 {

 Mix mutt = new Mix();

 System.out.println(Mix.getNumberCreated());

 }

}

prints 2

35

What Went Wrong?
 there is only one copy of the static attribute shared

among the declaring class and all subclasses
 Dog declared the static attribute
 Dog increments the counter everytime its constructor is

called
 Mix inherits and shares the single copy of the attribute
 Mix constructor correctly calls the superclass constructor

 which causes numCreated to be incremented by Dog
 Mix constructor then incorrectly increments the counter

36

Counting Dogs and Mixes

 suppose you want to count the number of Dog
instances and the number of Mix instances
 Mix must also declare a static attribute to hold the count
 somewhat confusingly, Mix can give the counter the same name

as the counter declared by Dog

37

public class Mix extends Dog
{
 // other attributes...
 private static int numCreated = 0; // bad style

 public Mix()
 {
 super(); // will increment Dog.numCreated
 // other Mix stuff...
 numCreated++; // will increment Mix.numCreated
 }

 // ...

38

Hiding Attributes
 note that the Mix attribute numCreated has the

same name as an attribute declared in a superclass
 whenever numCreated is used in Mix, it is the Mix

version of the attribute that is used

 if a subclass declares an attribute with the same name
as a superclass attribute, we say that the subclass
attribute hides the superclass attribute
 considered bad style because it can make code hard to read

and understand
 should change numCreated to numMixCreated in Mix

39

Static Methods and Inheritance
 there is a big difference between calling a static

method and calling a non-static method when dealing
with inheritance

 there is no dynamic dispatch on static methods

40

public abstract class Dog {

 // Dog stuff...

 public static int getNumCreated() {

 return Dog.numCreated;

 }

}

public class Mix {

 // Mix stuff...

 public static int getNumCreated() {

 return Mix.numMixCreated;

 }

}

41

notice no @Override

public class WrongCount {
 public static void main(String[] args) {
 Dog mutt = new Mix();
 Dog shaggy = new Komondor();
 System.out.println(mutt.getNumCreated());
 System.out.println(shaggy.getNumCreated());
 System.out.println(Mix.getNumCreated());
 System.out.println(Komondor.getNumCreated());
 }
}

prints 2
 2
 1
 1

42

What's Going On?
 there is no dynamic dispatch on static methods

 because the declared type of mutt is Dog, it is the Dog

version of getNumCreated that is called
 because the declared type of shaggy is Dog, it is the
Dog version of getNumCreated that is called

43

Hiding Methods
 notice that Mix.getNumCreated and
Komondor.getNumCreated work as expected

 if a subclass declares a static method with the same
name as a superclass static method, we say that the
subclass static method hides the superclass static
method
 you cannot override a static method, you can only hide it
 hiding static methods is considered bad form because it

makes code hard to read and understand

44

 the client code in WrongCount illustrates two cases of
bad style, one by the client and one by the
implementer of the Dog hierarchy
1. the client should not have used an instance to call a static

method
2. the implementer should not have hidden the static

method in Dog

45

Abstract class vs. Interfaces
 recall that you typically use an abstract class when you

have a superclass that has attributes and methods that
are common to all subclasses
 the abstract class provides a partial implementation that

the subclasses must complete
 subclasses can only inherit from a single superclass

 if you want classes to support a common API then you

probably want to define an interface

46

 in Java an interface is a reference type (similar to a
class)

 an interface can contain only
 constants
 method signatures
 nested types (ignore for now)

 there are no method bodies
 interfaces cannot be instantiated—they can only be

implemented by classes or extended by other interfaces

47

Interfaces Already Seen
public interface Iterable<T>
{
 Iterator<T> iterator();
}

public interface Collection<E> extends Iterable<E>
{
 boolean add(E e);
 void clear();
 boolean contains(Object o);
 // many more method signatures...
}

48

access—either public or
package-private (blank)

interface
name

parent
interfaces

Cell Interface
 i.e. the PolygonalModel class defined a shape using

a collection of Triangle instances
 there are many different types of geometric primitives that

we might want to represent the shape with
 point
 line
 polyline
 triangle
 polygon
 ...

49

 each primitive can be defined by a list of points and a list of
edges connecting the points

50

point line polyline triangle

P0 P0,P1 P0,P1,P2,P3 P0,P1,P2

P0

P0

P1

P0

P1

P2

P3

P0

P1

P2

0,1 0,2
2,1
1,3

0,1
1,2
2,0

public interface Cell
{
 int numberOfPoints();
 int numberOfEdges();
 Vector3d[] getPoints();
 int[] getEdges();
 // ...
}

public class Point implements Cell { // ... }
public class Line implements Cell { // ... }
public class PolyLine implements Cell { // ... }
public class Triangle implements Cell { // ... }

51

public class PolygonalModel implements Iterable<Cell>

{

 private List<Cell> cells;

 // ...

}

// client somewhere; reads a model from a file

PolygonalModel model = new PolygonalModel("model.stl");

for(Cell c : model) {

 draw(c);

}

52

Implementing Multiple Interfaces
 unlike inheritance where a subclass can extend only

one superclass, a class can implement as many
interfaces as it needs to

public class ArrayList<E>

 extends AbstractList<E>

 implements List<E>,

 RandomAccess,

 Cloneable,

 Serializable

53

superclass

interfaces

	Inheritance, cont.
	Preconditions and Inheritance
	Strength of a Precondition
	Preconditions on Overridden Methods
	Slide Number 5
	Postconditions and Inheritance
	Strength of a Postcondition
	Postconditions on Overridden Methods
	Slide Number 9
	Exceptions
	User Defined Exceptions
	Exceptions and Inheritance
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Which are Legal?
	Polymorphism
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Late Binding
	Slide Number 22
	Abstract Classes
	Slide Number 24
	Slide Number 25
	Abstract Methods
	Slide Number 27
	PureBreed
	Slide Number 29
	Slide Number 30
	Komondor
	Static Attributes and Inheritance
	Slide Number 33
	Slide Number 34
	Slide Number 35
	What Went Wrong?
	Counting Dogs and Mixes
	Slide Number 38
	Hiding Attributes
	Static Methods and Inheritance
	Slide Number 41
	Slide Number 42
	What's Going On?
	Hiding Methods
	Slide Number 45
	Abstract class vs. Interfaces
	Slide Number 47
	Interfaces Already Seen
	Cell Interface
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Implementing Multiple Interfaces

