
ID: A

Page 2 of 4

CSE 2021 Computer Organization Quiz #2 (Fall 2011)

 1. Consider the instruction sll (shift left logical) with the following format:

opcode rs rt rd shamt funct

31 26 25 21 20 16 15 11 10 6 5 0

that executes RF[rd] = RF[rs]<<shamt (note this is slightly different than the implementation shown
on the MIPS card).

Assume that the ALU design has been modified so that it is capable of shifting the operand applied
at the upper input A by the number of bits specified at the lower input B when ALUOp[1..0] is 11. A
4-input multiplexer has been added and is shown for the ALU input B - the control for this
multiplexer is ALUSrcB[1..0]

a. Add the necessary circuitry to the single cycle datapath of Fig. 2 to implement the sll
instruction. Highlight the datapath for the instruction.

b. Fill in Fig. 1 to add the necessary control signals needed for the sll instruction.

Fig. 1: Control Signals for sll in a single cycle implementation.

Instruction RegDst ALUSrcB[1..0] MemtoReg RegWrite MemRead MemWrite Branc
h

ALUOp[1..0]

R-format 1 00 0 1 0 0 0 10

sll

Fig .2: Datapath for R-type, lw, sw, and beq instructions. Add additional hardware, if required, to
implement the datapath for the instruction specified in the problem statement. Also, highlight the

datapath for the instruction. (Next Sheet)

Name:__________________________

Student #:_______________________

Page 2 of 4

Name:__________________________

Student #:_______________________

Page 3 of 4

 2. The RS232 interface is an older serial data transfer method. Data to be sent to a receiving circuit is provided
in the following format:

The parity bit may have 5 different settings including even, odd, mark, space or none. The above is an
example of odd parity. That is the parity bit is set (asserted or set to ‘1’) so that the total number of ‘1’’s (not
including the start and stop bits) to be transmitted is an odd number (in the above example the data word
contains 5 set bits or ‘1’s so the parity bit is a zero so that total number of ‘1’s remains an odd number.

The user may also set the number of data bit (the example is 8) and the number of stop bit (in the above there
is 1 stop bit). So the RS232 settings are 8O1 - 8 data bits, Odd parity and 1 stop bit.

Write a Verilog module (next sheet) that takes in a data word, and outputs the RS232 which includes the
additional start, stop and parity bit corresponding the 8O1 (as in the above example). The following is a
testbench module to test your code:

module testbench;
 reg [7:0] test_word;
 reg [10:0] out_word

 rs2328o1 uut_rs2328o1(test_word, out_word);

 initial
 begin
 #200
 test_word = 8'b10100100;
 #1 $display($time, " in = %b, 8o1_out = %b ",test_word, out_word);
 #200
 test_a = 8'b00111100;
 #2 $display($time, " in = %b, 8o1_out = %b ",test_word, out_word);
 end
endmodule

Name:__________________________

Student #:_______________________

Page 4 of 4

(a) Insert your code here:

module

end module

(b) What is the expected output from testbench when it and your module from part (a) are compiled and
run using iverilog and vvp commands?

 ID: A

Page 1 of 3

CSE 2021 Computer Organization Quiz #2 (Fall 2011)
Answer Section

PROBLEM

 1. ANS:
(a) The updated single cycle datapath should look something like as shown below (green line) - “shamt”field
(instruction [10:6]) from the instruction has been added (with a bus joiner adding zeroes to the left to make it
32 bits wide as an input to the 4-input multiplexer.

 ID: A

Page 2 of 3

(b) The instruction is in R-format and is controlled according to the first line in the table below. No
changes in the table are needed.
Instruction RegDst ALUSrc

B[1..0]
MemtoReg RegWrite MemRead MemWrite Branch ALUOp[1..0]

sll 1 11 0 1 0 0 0 10

PTS: 1

 ID: A

Page 3 of 3

 2. ANS:
(a) A verilog routine would look like:

module rs2328o1(data, out_data);
 input wire[7:0] data;
 output wire [10:0] out_data;

 // internal signal declaration
 wire p;

 //parity bit
 assign p =
~(data[7]^data[6]^data[5]^data[4]^data[3]^data[2]^data[1]^data[0]);
 // product terms
 assign out_data[10] = 1'b0;
 assign out_data[9:2] = data[7:0];
 assign out_data[1] = p;
 assign out_data[0]=1'b1;

endmodule

(b) The output would look like:

PTS: 1

