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Multicycle Implementation: Control Units added
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Multicycle Implementation — 5 Steps

ult
= ]
"" 5
u PC - Address = _ |Read
X 2 | register 1 Read > >
-\ 1 @ data 1
=4
N Read Zero = —m
Instruction register 2 ALU
e Registers ALU = Read
memory —I:: Wil g Read A 5 result " —@—>-| Address data ™
data 2 M
ist

regls er % / Data

Write % memory

data 1

= | Writ
= " | data
16 Sign- 32 >
> extend

IF/ID ID/EX EX/MEM MEM/WB

Add > > \
4 — Adg Add
resi

=

Multicycle implementation — “unwound” to show datapath in each
step
W1l-M 3



Memory address
computation

ALUSrcA =1
ALUSrcB =10
ALUOp =00

z
]

a| Memory
®)
v‘

y aCCess

MemRead = 1
lorD = 1

'Write-back step

RegDst =0
RegWrite = 1

Y

Start

Memory
access

MemWrite = 1
lorD = 1

vInstruction fetch

MemRead = 1
ALUSrcA =0

Instruction decode/
register fetch

ALUSrcA =0
ALUSrcB = 11

lorD =0
IRWrite
ALUSrcB = 01
ALUOp =00

PCWrite = 1
PCSource = 00

g
Execution \09’
ALUSIcA = 1 8
ALUSrcB = 00
ALUOp =10

! R-type completion

RegDst = 1
RegWrite = 1
MemtoReg =0

Branch
completion

ALUSrcA =1
ALUSrcB = 00
ALUOp =01
PCWriteCond =1
PCSource = 01

ALUOp =00

A=
svz —
n
Q! Jump
@) .
={ completion

PCWrite =1
PCSource = 10

Yy

MemtoReg = 1
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Control Logic — Truth Table

" oumt | oumestsates | o

Note that control PoWite State0 + state?
PCWriteCond stated
I larD stated + stateb
- OUtpUtS depend Only MemRead statel + state3
: MermWrite stateb
C. on current state (Op
emtoReg stated
. PCSourcel stateQ
column is blank for
4 ALUOPpL stated
ALUORO stated
ﬁ a I I O u t p u t rOWS) ALUSrcB1 statel +state2
ALUSreBO statel + statel
i ALUSrcA state2 + stateB + state8
¥ RegWrite stated + state7
B
Next state depends Regbst
E MextStateO stated + stateh + state? + state8 + state®
MextStatel state(
2% oncurrentstate and s
- I . MextState3 state? Op="1w")
= ' MextStated state3
inputs (opcode from
-E . MextStateb state2 (Op="sw")
L] . . MextStated statel (Op = "Rtype ')
E‘ - I n St ru Ctl O n ) MextState? stated
g MextState8 statel (Op="beq")
;ﬂE MextState9 statel Op="jmp")
E'ﬁ W1l-M ;
|
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NSO Example (1)

Give the logic equation for the NSO bit for the FSM

» NSO is true for states 1(0001,,.), 3 (0011,,,), 5 (0101,,,.),
7 (0111,,.), 9 (1001,,,)
* Referring to the truth table...
NSO ,=state0=S3-S2-S1-S0

" oumt | curemtsates | o

MNextStateO stated + stateb + state7 + state8 + state9

“i :-:l'"_'ll r

two

ﬁl
L
.
.

e g 2o

d < [NextStatel state0 —
i b MextState2 statel Op="Tw")+i0p="sw")
g Take a co uple 0O f — ettt = o= o) —
- MextStated state3
5 ' ' C MextStates state2 Op="sw") —
. minutes to think
< | MextState7 stateB =
r' about the Other MextState8 stated (Op="beq")
; d o <[ MextStated statel Op="dmp") —
conditions...
I[il W1l-M ?



NSO Example (2)

Give the logic equation for

the NSO bit for the FSM | outpst |  cumemtstates | 0 op
MNextStated stated + statel + state7 + state8 + stated
< [ NextStatel stateQ
MextState2 stated Op="1Tw')+(0Op="3w")
b — | MextState3 state2 Op="1w")
MNextStated state3
C NextStateb state2 Op="'sw') >
NextStates statel iOp="Riype")
d NextState7 state6 I —
MNextState® statel Op="beqg')
C — | HNextStated statel Op="jmp")

NSO ,=state2-(Op = 'Iw' (0x23)) =S3-S2-S1-S0-Op5-Op4-Op3-Op2-Op1-Op0

NSO .=state2-(Op ="sw')

=S3-52-S1-S0-Op5-Op4-Op3-Op2-Op1-Op0
NSO ,=state6=S3-S2-S1-S0
NSO  =statel-(Op = "ymp")

—53.52.51-50-Op5-Op4-Op3-0p2-Op1-0p0
NSO=NS0_ +NS0, +NS0 .+ NS0 ,+ NS0 _

Wll-M o




NSO Logic Diagram
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Why Pipelining (1)?

—  Pipelining is an implementation technique in which multiple instructions are overlapped

during execution.

—  Pipelining enhances the throughput of the processors.

—  To explain pipelining, consider an analogy with a laundry example where 4 users are

asked to wash, dry, fold, and store several loads of clothes.

_ 6 PM 7 8 9 10 11 12 1 2 AM
Time #—ﬁ—ﬁ—m—'
Task
order

El
B .
E/C?_
: doEl

)
Ol

Ol
I
=|

<G
l)
Sl
0§
=l

Sequential Laundry

Wll-M 11



Why Pipelining (2)?

6 PM 7 8 9 10 11 12 1 2AM

Pipelined Laundry (assume equal time at each stage with 4 users: Ann, Brian, Cathy, and Don).
A. Ann places dirty load # 1 in the washer

B.  When washer is finished, Brian places wet load # 1 in the dryer. Ann loads the washer with load # 2
of dirty clothes.

C. When load # 1 1s dried, Cathy takes dried load # 1 out of the dryer and starts folding. Brian loads the
dryer with wet load # 2. Ann loads the washer with load # 3 of dirty clothes.

D. When load # 1 is folded, Don starts storing folded load # 1 in the storer. Cathy takes dried load # 2
out of the dryer and starts folding. Brian loads the dryer with wet load # 3. Ann loads the washer with

load # 4 of dirty clothes. Process continues.
W1l-M Le
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Pipelining with Single Cycle Datapath (1)

MIPS pipelining has the following five stages:

1. Instruction Fetch (IF): Fetch instruction from memory.

Instruction Decode (ID): Read registers while decoding the instruction.
Execution (EX): Execute the operation or calculate the address.
Memory Access (MEM): Access an operand in data memory.

Write Back Stage (WB): Write the result into a register.

11

A

Activity: Compare the non-pipelined execution time with the pipelined execution time for the instructions:
lw $1, 100($0)
lw $2, 200($0)
lw $3, 300($0)

assuming the following delays at different functional units.

Load word (lw) 200 ns 100 ns 200 ns 200 ns 100 ns 800 ns
Store word (sw) 200 ns 100 ns 200 ns 200 ns 700 ns
R-format 200 ns 100 ns 200 ns 100 ns 600 ns

Branch (beq) 200 ns 100 ns 200 ns 500 ns




Pipelining with Single Cycle Datapath (2)

Wll-M

Program
execution i 2 4 6 8 10 12 14 16 18 R
order T T T T T T T | e
(in instructions)
Instruction Data
Iw $1, 100($0) fetch Reg ALU access Reg
) »|Instruction Data
w $2, 20X)($0 800 ps fetchI Reg ALU access Reg
< > Instruction
! lw $3, 300($0) 800 ps fetch
. . . <
T Non-pipelined Execution 800 ps
“ Program
.I order Time T T T T T T T >
. (in instructions)
Instruction Data
E lw $1, 100($0) toh Reg| AW [ 27 [Reg
<“———PInstruction Data
- Iw $2, 200(30) 200 ps fetch Reg ALU access Reg
=
<+ P|Instruction Data
" .. vIW $3, 300($0) 200 pS| " fetch Regl ALU access |9
E - e T T . T
' " 200ps 200ps 200ps 200ps 200 ps
¥ Pipelined Execution
ll
I



Pipelining with Single Cycle Datapath (3)

—  Speedup obtained through pipelining equals the number of pipe stages if execution time
of each stage is the same.

—  In our previous example, speedup should be 5.

Actual speedup in our previous example =24/ 14 =1.71
Why? Number of instructions are too small.

Increase the number of instructions to 1003.

Then speedup = (1003 x 8)/(2 x 1003 + 8) = 8024/2014 = 3.98

—  Pipelining added some overhead (additional 100ps for Register read)

— Note that pipelining increases the overall throughput. The execution time for each
instruction stays the same.

Wll-M 15




Suitability of MIPS architecture towards Pipelining

1. All MIPS instructions are of the same
length. Instruction fetch (IF) in the first
pipeline stage and decoding in the second
stage is easier.

1. Instructions in 80x86 have variable length
from 1 byte to 17 bytes. This makes the first
two stages (instruction fetch and decoding)

more challenging making pipelining difficult.

2. MIPS instructions have a limited number of
formats with registers staying specified at
almost the same bit positions. This allows the
decoding stage to start reading the registers at
the same time as HW is determining the type
of instruction.

2. Due to variable instruction length in 80x86,
the registers are specified at different bit
positions.

3. MIPS do not allow operands to be directly
used from the memory. Operands are first
loaded into the registers.

3. 80x86 allows direct operation on operands
while in memory. An additional address stage
is therefore needed in 80x86.

4. Since operands are aligned in memory, data
can be transferred from memory to registers
in a single data transfer command.

Wll-M
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Pipelining Hazards (1)

Hazards: Pipelining hazards occur when the next instruction in a pipelined program can not
be executed until the prior instruction has been executed.

Structural Hazards: occur when hardware does not support combination of instructions to be
executed in the same clock cycle.

Laundry analogy: A washer-dryer combo is used where a load of clothes is washed and then
dried in the same machine.

MIPS: A single memory used for data and instructions results in structural hazard below.

Program
execution
order

(in instructions)
lw $1, 100($0)

lw $2, 200($0)

w $3, 300($0)

2 4 6 8 10 12 1
Time T l ' | | "
Ins:erttf[t]ion Reg ALU Reg
2 ns Ins:;ttl;t‘ion Reg ALU alcj::et:s Reg
W Ins::tl;t‘ion Reg| ALU alcj;:et:s Reg
2ns Reg| ALU aE:etZs Reg

lw $4, 400($0)

+—Prt—P¢—rP¢—r¢—>

2ns

2ns

2ns

Pipelined Execution

2ns

2ns

Wll-M
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Pipelining Hazards (2)

—  Control Hazards: occur when the execution of the next instruction depends upon a decision
in the previous instruction.

Laundry analogy: Laundry crew is required to determine the correct detergent and
temperature setting for perfect cleaning.

MIPS: Branch instruction can cause a control hazard.

Modification: Add extra HW such that: (1) registers are loaded and tested for equality and
(2) PC 1s updated with the branch target address in the second step.

Program

execution . 2 4 6 8 10 12 14 16
order Time T T T T T T T T >

(in instructions)

Instruction Data
add $4, $5, $6 fetch e AR e || D8

Instruction Data
“«—>
beq $1, $2, 40 o o Reg| ALU access | R€9Y
Instruction Data
lw $3, 300($0) < . fotch Reg| ALU access | R€9

/
2ns

Even with added HW, there is still a delay of an additional 2ns

Wll-M 1v




Solution # 1 to
Control Hazards:
Always predict that
the branch will fail
and keep executing
the program

Registers must be
cleared and

an additional delay
of 2ns

Pipelining Hazards (3)

Program
execution _ 2 4 6 8 10 12 14 %
order Time l j I , >
(in instructions) I
Instructi Data
add $4, $5,$6 " et |Reg Aau | 2% [Reg
Instruction Data Branch is not taken
beq $1, $2, 40 <ZTS> fetch Reg ALU access Reg
Instruction Data
| lw $3, 300($0) ) ;S—> fech | R€9 ALU access | Re9
Program
execution _ 2 4 6 8 10 12 14 1
order Time ' l T , , >
(in instructions)
Instruction Data
add $4, $5 ,56 otch | R€9 AW | = |Reg |
Branch is taken
Instruction Data
beq $1, $2, 40 o ;S—> fetch J access
Instructlon Data
v or $7, $8, $9 < 4ns fetch access | "9
W1lL-M 19




Pipelining Hazards (4)

Solution # 2 to Control Hazards: Insert an additional instruction that is not affected by the branch
instruction. This solution is called delayed branch.

Program
execution . 2 4 6 8 10 12 14
order Time T I l ! >
(in instructions)
b 1.$2. 40 Instruction Data
eq$1, % fetch Reg ALU access Reg
poves || saasasoso g sfimmetonl oy | Do neg
Instruction (Delayed branch slot) ns
Instruction Data
\ lw $3, 300($0) <—>2 s fetch Reg| ALU access | R€9
“«——>
2ns

Wll-M ol



Pipelining Hazards (5)

Data Hazards: occurs when an operand used in the next instruction is updated in the prior
instruction.

add $s0, $sl, $s2
sub $t0, $s0, S$tl

Solution: As soon as ALU generates data ($s0), it makes it available to the next instruction
before storing it in the register file.

Program
execution 2 4 6 8 10
order Time | | | l >
(in instructions)
add $s0, $t0, $t1 IF D EX MEM'— WB
$s0 made available to the next instruction
v sub $t2, $s0, $t3 IF LD MEM'— WB

Wll-M el



Graphical Representation

2 4 6 8 10
Time T T T T T >
add $s0, $t0, $t1 IF |—X4 ID SEX——MEM— WB
Instruction Instruction Decode / Execute Memory Write Back
fetch from Register Read Read/Write stage into the
instruction memory register file
1. Shading in each block indicates what the element is used for in the instruction.

2. Shading on the left half of the block indicates that the element is being written. During
instruction fetch, the instruction memory is read so the right half of IF block 1s shaded.

3. Shading on the right half of the block indicates that the element is being read. During
write back stage, the register file is written so the left half of the WB block 1s shaded.
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Activity 2

Using the graphical representation, show that the following swap procedure has a pipeline
hazard. Reorder the instructions to avoid pipeline stalls.

lw $t0, 0(S$tl)

1w $t2, 4($tl) . -
sw $t2, 0(st1) W S0, O0(Sel) | IFH—= ID

sw $t0, 4($tl)

?fB§$t0 loaded

1w $t2, 4(st1) | IF —'3 ID

<$t2, 0($t1) | IF

sw $t0, 4($tl)

St0 stored

Wll-M 23
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