
W11-M

HUGH CHESSER
CSEB 1012U

CSE 2021
COMPUTER ORGANIZATION

HUGH CHESSER
CSEB 1012U

W11-M 2

Multicycle Implementation: Control Units added

W11-M 3

Multicycle Implementation – 5 Steps

Multicycle implementation – “unwound” to show datapath in each
step

W11-M 4

Instruction fetch Instruction decode/
register fetch

Jump
completion

Branch
completionExecution

Memory address
computation

Memory
access R-type completion

Write-back step

 (Op = 'lw' or 'sw')
 (Op = R-type) (O

p = 'b
eq')

(O
p

=
'j'

)

 (OP = 'sw')

(O
p

=
'lw

')

4

0 1

9862

753

Start

MemRead = 1
ALUSrcA = 0
IorD = 0
IRWrite
ALUSrcB = 01
ALUOp = 00
PCWrite = 1
PCSource = 00

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

Memory
access

MemRead = 1
IorD = 1

MemWrite = 1
IorD = 1

RegDst = 0
RegWrite = 1
MemtoReg = 1

MemRead = 1
IorD = 1

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

RegDst = 1
RegWrite = 1
MemtoReg = 0

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond = 1
PCSource = 01

PCWrite = 1
PCSource = 10

W11-M 5

Control Logic – Truth Table

Note that control
outputs depend only
on current state (Op
column is blank for
all output rows)

Next state depends
on current state and
inputs (opcode from
instruction)

W11-M 6

Finite State Machine
Control of Multicycle Datapath (5)

Control logic

Inputs

Outputs

W11-M 7

NS0 Example (1)

Give the logic equation for the NS0 bit for the FSM

• NS0 is true for states 1(0001two), 3 (0011two), 5 (0101two),
7 (0111two), 9 (1001two)

• Referring to the truth table…

Take a couple of
minutes to think
about the other
conditions…

NS0 a=state0=S3⋅S2⋅S1⋅S0

a
b
c
d
e

W11-M 8

NS0 Example (2)

Give the logic equation for
the NS0 bit for the FSM

3S2S1S0S0state0NS 1 ⋅⋅⋅==

NS0 b=state2⋅(Op = 'lw' (0x23)) =S3⋅S2⋅S1⋅S0⋅Op5⋅Op4⋅Op3⋅Op2⋅Op1⋅Op0

b
c
d

e

NS0 c=state2⋅(Op = 'sw')
=S3⋅S2⋅S1⋅S0⋅Op5⋅Op4⋅Op3⋅Op2⋅Op1⋅Op0

NS0 d=state6=S3⋅S2⋅S1⋅S0
NS0 e=state1⋅(Op = 'jmp')

=S3⋅S2⋅S1⋅S0⋅Op5⋅Op4⋅Op3⋅Op2⋅Op1⋅Op0
NS0=NS0 a+NS0 b+NS0 c+NS0 d+NS0 e

W11-M 9

NS0 Logic Diagram

W11-M 10

Agenda

Topics:
1. Pipeline implementation

Patterson: 4.5

W11-M 11

Why Pipelining (1)?

— Pipelining is an implementation technique in which multiple instructions are overlapped
during execution.

— Pipelining enhances the throughput of the processors.
— To explain pipelining, consider an analogy with a laundry example where 4 users are

asked to wash, dry, fold, and store several loads of clothes.

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task
order

Sequential Laundry

W11-M 12

Why Pipelining (2)?

Pipelined Laundry (assume equal time at each stage with 4 users: Ann, Brian, Cathy, and Don).
A. Ann places dirty load # 1 in the washer
B. When washer is finished, Brian places wet load # 1 in the dryer. Ann loads the washer with load # 2

of dirty clothes.
C. When load # 1 is dried, Cathy takes dried load # 1 out of the dryer and starts folding. Brian loads the

dryer with wet load # 2. Ann loads the washer with load # 3 of dirty clothes.
D. When load # 1 is folded, Don starts storing folded load # 1 in the storer. Cathy takes dried load # 2

out of the dryer and starts folding. Brian loads the dryer with wet load # 3. Ann loads the washer with
load # 4 of dirty clothes. Process continues.

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task
order

W11-M 13

Pipelining with Single Cycle Datapath (1)
MIPS pipelining has the following five stages:
1. Instruction Fetch (IF): Fetch instruction from memory.
2. Instruction Decode (ID): Read registers while decoding the instruction.
3. Execution (EX): Execute the operation or calculate the address.
4. Memory Access (MEM): Access an operand in data memory.
5. Write Back Stage (WB): Write the result into a register.

Activity: Compare the non-pipelined execution time with the pipelined execution time for the instructions:
lw $1, 100($0)
lw $2, 200($0)
lw $3, 300($0)

assuming the following delays at different functional units.

Instruction Class Instruction fetch Register read ALU Data access Register write Total

Load word (lw) 200 ns 100 ns 200 ns 200 ns 100 ns 800 ns

Store word (sw) 200 ns 100 ns 200 ns 200 ns 700 ns

R-format 200 ns 100 ns 200 ns 100 ns 600 ns

Branch (beq) 200 ns 100 ns 200 ns 500 ns

W11-M 14

Pipelining with Single Cycle Datapath (2)

Instruction
fetch Reg ALU Data

access Reg

800 ps
Instruction

fetch Reg ALU Data
access Reg

800 ps
Instruction

fetch

 800 ps

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14

...

Program
execution
order
(in instructions)

Instruction
fetch Reg ALU Data

access Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

200 ps
Instruction

fetch Reg ALU Data
access Reg

200 ps
Instruction

fetch Reg ALU Data
access Reg

200 ps 200 ps 200 ps 200 ps 200 ps

Program
execution
order
(in instructions)

Non-pipelined Execution

Pipelined Execution

W11-M 15

Pipelining with Single Cycle Datapath (3)

— Speedup obtained through pipelining equals the number of pipe stages if execution time
of each stage is the same.

— In our previous example, speedup should be 5.

Actual speedup in our previous example = 24 / 14 = 1.71
Why? Number of instructions are too small.
Increase the number of instructions to 1003.
Then speedup = (1003 × 8)/(2 × 1003 + 8) = 8024/2014 = 3.98

— Pipelining added some overhead (additional 100ps for Register read)
— Note that pipelining increases the overall throughput. The execution time for each

instruction stays the same.

W11-M 16

Suitability of MIPS architecture towards Pipelining
MIPS 80x86

1. All MIPS instructions are of the same
length. Instruction fetch (IF) in the first
pipeline stage and decoding in the second
stage is easier.

1. Instructions in 80x86 have variable length
from 1 byte to 17 bytes. This makes the first
two stages (instruction fetch and decoding)
more challenging making pipelining difficult.

2. MIPS instructions have a limited number of
formats with registers staying specified at
almost the same bit positions. This allows the
decoding stage to start reading the registers at
the same time as HW is determining the type
of instruction.

2. Due to variable instruction length in 80x86,
the registers are specified at different bit
positions.

3. MIPS do not allow operands to be directly
used from the memory. Operands are first
loaded into the registers.

3. 80x86 allows direct operation on operands
while in memory. An additional address stage
is therefore needed in 80x86.

4. Since operands are aligned in memory, data
can be transferred from memory to registers
in a single data transfer command.

W11-M 17

Pipelining Hazards (1)
̶ Hazards: Pipelining hazards occur when the next instruction in a pipelined program can not

be executed until the prior instruction has been executed.
̶ Structural Hazards: occur when hardware does not support combination of instructions to be

executed in the same clock cycle.
Laundry analogy: A washer-dryer combo is used where a load of clothes is washed and then
dried in the same machine.
MIPS: A single memory used for data and instructions results in structural hazard below.

2 4 6 8 10 12 14

Instruction
fetch Reg ALU Data

access Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 ns Instruction
fetch Reg ALU Data

access Reg

2 ns Instruction
fetch Reg ALU Data

access Reg

Program
execution
order
(in instructions)

2 ns 2 ns 2 ns 2 ns 2 ns
Pipelined Execution

2 ns Instruction
fetch Reg ALU Data

access Reglw $4, 400($0)

W11-M 18

Pipelining Hazards (2)
― Control Hazards: occur when the execution of the next instruction depends upon a decision

in the previous instruction.
Laundry analogy: Laundry crew is required to determine the correct detergent and
temperature setting for perfect cleaning.
MIPS: Branch instruction can cause a control hazard.
Modification: Add extra HW such that: (1) registers are loaded and tested for equality and
(2) PC is updated with the branch target address in the second step.

Instruction
fetch Reg ALU Data

access Reg

Time

beq $1, $2, 40

add $4, $5, $6

lw $3, 300($0)
4 ns

Instruction
fetch Reg ALU Data

access Reg
2ns

Instruction
fetch Reg ALU Data

access Reg

2ns

2 4 6 8 10 12 14 16
Program
execution
order
(in instructions)

Even with added HW, there is still a delay of an additional 2ns

W11-M 19

Pipelining Hazards (3)

Solution # 1 to
Control Hazards:
Always predict that
the branch will fail
and keep executing
the program

Instruction
fetch Reg ALU Data

access Reg

Time

beq $1, $2, 40

add $4, $5, $6

lw $3, 300($0)

Instruction
fetch Reg ALU Data

access Reg
2 ns

Instruction
f etch Reg ALU Data

access Reg
2 s

Program
execution
order
(in instructions)

Instruction
fetch Reg ALU Data

access Reg

Time

beq $1, $2, 40

add $4, $5 ,$6

or $7, $8, $9

Instruction
fetch Reg ALU Data

access Reg

2 4 6 8 10 12 14

2 4 6 8 10 12 14

Instruction
fetch Reg ALU Data

access Reg

2 ns

4 ns

bubble bubble bubble bubble bubble

Program
execution
order
(in instructions)

n

Branch is not taken

Branch is taken

Registers must be
cleared and

an additional delay
of 2ns

W11-M 20

Pipelining Hazards (4)

Solution # 2 to Control Hazards: Insert an additional instruction that is not affected by the branch
instruction. This solution is called delayed branch.

Instruction
fetch Reg ALU Data

access Reg

Time

beq $1, $2, 40

add $4, $5, $6

lw $3, 300($0)

Instruction
fetch Reg ALU Data

access Reg2 ns

Instruction
fetch Reg ALU Data

access Reg

2 ns

2 4 6 8 10 12 14

2 ns

(Delayed branch slot)

Program
execution
order
(in instructions)

Added
Instruction

W11-M 21

Pipelining Hazards (5)

― Data Hazards: occurs when an operand used in the next instruction is updated in the prior
instruction.
add $s0, $s1, $s2
sub $t0, $s0, $t1
Solution: As soon as ALU generates data ($s0), it makes it available to the next instruction
before storing it in the register file.

add $s0, $t0, $t1

sub $t2, $s0, $t3

Program
execution
order
(in instructions)

IF ID WBEX

IF ID EX

Time
2 4 6 8 10

MEM

WBMEM

$s0 made available to the next instruction

W11-M 22

Graphical Representation

1. Shading in each block indicates what the element is used for in the instruction.
2. Shading on the left half of the block indicates that the element is being written. During

instruction fetch, the instruction memory is read so the right half of IF block is shaded.
3. Shading on the right half of the block indicates that the element is being read. During

write back stage, the register file is written so the left half of the WB block is shaded.

Time
2 4 6 8 10

add $s0, $t0, $t1 IF ID WBEX MEM

Instruction
fetch from

instruction memory

Instruction Decode /
Register Read

Execute Memory
Read/Write

Write Back
stage into the

register file

W11-M 23

Activity 2

Using the graphical representation, show that the following swap procedure has a pipeline
hazard. Reorder the instructions to avoid pipeline stalls.

lw $t0, 0($t1)
lw $t2, 4($t1)
sw $t2, 0($t1)
sw $t0, 4($t1)

$t0 loaded

$t2 loaded

lw $t0, 0($t1)

lw $t2, 4($t1)

sw $t0, 4($t1)

sw $t2, 0($t1) $t2 stored

$t0 stored

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	NS0 Example (1)
	NS0 Example (2)
	Slide 9
	Slide 10
	Why Pipelining (1)?
	Why Pipelining (2)?
	Pipelining with Single Cycle Datapath (1)
	Pipelining with Single Cycle Datapath (2)
	Pipelining with Single Cycle Datapath (3)
	Suitability of MIPS architecture towards Pipelining
	Pipelining Hazards (1)
	Pipelining Hazards (2)
	Pipelining Hazards (3)
	Pipelining Hazards (4)
	Pipelining Hazards (5)
	Graphical Representation
	Activity 2

