= T W E o = I e M T Wl = @ - T O 2> W =]

2 AENRMY 8 S MEAN wf vURY HE Dk

JhE DEe BH

- g JJ e N & 9 = X B & 2 L uE =0 2 xE 4

b e e LM 1 .!f&m.T:_t..:v.lSU.mﬂh

A |
RENRY B> E
b~

(€ HESN LFE WwWURY &.- DE- 0
me ;D o]ﬁH!!’ ~

(¥

-D [y
: 2 = o€ E uw a E O E JAB aadll 2 af 2 «f £
WURY HE DX .{...J.:.IH &
- D s+ =2 % O E 58 A
W %,
ECE _REMw (@) B8 HESN .r&%&.k!.c e
o SNE Wi in
= ulm EETOO ___ w = - - O = = = h E LT o - 7% o o > T
_hJ, >0 2 Edi=UL T T T A e

E = = R - =

N ANE WUEY HE U.ﬂ_l.

—2del=

ORGANIZATION

3% BARY F 1§
= == = L Wi _L.A._w.n_L.hnu - === = L Nl
WLk = XER
il Bk L= _ [-)‘F‘a*‘
S KE WOE ____ o NENA L8 WURY BB
r w == & 3 & e g & g 0w E = = K =
- X W E o =10 C = 0 b = @ - L oW W x

ah wvome & AR B O9—= &ac

T ORUERY B D BEACHNE Sms N

s TTE NN

LALZU-

—d 3] ¥ T w F = =

[a]
M L
’I
D
L
5
I
T
1
5
T
"

" CHESSER-

i A =e Az =B

HUGH

== =t A =. A=

LNE WURY KHE DE BH(

C-OMPUEE-

UKL B DR

=5 BTN - 9 L 4 = e) b= L Wi & W ¥ L W xE

® o= AS AB @

-
e OO0 o ‘el Bk 1°. A

Quiz/Exam Sample Question

Show the contents of the pipeline registers for instructions going through the pipeline (5
cycles after the first instruction begins), identify any data hazards:

lw $10,20($1)

sub $11,$2,$3

and $12,$10,$5

or $13,%11,87

and $14,$8,$9

f
:
T
t
7|

)

W13-M

Pipeline - Cycle # 5

DOUTEL 8]
ADDRET.2]

RONMS_32x3990M

InstrAddr[31..0]

]
Instruction

. Cpls.0]

[iii]

51

35311 [4.0] rs[4__{]'|

U_RezFik
REgFis fsDes

M
I

g o TH4 0]

|~ RedAddnald 0]

| = RmdaddeB[E0]

— > WiksAdda4..0]
ol WeDeem(3t 0]

Dourala L.l [

DouBf3L. 0] [

EpnEes

L5 til [4.0]

rd[4..0]

=7 xS sl _’5
+ =
L= 2
[— L
—
Woad E MemRead
=1
_SMITmi MemWrite
— SN SckTec
= 1AL 25 SRTs =
= ATU3 i 50T Sk e =
o _—
fal FrTE Branch =
5 - A1) é =
Rrzuk[210] I =3 C =
= ;2 i, é g
(=t
L - =
E i = TeatZero — =
o e Crome P 5
= : g
= V 2
3 B
‘;';' L_ogiso] =
o
£ = .
{ = — = ﬁ
= U_ALUCzacl = =
=]) _ 1 Ct[S 0-|.u.1:cs===1 Skl ch =
a =0 s offlin s Sancif5. 0] Opossca[. 0] m ‘;_3' E
w - ALUegl o]
ALUOp[1..0] —
—
5 5
9 (]
- & 2 =1}
L 1
Lo e &2

]

M
I

MemtoReg

a31_B2BL

n

ALU Control Actions

Instruction Instruction Desired ALU control
opcode operation Function code ALU action input

il i]

load word XXXXXX 0010

SW 00 store word XXXXXX add 0010
Branch equal 01 branch equal XXXXXX subtract 0110
R-type 10 add 100000 add 0010
R-type 10 subtract 100010 subtract 0110

' | Rtype 10 AND 100100 AND 0000
R-type 10 OR 100101 OR 0001
R-type 10 set on less than 101010 set on less than 0111

C T | N |
oo
=1

:
K

T

I o |

- =
=g & Fgidd i
— A el e SN AT

Wl3i-M

D |
-
W0 B

=

i
g =

&

e
——_

R -

Action of Pipeline Control Signals

Effect when deasserted (0) Effect when asserted (1)

RegDst

The register destination number for the Write
register comes from the rt field (bits 20:16).

The register destination number for the Write register comes
from the rd field (bits 15:11).

RegWrite

None.

The register on the Write register input is written with the value
on the Write data input.

ALUSrc

The second ALU operand comes from the second
register file output (Read data 2).

The second ALU operand is the sign-extended, lower 16 bits of
the instruction.

PCSrc

The PC is replaced by the output of the adder that
computes the value of PC + 4.

The PC is replaced by the output of the adder that computes
the branch target.

MemRead None. Data memory contents designated by the address input are
put on the Read data output.
MemWrite None. Data memory contents designated by the address input are

replaced by the value on the Write data input.

MemtoReg

The value fed to the register Write data input
comes from the ALU.

The value fed to the register Write data input comes from the
data memory.

Wl3i-M

B =

Pl i1} W=

Control for Pipeline — Arranged by Pipeline Stage

Execution/address calculation stage

control lines

Memory access stage Write-back stage
control lines control lines

noet | susons | s | v | smen | et | e
RegDst ALUOpPO Read Write Reg
R-format 1 1 0 0 0 0 0 1 0

Tw 0 0 0 1 0 il 0 1 i

SW X 0 0 1 0 0 1 0 X

beq X 0 1 0 1 0 0 0 X

Controls same as before for the single or multi-cycle
implementations, rearranged according to pipeline stage

W1l3-M b

Agenda

==l
1=

Topics:
1. Memory, Caches

"".."qﬁ--. =
LN o

Patterson: 5.1, 5.2

Pl i1} W=

Bl e
—

L
!
;
¢
i

[=]
L . T
-~ AN

e

Y 0o

’ e e
S

Lo

B

Wl3i-M

Memory Technologies

Static RAM (SRAM)
- flip flops (transistors)
- 0.5ns — 2.5ns, $2000 — $5000 per GB

* Dynamic RAM (DRAM)
- Capacitor transistor pairs — requires refresh
- 50ns — 70ns, $20 — $75 per GB

* Magnetic disk
- Nonvolatile — data stored in magnetic field
- 5ms — 20ms, $0.20 — $2 per GB

* |deal memory
- Access time of SRAM
- Capacity and cost/GB of disk

Wl3-M

L
.
.
:

=

e
E I
N

& P AT

e

-E'J"I-l'lr

= s SR
w

—

R =

—

Memory Technologies (2)

WL
—s —
Vb
—s —
| Mo |
Ms; | —|°_ - | Ms
» L

SRAM

Source: Wikipedia

BL

Platter

Spindle

Actuator

Wl3i-M

Head

Actuator Arm

Actuator Axis

Power Connector

Jumper Block

IDE Connector Magnetlc

L
I
g
i
’i
- -
;
;
!
I

Memory Heirarchy

* |n order to reduce access time, while keeping costs
down computers employ a mixture of memory types

 Memory is arranged in an heirarchy
- Small amount of fast, expensive memory
- Larger amount of slower, cheaper memory
» Utilizes the “principle of locality” - cache memory

- Temporal — memory accessed recently tends to be accessed
again

- Spatial — adjacent memory locations to ones accessed
recently are also likely to be needed

Wl3-M

16

Taking Advantage of Locality

* Memory hierarchy
* Store everything on disk

* Copy recently accessed (and nearby) items from
disk to smaller DRAM memory

- Main memory

* Copy more recently accessed (and nearby) items
from DRAM to smaller SRAM memory

- Cache memory attached to CPU

RHI-ET

L
.
:
i
:
c
¢
-
ll
[

Wil3-M L1

Memory Hierarchy Levels

* Block (aka line): unit of copying
- May be multiple words

Processor * |f accessed data is present in upper
1 level

W - Hit: access satisfied by upper level
* Hit ratio: hits/accesses

1 . * |f accessed data is absent
Data is transferred

Y - Miss: block copied from lower level
* Time taken: miss penalty

.
.
i
:

L * Miss ratio: misses/accesses
' _ =1 — hit ratio
£ - Then accessed data supplied from upper
EE | level
st
E'ﬁl W13-M 12

Cache Memory

* Cache memory
- The level of the memory hierarchy closest to the CPU

« Given accesses X,, ..., X_ ., X_
: . .
: — - * How do we know if the
: data is present?
o o = Where do we look?
Xﬂ
X3 X3

a. Before the reference to X, b. After the reference to X,

<

= &= sRBrd [[o

Wl3-M 13

Direct Mapped Cache

* Location determined by address

* Direct mapped: only one choice
- (Block address) modulo (#Blocks in cache)

OO~ QO — O
OO0 T OO~
[eNeNeNell Jl

= # of Blocks is a
LB power of 2

X \ " Use low-order
Py I/ N \1 address bits
o J/ \\ \\\

00001 00101 01001 01101 10001 10101 11001 11101
Memory

L
.
:
i
:
c
¢

i

= s
=
— .

Wl3-M 14

L
.
:
i
:
c
¢

r,é '.

= s
=
— .

Tags and Valid Bits

* How do we know which particular block is stored
In a cache location?

- Store block address as well as the data
- Actually, only need the high-order bits
- Called the tag

* What if there is no data in a location?
- Valid bit: 1 = present, 0 = not present
- Initially O

Wl3-M

15

Cache Example (1)

* 8-blocks, 1 word/block, direct mapped
* |nitial state

<

Index Tag Data

000

001

n
[}

010

011

100

101

™
AR

e T B L Y T

110

Z| Z| Z2| Z2| Z2| Z2| Z2| Z

111

2RI -

__;1-3-1- i =L

e =
— i

Wl3i-M

e |

Cache Example (2)

Word addr Binary addr Hit/miss Cache block

22 10 110 Miss 110

Index Tag Data

000

001

el === 1

010

011

100

101

110 10 Mem[10110]

Z|<| Z| Z| Z2| Z2| Z| Z2|I<

A -

111

-31'1-1 - D a

§
;
;
.
i
ll
I

—

Wl3i-M

i
— .
e P B

Cache Example (3)

Word addr Binary addr Hit/miss Cache block
26 11 010 Miss 010
.‘ Index V Tag Data
000 N

A 001 N

i 010 Y 11 Mem[11010]

; 011 N

ﬁ : 100 N

« B 101 N

g i b

F - 110 Y 10 Mem[10110]

i K H

int o8 111 N

U'=g [X Wl3i-M

18

Cache Example (4)

Word addr Binary addr Hit/miss Cache block
22 10 110 Hit 110
- 26 11 010 Hit 010
.‘ Index V Tag Data
000 N
A 001 N
f 010 Y 11 Mem[11010]
; 011 N
ﬁ : 100 N
« B 101 N
]
¢ - 110 Y 10 Mem[10110]
i K
it 111 N
E'ﬁ W13M

Cache Example (5)

Word addr Binary addr Hit/miss Cache block
16 10 000 Miss 000

: 3 00 011 Miss 011
'. 16 10 000 Hit 000
C
ﬁ Index V Tag Data

L

| 001

! 010 Y 11 Mem[11010]

£

ﬁ 100 N

1 101 N

0

TE 110 Y 10 Mem[10110]

1 K

it 111 N

E'ﬁ W1IM

Cache Example (6)

Word addr Binary addr Hit/miss Cache block
18 10 010 Miss 010
C:

Index V Tag Data
T 000 Y 10 Mem[10000]
I 001 N
! 010 Y 10 Mem[10010]
£ 011 Y 00 Mem[00011]
ﬁ : 100 N
« B 101 N
0
¢ - 110 Y 10 Mem[10110]
i K
it 111 N
E'ﬁ W13-M

Address Subdivision

Address (showing bit positions)

3130 --- 131211---2 10
Byte
offset

Hit 420 J10
ﬂ \ Tag
o | E- Index Data
% Index Valid Tag Data
0
"]

| : 2

£ 1021

E 1022

Z 1023
(=

W13-M

* 64 blocks, 16 bytes/block

- To what block number does address 1207 map?
* Block address = [1207/16[= 75

* Block number = 75 modulo 64 = 11

Example: Larger Block Size

ﬁ
:
£
#,

31 10 9 4 3 0
...... 11 001011 | 0111

Ji 31 22 bits 109 6bits , 54bits

i3 Tag Index | Offset

¢ - 3 22 bits 6 bits 4 bits

ik

E" Wl3-M

£3

Block Size Considerations

* Larger blocks should reduce miss rate
- Due to spatial locality

 But in a fixed-sized cache

- Larger blocks U fewer of them
* More competition I increased miss rate

* Larger miss penalty
- Can override benefit of reduced miss rate

L
.
.

s T | [[o

<

== =
i
— .

Wl3i-M

n
[}

AR

o R [T DN T
e I

__;1-3-1- i =L

2RI -

—

e =

e |

Cache Misses

* On cache hit, CPU proceeds normally

* On cache miss
- Stall the CPU pipeline
- Fetch block from next level of hierarchy

- |Instruction cache miss
* Restart instruction fetch

- Data cache miss
* Complete data access

Wl3i-M

£5

Write-Through

On data-write hit, could just update the block in
cache

- But then cache and memory would be inconsistent
Write through: also update memory
But makes writes take longer

- e.g., if base CPI =1, 10% of instructions are stores, write

to memory takes 100 cycles
* Effective CPI=1+0.1x100 = 11

Solution: write buffer
- Holds data waiting to be written to memory

- CPU continues immediately
* Only stalls on write if write buffer is already full

Wl3-M

eb

Write-Back

* Alternative: On data-write hit, just update the
block in cache

- Keep track of whether each block is dirty

* When a dirty block is replaced
- Write it back to memory

L
.
.

- Can use a write buffer to allow replacing block to be
read first

s T | [[o

<

== =
i
— .

Wl3i-M

L
.
:
i
:
c
¢

§¢

= s
=
— .

Example: Intrinsity FastMATH

* Embedded MIPS processor
- 12-stage pipeline
- Instruction and data access on each cycle
* Split cache: separate |-cache and D-cache
- Each 16KB: 256 blocks x 16 words/block
- D-cache: write-through or write-back
* SPEC2000 miss rates
- |-cache: 0.4%
- D-cache: 11.4%
- Weighted average: 3.2%

Wl3-M

ey

Example: Intrinsity FastMATH

Address (showing bit positions)

31 -+ 1413---65---210
, 418 438 44 Byte Data
"j'l't Tag offset i
Index Block offset
18 bits 512 bits
V Tag Data
A
*
m 256
.H ® entries
¥
:
]]
= ARE 432 4.32 +32
=
'E . ¥ e
~
- Mux
e (w3
' £ 432
Lk |
H'ﬁ W13M 29
|

Main Memory Supporting Caches

* Use DRAMSs for main memory
- Fixed width (e.g., 1 word)
- Connected by fixed-width clocked bus

* Bus clock is typically slower than CPU clock

* Example cache block read
- 1 bus cycle for address transfer
- 15 bus cycles per DRAM access
- 1 bus cycle per data transfer

* For 4-word block, 1-word-wide DRAM
- Miss penalty =1 + 4x15 + 4x1 = 65 bus cycles
- Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

Wl3-M

3d

Increasing Memory Bandwidth

Processor Processor Processor
' Cache ’;E‘ Cache
I Cache
., T~ — T T~
' Bus Bus Bus
T~ — T~
X emo emo emo emo
I1| Memory I\I/::amk(r)y I\::ank:y I\:)ank;y hl:ank;y
,i b. Wider memory organization c. Interleaved memory organization
§ Memory * 4-word wide memory
: - = Miss penalty =1+ 15+ 1 =17 bus cycles
_': : = Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle
¢ * 4-bank interleaved memory
€ E = Onewordwide o Miss penalty = 1 + 15 + 4x1 = 20 bus cycles
st = Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle
E'ﬁ Wl3i-M

Advanced DRAM Organization

* Bits in a DRAM are organized as a rectangular
array
- DRAM accesses an entire row

- Burst mode: supply successive words from a row
with reduced latency

* Double data rate (DDR) DRAM
- Transfer on rising and falling clock edges

* Quad data rate (QDR) DRAM
- Separate DDR inputs and outputs

Wl3-M

3

	Slide 1
	Quiz/Exam Sample Question
	Pipeline - Cycle # 5
	Slide 4
	Slide 5
	Slide 6
	Agenda
	Slide 8
	Slide 9
	Slide 10
	Taking Advantage of Locality
	Memory Hierarchy Levels
	Cache Memory
	Direct Mapped Cache
	Tags and Valid Bits
	Cache Example
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Address Subdivision
	Example: Larger Block Size
	Block Size Considerations
	Cache Misses
	Write-Through
	Write-Back
	Example: Intrinsity FastMATH
	Slide 29
	Main Memory Supporting Caches
	Increasing Memory Bandwidth
	Advanced DRAM Organization

