2 AENRMY 8

JhE DEe BH

= 2 <

s 9 = L) & W r S T 0 3 =

H!f&m. = o JNw om0 =

(€ HESN LFE WwWURY &.- DE- 0
me ;D o]oﬂ!!ﬁ- ~

e oen) = I R 0

A |
RENRY B> E
b~

(¥

-, i
: 2 = o€ E uw a E O E JAB aadll 2 af 2 «f £
WURY HE DI .xu L LS
- D - *4.5 ® OB~ &% A
W o
BECE® REMV @0 B8 HESN .r&%&.kl.c "e
‘o Jlmw.b.l.l- w ¥ iR

T F = = 0E = F = = i E I af = o et LF o T

|
~
- - 2w - I 2'* =203 EA=U T T SR

N ANE WUEY HE U.ﬂ_l.

= = N = L B d < € ¥ D3 EDBD - = = = == 9 = L
Wilma “ER
n
}

- 3 - L+)lt.*‘
%S HE ECE B NHESN L8 aURy B

r W e — w0 o &« B2 w E = = K =
- L W E o =10 = 0 b e @ Lo W ¥

S h w e O

P8 ORUERY
HEW TTE N2

LAl U

ARV ® O9—= A
D& HEACNE Smws NG
— 1 = T W & o =
i O P oe A W e
e 3 = A e A =
LNE WURYU KE DS BH(
B 3 & a DM =@ = L
M E X O o ot 1) = W D o F
b= s @Y = L i ¥ W T L Wz

® o= AS AB @

< g
"liﬂ.'ﬂ]?Hlfﬂ }

...From Last Time - Exercise

The following table shows results for the SPEC2006
benchmark programs on an AMD Barcelona.

Benchmark name

Instr. Count

Execution time

Reference time

(billions) (seconds) (seconds)
Perl 2118 500 9770
mcf 336 1200 9120

Calculate: (a) CPI if the clock cycle time is 0.333 ns

. . (Perl: 0.71, mcf: 10.7)
(b) SPECratio (peri specratio: 19.54, mcf SPECratio: 7.6)

L
I
g
i
ﬁ
E‘ -
;
;
!
I

MIPS Instruction Set |

Topics:
— Arithmetic Instructions
— Registers, Memory, and Addressing
— Load and Save Instructions
— Signed and Unsigned Numbers
Logical Operations

— Instructions for making decisions (Branch Instructions)

f
:
T
t
7|

. _

* Patterson: Sections 2.1 - 2.7.

Announcement - Labs

YORK R

UNINERSITE

UNIVERSITY FUTURE STUDENTS

. ALUMNI & VISITORS &
redefine THE POSSIBLE LniE | Current Students | Faculty & Staff | Research | International

Faculties = Libraries = Campus Maps = York U Organization = Directory = Site Index Search »

Department of ANMNOUNCEMENTS

Computer Science | COMPUTER ORGANIZATION » Announcements
and Engineering

New announcements will be posted here in reverse chronological order.

CsE2021 — Wed Sep 07, 2011
m First lecture - Welcome to CSE2021!

Announcements

Calendar — Mon Sep 12, 2011

Format

Vb chire Notes m Lectures in NEW LOCATION (same times MW 17:30 - 19:00) - TEL 000&

Labs m Tell all your classmates!

s — Mon Sep 12, 2011

Policies

Resources m Labs - | have confirmation from Prof. Roumani of the Lab schedule {see Calendar page)

Wiki Help m He sent me a few points/reminders for the class:
* Please advise students to read the page "2021L" (see Labs page) fo famillanze themselves with the lab component before the first
lab.
* Students can submit their prelab work electronically before going fo the lab session and that work will be available to them during the
lab test.
* Also, marking is now not just nght or wrong. The program is first checked by a script and if if passes all tests then it gets a full mark.

— Othenwise, it is marked by the fab TA and it could get any mark between 0 and the full mark depending on ihe seventy of the errors.

* The other change has to do with which lab is due when. The schedule that you post on the Calendar is now strictly enforced, e.q.
LabB can only be done in the week of LabB or in the first make-up week.

* Finally, please remind students to have a CSE account. Currently there are at least 7 students enrolied who do not have an account.

https://wiki.cse.yorku.ca/course archive/2011-12/F/2021/
We-W

Levels of Programming

Recall that a CPU can only
understand binary machine
language program

Writing binary machine language
program is cumbersome

An intermediate solution is to write
assembly language program that
can easily be translated (assembled)
to binary language programs

In this course we will cover MIPS
ISA used by NEC, Nintendo,
Silicon Graphics, and Sony

MIPS is more primitive than higher
level languages with a very
restrictive set of instructions

High-level
language
program
(in C)

Assembly
language
program
(for MIPS)

Binary machine
language
program

(for MIPS)

swap(int v[], int k)
{int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;
}

¢

swap:

muli $2, $5.4
add $2, $4.%$2
Iw $15, 0($2)
Iw $16, 4($2)
sw $16, 0($2)
sw $15, 4(%$2)
jr $31

Assembler

00000000101000010000000000011000
00000000100011100001100000100001
10001100011000100000000000000000
10001100111100100000000000000100
10101100111100100000000000000000
1010110001 1000100000000000000100
00000011111000000000000000001000

Fetch and Execute

1. Instructions are stored in the form of bits

2. Programs are stored in memory and are read or written just like data

memory for data, programs,

compilers, editors, etc.
Processor ﬁ Memory /

L
.
.
:

=

3. Fetch & Execute Cycle

— Instructions are fetched and put into a special register

LB

— Bits in the register "control" the subsequent actions
— Data if required is fetched from the memory and placed in other registers
— Fetch the “next” instruction and continue

We-w

-E'-I"I-l'l-
— A

== a5
i
— .

Addition & Subtraction

add add $sl,$s2,5s3 | $sl — $s2+$s3 | overflow detect
Arithmetic
subtract sub $sl,$s2,$s3 | $sl « $s2-$s3 | overflow detect
: Ss0 | Ss1 | $s2 | $Ss3 | Ss4 | Ss5 | Ss6 | Ss7
Example: $s0 - $s7 g h ; j
C: f=(g+h)—(0+));
MIPS Code:
Step 1: Specify registers StO | St1 | $t2 | $t3 | $t4 | $t5 | $t6 | $t7 | 58 | $t9
containing variables
Step 2: Express instruction in St0-5t7 | g+h | i4j | final
MIPS
MIPS code: add $t0,$s1,$s2 # $t0 — $s1 + $s2
i add $tl,$s3,$s4 # $tl — $s3 + $s4
L sub $t2,$t0,$t1 # $t2 $t0 - Stl

We-w /

W e -0 1 = = 1

= &= sRBrd
-21'1'1 -

=
— .

Memory Organization

Memory can be viewed as a large one dimensional
array of cells

To access a cell, its address is required
(Addresses are indices to the array)

In MIPS, each cell is 1 word (4 bytes) long

Each word in a memory has an address, which is a
multiple of 4

Length of an address is 32 bits, hence
minimum value of address =0
maximum value of address = (232 — 1)

Data is transferred from memory into registers using
data transfer instructions

12 100
8 10
4 101
0 1
Address Data
Processor Memory

I |

Data loadword | 1w $s1,100($s2) | $sl « memory[$s2+100] Memory to Register
transfer store word | sw $s1,100($s2) | memory[$s2+100]« $sl Register to memory
We-W o

- t‘% Data Transfer Instructions
I

ol load word | lw $s1,100(S$s2) $s1 € memory[$s2+100] | Memory to Register
' P | Data transfer

33 store word | sw $51,100($s2) | memory[$s2+100]& $s2 | Register to memory

s 0
ﬁl : Example: C instruction: g = h + A[k]

P Register Allocation: Akl Address + 4xk S

I: t $s1 contains computed value of g; $s2 contains value of h 10

0 & $s3 contains base address of array (address of A[0]) Al address +4 o

'i ¢ $s4 contains value of k; Al0] address 1

S8 MIPS Code: Array Data

R ada st1,$s4, 854 #$tl = 2 x k

S add $t1,$t1,stl # 5tl =4 x k

- - EE add $tl1,$tl1l,$s3 # $tl = address of A[0] + 4 x k

r-H 1w $t0,0($t1) # $t0 = A[k]

E“ﬁ = add $sl1,8$s2,$t0 # $s3 = h + A[k]

31 W ;

So far we have learned ...

MIPS
— loading words but addressing bytes
— addition and subtraction operations on registers only

Instructions Meaning
add $sl1,$s2,$s3 # $sl1 = $s2 + $s3 (arithmetic)
sub $s1,$s2,$s3 # $sl1 = $s2 - $s3 (arithmetic)
lw $s1,100($s2) # $s1 = Memory[$s2+100] (data transfer)
sw $s1,100($s2) # Memory[$s2+100] = $sl (data transfer)

Activity 1: Write the MIPS assembly code for the following C assignment instruction
A[12]=h + A[8]
assuming that the variable h is stored in $s2 and the base address of the array A is in $s3.

gt

L s] | lr-

Hg
'
|
.

MIPS to Binary Machine Language (1)

Example: add $t0,$sl1,$s2

Binary Machine Language Equivalent:
000000 10001 10010 01000 00000 100000

Can we derive the binary machine language code from the MIPS instruction?

MIPS field for arithmetic instructions:

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
opcode 1st operand 2" operand destination shift function

1l

Registers

Registers are memory cells

In MIPS, data must be in registers before arithmetic operations can be performed
Size of each register is 32 bits, referred to as a word (1 word = 4 bytes = 32 bits)
MIPS has a total of 32 registers

Name Register number Usage

Szero 0 Constant value of 0

Sv0-$vl 2-3 VValues for results and expression evaluation
Sal0-$a3 4 -7 Input arguments to a procedure

St0-$t7 8-15 Not preserved across procedures (temp)
Ss0-$s7 16 - 23 Preserved across procedure calls

$t8-$t9 24 - 25 More temporary reqisters

| Sap 28 Global pointer

Ssp 29 Stack pointer, points to last location of stack
$fp 30 Frame pointer

Sra 31 Return address from a procedure call

We-W

Representing MIPS Instructions

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
1st an
opcode destination shift function
operand | operand

For arithmetic operations (R):
— Opcode (op) =0
— Function (funct) = 32 for add, 34 for sub
Example: add $t0,$s1,$s2 (Values of Registers: $t0 = 9, $s1 =17, $s2 = 18)

op = 0,, = (000000),
rs=17,, = (10001),
rt=18,,=(10010),
rd=8,, = (01000),

n
[}

[N [g T

shamt is not used = (00000),

A -

funct = 32,, = (100000),

leads to the binary machine language code: 000000 10001 10010 01000 00000 100000
WE-W 13

-31'1-1 - D

== e ss B
w

—

R =

—

MIPS Fields for Data Transfer Operations

6 bits 5 bits 5 bits 16 bits

opcode @ 1% operand | 2" operand Memory address (offset)

For data transfer operations (I):
— Opcode (op) = 35 for load (Iw) and 43 for save (sw)

Example: 1w $t0,32 ($s3) # (Values of Registers: $t0 =9, $s3 = 19)
op =35,,=(100011),

rs=19,,=(10011),

rt=8,,=(01000),

address = 32, = (0000 0000 0010 0000),

leads to the binary machine language code: 100011 10011 01000 0000000000100000

We-W 14

Example

Activity 2: Consider the C instruction
A[300] = h + A[300]

A. Write the equivalent MIPS code for the above C instruction assuming $t1 contains the base
address of array A (i.e., address of A[0]) and $s2 contains the value of h

B. Write the binary machine language code for the result in part A.

f
:
T
t
7|

)

	Slide 1
	Exercise
	MIPS Instruction Set I
	Slide 4
	Levels of Programming
	Fetch and Execute
	Addition & Subtraction
	Memory Organization
	Data Transfer Instructions
	So far we have learned …
	MIPS to Binary Machine Language (1)
	Registers
	Representing MIPS Instructions
	MIPS Fields for Data Transfer Operations
	Slide 15

