= T W E o = I e M T Wl = @ - T O 2> W =]

2 AENRMY 8 S MEAN wf vURY HE Dk

JhE DEe BH

- g JJ e N & 9 = X B & 2 L uE =0 2 xE 4

b e e LM 1 .!f&m.T:_t..:v.lSU.mﬂh

A |
RENRY B> E
b~

(€ HESN LFE WwWURY &.- DE- 0
me ;D o]ﬁH!!’ ~

(¥

-D [y
: 2 = o€ E uw a E O E JAB aadll 2 af 2 «f £
WURY HE DX .{...J.:.IH &
- D s+ =2 % O E 58 A
W %,
ECE _REMw (@) B8 HESN .r&%&.k!.c e
o SNE Wi in
= ulm EETOO ___ w = - - O = = = h E LT o - 7% o o > T
_hJ, >0 2 Edi=UL T T T A e

E = = R - =

N ANE WUEY HE U.ﬂ_l.

—2del=

ORGANIZATION

3% BARY F 1§
= == = L Wi _L.A._w.n_L.hnu - === = L Nl
WLk = XER
il Bk L= _ [-)‘F‘a*‘
S KE WOE ____ o NENA L8 WURY BB
r w == & 3 & e g & g 0w E = = K =
- X W E o =10 C = 0 b = @ - L oW W x

ah wvome & AR B O9—= &ac

T ORUERY B D BEACHNE Sms N

s TTE NN

LALZU-

—d 3] ¥ T w F = =

[a]
M L
’I
D
L
5
I
T
1
5
T
"

" CHESSER-

i A =e Az =B

HUGH

== =t A =. A=

LNE WURY KHE DE BH(

C-OMPUEE-

UKL B DR

=5 BTN - 9 L 4 = e) b= L Wi & W ¥ L W xE

® o= AS AB @

-
e OO0 o ‘el Bk 1°. A

Agenda

Topics:
1. Sample Exam/Quiz Q - Review
2. Multiple cycle implementation

:

Patterson: Section 4.5

Pl i1} W=

P e

Reminder: Quiz #2 — Next Wednesday

Wi
& 1 AT

8 " . -+ 0= i
i & I

WI-W

3

gt

L s] |

11

&

e
——_

g o T~ - |

Main Control (4)

Instruction[31..0] |1

DOUTL]

ADDR[.]

InstrAddr[31..0]

PCSre
5

RzgFils Sles U Rzl
[Readaddedld. 0] Douealil.0] [
[Resdaddi@[d.0] Dewezfat 0] [
[Wasmadddd] E 4

i
[WeiseDnli 0]

RegWrite ;
£ ALUSKc

U ALNTE3E
ALU3 bk 5k S Dac

TestZeo

Rezult[31..0] BN

Orverlon

ikl

To Branch Logic

MemtoReg

Immediate/Offset

EC]: fi5_ad

U AL zes]
1 {} AL Scklec

Activity (Sample Quiz, Exam Q)

We wish to add jr (jump register) to the single cycle datapath
from the previous slide. Add the necessary connections to the
single cycle datapath block diagram to implement the jr
iInstruction. Also, append the table below to add the necessary
control signals needed for the jr instruction.

l.li:-:l'"_'.l lr-

ﬁl
L
.
.

: R-format 1 0 0 1 0 0 0 1 0
E 1w 0 1 1 1 1 0 0 0 0
| SW X 1 X 0 0 1 0 0 0

beqg X 0 X 0 0 0 1 0 1

== a5 LB

WI-W "

L
.
.
i
:

-3'1'1-!-

= &= sRBrd
i
— .

Jump Register

Answer (Part 1):

jr

R PC=R[rs]

[TEeN N

0/ 0804

U_Fegleumes

Modify the datapath as shown

s RzpFils S Das U_R=pFis
il [e Addeasd. 0] Dieusagit 0] [~
Instruction[31..0] [ResiAddeBs.0] DousBfal.o] [
DOUTL]
ADDRL] .
o Weksidddd 0] é ;
[WeisDeit.]
InstrAdde[31..0 -
! | RegWrite

I 431.0]

Rezult[31..0] HH

To Branch Logic

TestFem

Overflow B

Immediate/Offset

MemtoReg
Ml J
- C1E D]
DOUTL-]
sna MemWrite
o = MemPRead

Answer (Part 2):

... append the table below to add the necessary control signals

,5 needed for the jr instruction.
»3
: 0O
C: L
| R-format 1 0 0 1 0 0 0 0 1 0
T
| 1w 0 1 1 1 1 0 0 0 0 0
|
| sw X 1 X 0 0 1 0 0 0 0
(I
| beg X 0 X 0 0 0 1 0 0 1
]
E - Jr X 0 X 0 0 0 0 1 X X
o
| B SE
E F " . - Lo . . . aua
E & gg Jump Register jr R PC=R[rs] 0/ 08,4
L K
] & il
U'v§ [x WI-W L

Why Multicycle?

Example: Assume that the operation times for major functional unit in a microprocessor are:
Memory unit ~ 2ns, ALU and adders ~ 2ns, Register file ~ Ins
Compare the performance of the following instruction mix
Loads: 24%; Stores: 12%; ALU instructions: 44%; Branches: 18%; Jumps: 2%
on the two implementations

Implementation I: All instructions operate in 1 clock cycle

Implementation II: Each instruction is as long as it needs to be.

o [mstuctonCiass [Functional units used Stepsimolved) |
|
i ALU type Instruction fetch | Register Access | ALU | Register Access 6ns
. Load word Instruction fetch | Register Access | ALU | Memory Access Register Access 8ns
E Store word Instruction fetch | Register Access | ALU | Memory Access Tns
]
= Branch Instruction fetch | Register Access | ALU Sns
=
Branch Instruction fetch 2ns

Average time per instruction: Implementation 1: ~ 8ns

Implementation 2: ~0.24(8)+0.12(7)+0.44(6)+0.18(5)+0.02(2) = 6.34ns
WI-W 4

-21'1-1'!-

= &= sRBrd
i
— .

Multicycle Implementation

Instruction:

— Execution of each instruction is broken into different steps
— Each step requires 1 clock cycle

— Each instruction takes multiple clock cycles

Functional Unit:

f
-
T
t

— Can be used more than once in an instruction (but still only once in a clock cycle)
Advantages:

Pl

— Functional units can be shared
— ALU and adder is combined

— Single memory is used for instructions and data

WI-W

Multicycle Implementation: Abstract Diagram

NextlnstrAddr[31..0]

U ALU A

U kakicy _1_:5:'\;:?;] ALV 9L - 2T Sk T
Bzpil fesDac
[a3l Fzgfils Saxlac U RFikc Deadit 0] [il A[31..0] AL e
Dewdit 01 [[RmdAddedld 0] Deurafil. 0] [i Rzgdl faslies
— T Fesult{31..0] I s rent o
= CLE DDY-1 _— :
DOUTL] (o RadAddeBI4.0] DewBat.01 [} > Q ek
B 3 s - i
RAMSE 1 Dial3L0] {» WekmAdddd..0] % i
W L. L 3
Addr]31.0] w‘% [WixDuslsL.0] ol - i £[51..0)

Data memory and Instruction memory are combined

5 additional registers are added
1.

2
3.
4

An instruction register (IR) to hold instructions before distributing data to register file or ALU
A memory data register (MDR) to hold data before distributing to register file or ALU
Registers A and B that hold data before the ALU

Register ALUout that hold data computed by ALU

WI-W]

Multicycle Implementation: Multiplexers added

NextInstrAddr[31..0]

U_ALU A
U_kakey Regdl ScaDec
Regdl SeDes E—
[DepEtn y RecgFile Sk Do U_RegFie AL R
B ns oo o 15[4..0] —= (o= AT Res
Deust 0] [— [Rend Addrald. 0] Deural3t. 0] [— —
= e ke Result[31..0] b ot
D] jcr— | i r[[4 0 2 mamt Deudfit] [=
] [- . R Add:BM..0] DouwB[l.0] [v_siv e TestZemo [l
ADDRL] = ozidrhitoc ux =
WE Jax =
= i o o WikzAdded..0] =
> WeiteDeeal3 0] =
Addr[31..0] =
U_SigaEas
SigaFre febDee
SignF
1

U_ il
Rzgil Seklicz

De=fat]
Deuddt. 8] [

Because functional units are shared, multiplexers are added to select data between different devices

1. MUX before memory selects either the PC output (fetch instruction) or ALU output (storing data)

2 MUX before “write register” selects write-register number (instruction [15-11] or instruction[20-16])

3. MUX before “write data” selects data from “ALUOut” (R-type instruction) or “MemData” (Iw instruction)
4. Upper MUX before ALU selects PC output (increment PC) or “Read data 1” (R-type instruction)
5

Lower MUX before ALU selects “Read data 2”, or “sign extended instruction[15-0] or shift left sign

extended instruction[15-0], or 4
WIi-wW 16

Multicycle Implementation: Controls added

NextInstrAddr31..0]

ALUSrcA

MemWrite MemRead IRWrite

Bakcy
RizpdlbialF Sck T 1 ALU A
Rezil SkTec
-y - - :> HI-] .1 .
RegFike SciDee U RexFike m ;.TA_:-_EZ;“
Deuf3l.0] [15 Reed Addedld.0] Deurarst.0] [a2
340 bt | FRemle[31..0] Epin — D]
Clodk
4=p C1K D09] e alEaal Teugit o] [
CoE (% ReadaddiBia 0] DouBfEl.0] [e UalU 2 TeztZzro H Clack
ADDRL] | Regdd Schlec Mz =
e : - > Bl m Ovedow W
= e WeikzAdddd..0] A Deadit 8] [- =
RAMSE . iz 0
- - =
WDl 0] | o Bl =2
i ™ =
U_SigeExt Lo |l"
R S . b

2o] Add31.0]

fgeE

o T | e B 1 g W S R e AT UOp[3..0]
De=fal.0]
- . ALUSrcB[1.0]
e MemtoReg
“.:1 ItlSDp[:n. [}]

Because functional units are shared, multiplexers are added to select data between different devices

1. MUX before memory selects either the PC output (fetch instruction) or ALU output (storing data)

2. MUX before “write register” selects write-register number (instruction [15-11] or instruction[20-16])
WIi-wW 1l

Multicycle Implementation: Control Units added

NextlnstrAddr(31..0]

PCWrit=Cond

PCWrite

IotD

IemWrite

FC3ounx]l..0]

ALUOR[L..0]

ReoWrite

U MzaCoomlhallyc
s e S iy S T

e

EA'.“'L'I[.:]

a0

[11.34] [5.4]

[25.21L [4.0] I'SH._U]

RzpFilz ScDies

PCSource[1..0]

ALUOp[1..0]

ATUSrcA s =
ALUSICBIL.0]

Ndazt

UMDty
Rs

[20.16]_[.0] if4..0]

| > Bemd Addedfd. 0]

| = RmdaddeBd 0]

| = Wetadddd 0]

| > WeecDeef3 1..10]

U 1:;1'-.'.=J

I oessmra—

W

Ll

DewB[L0] [

1

aznEx

U_SgmFre
SazmExs Schlcx

ALLEA AT

ALLEHndT

WI-W

1e

Action of 1-bit Control Signals

IorD PC supplies address to memory (instruction fetch) ALUout supplies address to memory (Iw/sw)
_ Memory content specified by address is placed on
MemRead None “Memdata” o/p (Iw/any instruction)
MemWrite None I/p “Write data” is stored at specified address (sw)
IRWrite None “MemData” o/p is written on IR (instruction fetch)
(13 : . 29 . . _ _
RegDst “Write Register” specified by Instruction[20-16] (Iw) t;;’:)lteReglster specified by Instruction[15-11] (R
. Data from “WriteData” i/p is written on the register
RegWrite None specified by “WriteRegister” number
ALUSrcA PC is the first operand in ALU (increment PC) Register A is the first operand in ALU
MemtoReg “WriteData” of the register file comes from ALUOut “WriteData” of the register file comes from MDR
PCWrite Operation at PC depends on PCWriteCond and zero PC is written; Source is determined by PCSource
output of ALU
PCWriteCond |Operation at PC depends on PCWrite PCis written if zero o/p of ALU =1; Source i

determined by PCSource

WI-W

13

Action of 2-bit Control Signals

00 ALU performs an add operation

ALUOp 01 ALU performs a subtract operation
10 The function field of Instruction defines the operation of ALU

00 The second operand of ALU comes from Register B
01 The second operand of ALU =4
ALUSrcB 10 | The second operand of ALU is sign extended Instruction[15-0]

11 The second operand of ALU is sign extended, 2-bit left shifted Instruction[15-0]

00 Output of ALU (PC + 4) is sent to PC
01 Contents of ALUOut (branch target address = PC + 4 + 4 x offset) is sent to PC

Contents of Instruction|[25-0], shift left by 2, and concatenated with the MSB 4-
bits of PC is sent to PC (jump instruction)

L
.
.
i
:

PCSource

10

-3'1'1-1-

WI-W 14

= &= sRBrd
i
— .

Multicycle Implementation: Control Units added

NextlnstrAddr(31..0]

PCWriteCond
PCWrite prra—
IorD [

PCSource[1..0]
ALUOp[1..0]

ALUOR[L..0]

ALUSrcA
ALUStcB[1..01
ReoWrite

IemWrite

FiHmunadl
FiHanai

Ndazt

pasel ol
fuben Comeel-MulsiCye 3ok Do e .MEW i1
ey Ta1e_tema] s
IL6R_4B4T
Tnximedi 110
LT
i UALU A
il _E]___] Rezdl SekTes
L — Dt
FgFile 3D v |
[15.21] [4.0] I'SH..['] :ik::ﬁ:m 1 u DoutAfiL u];EJ —
har D] |t ¢ i
DoUTL] I | 1[4..0] | = Rmdadiidia 0] Dewdfil 0] [=y | vt e
e M -l B33 EckTicc
WE f—l 5 L. penit
= .
[L5.11L [4.0] I’IjHD] |~ Weszadddd. 0] : Dewdit 8] [
it = WeiDeeg 101 s
i
b
e) Adde[31..0]
3 o1
5.0 [15.0]
PR — 5l | 3
Rimpdd SckTice e
=] |
. fancds 0] i ALUEG{L0]
0] [5.0] g
il)
o~

wli-M 15

f
-
T
t

Pl

Shift Left 27

What two instructions require the “Shift Left 27
block?

if(R[rs]==R[rt
Branch On Equal ~ beg | fﬁ:ESP:L:‘+4£El?3_nchﬁddr 4y Hoex

(4) BranchAddr = § 14{immediate[15]}, immediate, 2"bl §

Jump] J PC=lumpAddr (5) Zhex

(5) lumpAddr= { PC+4[31:28]. address, 2'b0 1+

Wli-M

LG

Breaking the Instruction Execution into Clock Cycles

Execution of each instruction is broken into a series of steps
— Each step is balanced to do almost equal amount of work
— Each step takes one clock cycle

— Each step contains at the most 1 ALU operation, or 1 register file access, or 1 memory
access

— Operations listed in 1 step occurs in parallel in 1 clock cycle
— Different steps occur in different clock cycles
— Different steps are:
1. IF: Instruction fetch step
ID: Instruction decode and register fetch step

L
.
.
i
¢

EX: Execution, memory address computation, or branch completion step

i oo
e
AR

2
3
4. MEM: Memory access of R-type instruction completion step
5. WB: Write back completion step

A -

-21'1-1'!-

wli-M 1/

== e ss B
w

—

R =

—

)

f
:
T
t
7|

Fetch instruction from memory and compute the address of next sequential instruction

Step 1: Instruction Fetch

IR = Memory[PC];

PC = PC + 4;
Operation:
1. Send PC to the memory as address (IlorD = 0)
2. Read memory cell defined by PC (MemRead = 1)
3. Copy output of memory (MeMdata) into IR (IRwrite = 1)
4. Increment PC by 4 (ALUSrcA =0, ALUSrcB =01, PCSrc = 00)
5. Store (PC + 4) into PC (PCWrite = 1)

Wli-M

1v

Step 2: Instruction Decode and Register Fetch

Read register rs in register file and store content of rs in register A
Read rt in register file and store content of rt from register file
Compute branch target address

A = Reg[IR[25-21]];
B = Reg[IR[20-16]];
ALUOut = PC + (sign-extend(IR[15-0]) << 2);

Operation:

1. Access register file to write rs in A.

2. Access register file to write rt in B.

3. Compute branch target address and store in ALUOut (ALUSrcA = 0; ALUSrcB =11)
Remember that ALU must add (ALUOp = 00)

After this step, one of the four actions are possible: Memory reference (Iw/sw), R-type,

Branch, or Jump
Wli-M 19

Step 3: Execution, Memory address Computation, or Branch Completion

Memory Reference (sw/lw):

ALUOut = A + sign-extend(IR[15-0])
ALU adds content of A and sign-extend(IR[15-0]) (ALUSrcA = 1, ALUSrcB = 10),
(ALUOp = 00)
R-type (add/sub/or/and):
ALUOut = A op B
ALU performs specified operation on A and B (ALUSrcA = 1, ALUSrcB = 00),
Operation of ALU is determined by the function field code (ALUOp = 10)
Branch (beq):
if (A == B) PC = ALUOut;
ALU does the equal comparison operation on A and B (ALUSrcA = 1, ALUSrcB = 00),
ALU must subtract (ALUOp =01)
Update PC with ALUOut if A == B (PCWriteCond = 1, PCSource = 01)
Jump (J):
PC = PC[31-28] || (IR[25-0) << 2);
PC gets overwritten by output of jump address MUX (PCSource = 10, PCWrite = 1)

wli-M cdl

Step 4: Memory Access or R-type Instruction Completion

Memory Reference (sw/lw):
MDR = Memory[ALUOut] ; (for 1w)
or Memory |[ALUOut] = B; (for sw)

1. Address from ALUOut is applied at “address” i/p of memory (lorD = 1)
2. For sw, MemWrite = 1. For lw, MemRead = 1.

f
-
T
t

Pl

R-type Instruction (add/sub/or/and):
Reg[IR[15-11]] = ALUOut;

ALUOut is stored into the register specified by IR[15-11] (MemtoReg = 0, RegWrite = 1)

wli-M el

f
-
T
'
'

B =

Step 5: Memory Write Back (Completion)

load (Iw):
Reg[IR[20-16]] = MDR;

MDR is stored into the register specified by IR[20-16] (MemtoReg = 1, RegWrite = 1,
RegDst = 0)

wli-M ec

	Slide 1
	Agenda
	Slide 3
	Activity (Sample Quiz, Exam Q)
	Answer (Part 1):
	Answer (Part 2):
	Why Multicycle?
	Multicycle Implementation
	Multicycle Implementation: Abstract Diagram
	Multicycle Implementation: Multiplexers added
	Multicycle Implementation: Controls added
	Multicycle Implementation: Control Units added
	Action of 1-bit Control Signals
	Action of 2-bit Control Signals
	Slide 15
	Shift Left 2?
	Breaking the Instruction Execution into Clock Cycles
	Step 1: Instruction Fetch
	Step 2: Instruction Decode and Register Fetch
	Step 3: Execution, Memory address Computation, or Branch Completion
	Step 4: Memory Access or R-type Instruction Completion
	Step 5: Memory Write Back (Completion)

