User Tools

Site Tools


assignments:a1

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
assignments:a1 [2011/09/14 22:18] asifassignments:a1 [2011/09/28 20:16] (current) asif
Line 3: Line 3:
  
 Problem 1.2 (iii) and (vi) Problem 1.2 (iii) and (vi)
 +
 Problem 1.3 (v) and (vi) Problem 1.3 (v) and (vi)
 +
 Problem 1.5 (iii) and (vii) Problem 1.5 (iii) and (vii)
 +
 Problem 1.6 (i) and (iv) Problem 1.6 (i) and (iv)
 +
 Problem 1.7 (i) and (v) Problem 1.7 (i) and (v)
 +
 Problem 1.8 (iii) and (iv) Problem 1.8 (iii) and (iv)
 +
 Problem 1.14 (iv) and (v) Problem 1.14 (iv) and (v)
 +
 Problem 1.15 (iv) and (v) Problem 1.15 (iv) and (v)
 +
 Problem 1.21 (iii) Problem 1.21 (iii)
 +
 Problem 1.22 (v) and (vii) Problem 1.22 (v) and (vii)
 +
 Problem 1.24 Problem 1.24
  
 +**[[http://www.cse.yorku.ca/~asif/3451fall10/HW1.pdf| Solution]] to Assignment 1 is now available.**
 +
 +**Student Questions on Assignment 1:**
 +
 +//Q1. For the assignment Problem 1.8 # (iv), how did you make exp(j(pi*k/2 + pi/8)) = 1. I don't understand this equality.//
 +
 +A1. Note that exp(j(pi*k/2 + pi/8)) does not equal 1 but the magnitude of exp(j(pi*k/2 + pi/8)) equals 1.
 +
 +Recall exp(j \theta) = cos \theta + j sin \theta
 +Now, | exp(j \theta) | = sqrt (cos^2 \theta + sin^2 \theta) = sqrt (1) = 1
 +
 +//Q2. How do i Evaluate and find the period of exp(-j*pi*k).//
 +
 +A2. Note that exp(-j*pi*k) = cos(pi*k) - j sin(pi*k).
 +Since sin(pi*k) = 0, therefore, exp(-j*pi*k) = cos(pi*k) which has a period of pi radians/s or 1/2 Hz.
 +
 +//Q3. If (-1^k) = exp(j*pi*k), what does (-5^k) or (5^k) equal to?//
 +
 +A3. You can not express (-5^k) or (5^k) in the form that (-1^k) was expressed.
  
assignments/a1.1316038681.txt.gz · Last modified: 2011/09/14 22:18 by asif

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki