
Digital Communications: A Discrete Time View

(Lecture notes for CSE 4214)

Andrew W. Eckford

Department of Computer Science and Engineering

York University, Toronto, Ontario, Canada

Version: October 4, 2011

Copyright c©2009–2011 by A. W. Eckford.

Contents

Chapter 1. Review: Probability, Random Processes, and Linear Systems 1
1.1. Probability 1
1.2. Discrete-Time Random Processes 4
1.3. Linear time-invariant systems 10
1.4. Problems 11
1.5. Laboratory Exercise: Probability and Random Processes 11

Chapter 2. Baseband Data Transmission 13
2.1. Hardware Model of Communication 13
2.2. Noise 13
2.3. Modulation and Detection 15
2.4. Error analysis 18
2.5. Probability of error and energy per bit 24
2.6. Problems 25
2.7. Laboratory exercise 26

Chapter 3. Optimal System Design 27
3.1. Optimizing the decision threshold 27
3.2. Receiver filter design: The matched filter 29
3.3. Optimized waveform design 33
3.4. Summary 34
3.5. Problems 34
3.6. Laboratory exercise 34

Chapter 4. Signal Space and Nonbinary Data Transmission 35
4.1. Introduction to Signal Space 35
4.2. Signal Space in Digital Communication 38
4.3. Problems 50
4.4. Laboratory exercises 50

Chapter 5. Multiple Access Communication Systems 51
5.1. Passband Data Transmission 51
5.2. Interference-free spectrum sharing 54
5.3. Spread-spectrum techniques 54

Chapter 6. An Introduction to Information Theory 61
6.1. Error-control coding 61
6.2. Data compression 61

Bibliography 63

i

ii CONTENTS

Appendix A. Fourier Transforms 65
A.1. Properties 65
A.2. Table of fourier transform pairs 65

Appendix B. The Cauchy-Schwartz Inequality 67

Appendix C. Table of Notation 69

CHAPTER 1

Review: Probability, Random Processes, and

Linear Systems

1.1. Probability

In this section, we briefly review some necessary concepts of probability that

will be used throughout this text.

1.1.1. Discrete-valued random variables. A discrete-valued random vari-

able takes values on a discrete, finite set S. For example, a single roll of a six-sided

die takes values S = {1, 2, 3, 4, 5, 6}. The set need not take numerical values; for

instance, the outcome of a coin flip might be S = {Heads, Tails}.
The probabilities of each outcome in S are expressed in a probability mass

function (pmf). For a discrete-valued random variable x, we will write the pmf as

p(x).

Example 1.1. For a fair die, with S = {1, 2, 3, 4, 5, 6}, every possible outcome

has the same probability. Thus, the pmf is given by

(1.1) p(x) =

1
6 , x ∈ S,

0, x 6∈ S.

We will make use of the following properties of the pmf:

(1) For all x ∈ S, p(x) ≥ 0, that is, probability is never negative.

(2) Let R be a subset of S. Then the probability that an event in R occurs

is
∑

x∈R p(x). (This is equivalent to saying that the individual outcomes

in S are mutually exclusive.)

(3)
∑

x∈S p(x) = 1, that is, the total probability is 1. (Combined with prop-

erty 2, this means that some event in S must happen with probability

1.)

1

2 1. REVIEW: PROBABILITY, RANDOM PROCESSES, AND LINEAR SYSTEMS

Let g(x) represent some function of the random variable x. Then the expected

value of g(x), written E[g(x)], is defined as

(1.2) E[g(x)] =
∑

x∈S
g(x)p(x).

We will make use of the following properties of expected value.

(1) E[g1(x) + g2(x)] = E[g1(x)] + E[g2(x)].

(2) If a is a deterministic (i.e., known, non-random) constant, then E[ag(x)] =

aE[g(x)], and E[a] = a.

The mean and variance are two important special cases of expectation. The

mean, written µ, is given by

µ = E[x](1.3)

=
∑

x∈S
xp(x).(1.4)

The variance, written either Var[x] or σ2, is given by

Var[x] = E[(x − µ)2](1.5)

=
∑

x∈S
(x − µ)2p(x).(1.6)

There is an alternative way to calculate Var[x], making use of the properties of

expectation. Starting with (1.5), we have

E[(x − µ)2] = E[x2 − 2µx + µ2](1.7)

= E[x2] − E[2µx] + E[µ2](1.8)

= E[x2] − 2µE[x] + µ2(1.9)

= E[x2] − µ2(1.10)

= E[x2] − E[x]2,(1.11)

where (1.8) follows from the first property of expectation, (1.9) follows from the

second property, and the remainder follows from the fact that µ = E[x], by defini-

tion.

Examples ...

1.1.2. Joint and conditional probability.

1.1. PROBABILITY 3

1.1.3. Continuous-valued random variables. A continuous-valued ran-

dom variable takes values from the entire set of real numbers R. For example,

the temperature tomorrow at noon in downtown Toronto is a continuous-valued

random variable.

We will normally use the probability density function (pdf) to describe

Probability density function; expected value; mean and variance; examples.

1.1.4. The Gaussian distribution. Definition; properties (e.g., even func-

tion).

A Gaussian random variable x with with mean µ and variance σ2 has a prob-

ability density function given by

(1.12) f(x) =
1√

2πσ2
exp

(

− 1

2σ2
(x − µ)2

)

.

Integrals over this pdf may be expressed in terms of the error function complemen-

tary, erfc(·), which is defined as

(1.13) erfc(z) =
2√
π

∫ ∞

t=z

exp(−t2)dt.

The function erfc(·) has the following mathematical interpretation: if t is a Gaussian

random variable with mean µ = 0 and variance σ2 = 1/2, then erfc(z) = Pr(|t| >

z). Furthermore, due to the symmetry of the Gaussian pdf about the mean, we

illustrate in Figure X that

(1.14) Pr(t > z) = Pr(t < z) =
1

2
erfc(z).

Using a change of variables, erfc(·) may be used to calculate an arbitrary Gauss-

ian integral. For instance, for the random variable x with pdf f(x) in (1.12), suppose

we want to calculate the probability Pr(x > z). This probability can be expressed

as

Pr(x > z) =

∫ ∞

x=z

f(x)dx(1.15)

=

∫ ∞

x=z

1√
2πσ2

exp

(

− 1

2σ2
(x − µ)2

)

dx.(1.16)

Now we make the substitution

(1.17) t =
x − µ√

2σ2
.

4 1. REVIEW: PROBABILITY, RANDOM PROCESSES, AND LINEAR SYSTEMS

To perform a change of variables in an integral, we need to replace both x and dx

with the equivalent functions of t. Solving for x, we have that

(1.18) x =
√

2σ2t + µ,

so taking the first derivative of x with respect to t, dx is given by

(1.19) dx =
√

2σ2dt.

Substituting (1.18)-(1.19) into (1.16), we get

Pr(x > z) =

∫ ∞

x=z

1√
2πσ2

exp

(

− 1

2σ2
(x − µ)2

)

dx(1.20)

=

∫ ∞

√
2σ2t+µ=z

1√
2πσ2

exp
(

−t2
)
√

2σ2dt(1.21)

=

∫ ∞

t=(z−µ)/
√

2σ2

1√
π

exp
(

−t2
)

dt(1.22)

=
1

2
erfc

(

z − µ√
2σ2

)

.(1.23)

1.2. Discrete-Time Random Processes

There are many ways to define a random process, but for our purposes, the

following is sufficient:

• A random process is a function of time X(t), so that for each fixed time

t∗, X(t∗) is a random variable.

As a result, we can write the probability density function (pdf) of the random

process at any given time. For example, fX(t∗)(x) represents the pdf of the random

process at time t∗. Joint probability density functions measure the joint probability

of the process at k different times; these are called kth order statistics of the random

process. For example, for k = 2 and times t1 and t2, we can write the second order

statistics as fX(t1),X(t2)(x1, x2).

1.2.1. Definition, Mean, and Variance. It’s easy to imagine a random

process in discrete time, as merely a sequence of random variables, one for each

time interval. For instance, consider the following two random processes defined at

integer times t ∈ {. . . ,−2,−1, 0, 1, 2, . . .}:

1.2. DISCRETE-TIME RANDOM PROCESSES 5

Example 1.2. At each time t ∈ {. . . ,−2,−1, 0, 1, 2, . . .}, a fair coin is flipped.

If the coin shows heads after the flip at time t, then X(t) = 1; otherwise, X(t) = −1.

Thus, for any integer t∗, we can write

fX(t∗)(x) =

0.5, x = +1;

0.5, x = −1;

0 otherwise.

Since, at each fixed time t, the random process is a random variable, we can

calculate the mean and variance of the process at each fixed time as usual for

random variables. Thus, for the process as a whole, the mean and variance for a

random process are calculated as functions of time. For instance, for the process in

Example 1.2, the mean of this process is given by

µ(t) =
∑

x∈{+1,−1}
xfX(t)(x)

= (+1)(0.5) + (−1)(0.5)

= 0

for all t. The variance of the process is given by

σ2(t) =
∑

x∈{+1,−1}
(x − µ(t))2fX(t)(x)

= (+1 − 0)2(0.5) + (−1 − 0)2(0.5)

= 1

for all t.

As an alternative, the following more compicated example has mean and vari-

ance that are non-trivial functions of time:

Example 1.3. Let X(0) = 0. For each t ∈ {1, 2, . . .}, a fair coin is flipped. If

the coin shows heads after the flip at time t, then X(t) = X(t − 1) + 1; otherwise,

X(t) = X(t − 1).

For any t, it is clear that X(t) is the number of heads in the previous t trials.

Such random variables are represented by the binomial distribution [1]. Thus,

fX(t)(x) =

(

t

x

)

1

2t
.

6 1. REVIEW: PROBABILITY, RANDOM PROCESSES, AND LINEAR SYSTEMS

0 5 10 15 20 25 30 35 40 45 50
−5

0

5

10

15

20

25

30

t

X
(t

)

Example 1
Example 2

Figure 1.1. Illustration of the discrete-time random processes

from Examples 1.2 and 1.3.

The mean of this random process is given by

µ(t) =
t

2
,

and the variance is given by

σ2(t) =
t

4
.

The reader is asked to prove these values in the exercises.

Instances of the random processes from Examples 1.2 and 1.3 are given in

Figure 1.1.

1.2.2. Autocorrelation. Suppose you wanted a measure of correlation be-

tween two random variables, X1 and X2, with the same mean µ = 0 and the same

variance σ2 > 0. As a candidate for this measure, consider

(1.24) R = E[X1X2].

If the random variables are independent (i.e., uncorrelated), then since E[X1X2] =

E[X1]E[X2] for independent random variables, we would have

R = E[X1]E[X2] = µ2 = 0,

1.2. DISCRETE-TIME RANDOM PROCESSES 7

bearing in mind that each of the random variables are zero mean. On the other

hand, if the two random variables are completely correlated (i.e., X1 = X2), we

would have

R = E[X1X2] = E[X2
1] = σ2.

Further, if they were completely anticorrelated (i.e., X1 = −X2), it is easy to see

that R = −σ2.

This measure of correlation also has the following nice property:

Theorem 1.1. Given the above definitions, |R| ≤ σ2.

Proof: Start with E[(X1 + X2)
2]. We can write:

E[(X1 + X2)
2] = E[X2

1 + 2X1X2 + X2
2]

= E[X2
1] + 2E[X1X2] + E[X2

2]

= σ2 + 2R + σ2

= 2σ2 + 2R.

Since (X1 + X2)
2 ≥ 0 for all X1 and X2, it is true that E[(X1 + X2)

2] ≥ 0. Thus,

2σ2 + 2R ≥ 0, so R ≥ −σ2. Repeating the same procedure but starting with

E[(X1 − X2)
2], we have that R ≤ σ2, and the theorem follows.

Since R = 0 when X1 and X2 are independent, R = σ2 (the maximum possible

value) when they are completely correlated, and R = −σ2 (the minimum possible

value) when they are completely anticorrelated, R is a good candidate for a cor-

relation measure. The magnitude of R indicates the degree of correlation between

X1 and X2, while the sign indicates whether the variables are correlated or anti-

correlated. Properties of this correlation measure when the variances are unequal,

or when the means are nonzero, are considered in the exercises.

We apply this correlation measure to different time instants of the same random

process, which we refer to as the autocorrelation. In particular, let X(t) be a

discrete-time random process defined on t ∈ {. . . ,−2,−1, 0, 1, 2, . . .}. Then the

autocorrelation between X(t1) and X(t2) is defined as

(1.25) R(t1, t2) = E[X(t1)X(t2)].

8 1. REVIEW: PROBABILITY, RANDOM PROCESSES, AND LINEAR SYSTEMS

Note the similarity with (1.24), since X(t) is merely a random variable for each

time t. For the same reason, R(t1, t2) has all the same properties as R.

1.2.3. Stationary random processes. A stationary discrete-time random

process is a process for which the statistics do not change with time. Formally, a

process is stationary if and only if

(1.26)

fX(t1),X(t2),...,X(tk)(x1, x2, . . . , xk) = fX(t1+τ),X(t2+τ),...,X(tk+τ)(x1, x2, . . . , xk)

for all k ∈ {1, 2, . . .} and all τ ∈ {. . . ,−2,−1, 0, 1, 2, . . .}. This does not imply that

the process X(t) is constant with respect to time, only that the statistical variation

of the process is the same, regardless of when you examine the process. The process

in Example 1.2 is stationary; intuitively, this is because we keep flipping the same

unchanging coin, and recording the outcome in the same way at all t.

We now examine the effects of stationarity on the mean, variance, and auto-

correlation of a discrete-time random process X(t). The mean µ(t) is calculated as

follows:

µ(t) =

∫

x

xfX(t)(x)dx

=

∫

x

xfX(t+τ)(x)dx

= µ(t + τ),

where the second line follows from the fact that fX(t) = fX(t+τ) for all τ ∈
{. . . ,−2,−1, 0, 1, 2, . . .}. Thus, µ(t) = µ(t+ τ) for all τ , so µ(t) must be a constant

with respect to t. Using a similar line of reasoning, we can show that σ2(t) is a

constant with respect to t. Thus, for stationary random processes, we will write

µ(t) = µ and σ2(t) = σ2 for all t.

For the autocorrelation, we can write

R(t1, t2) = E[X(t1)X(t2)]

=

∫

x1

∫

x2

x1x2fX(t1),X(t2)(x1, x2)dx2dx1(1.27)

=

∫

x1

∫

x2

x1x2fX(t1+τ),X(t2+τ)(x1, x2)dx2dx1.(1.28)

1.2. DISCRETE-TIME RANDOM PROCESSES 9

Let τ = τ ′ − t1. Substituting back into (1.28), we have

R(t1, t2) =

∫

x1

∫

x2

x1x2fX(t1+τ ′−t1),X(t2+τ ′−t1)(x1, x2)dx2dx1

=

∫

x1

∫

x2

x1x2fX(τ ′),X(t2−t1+τ ′)(x1, x2)dx2dx1.(1.29)

However, in (1.29), since X(t) is stationary, fX(τ ′),X(t2−t1+τ ′)(x1, x2) does not

change for any value of τ ′. Thus, setting τ ′ = 0, we can write

R(t1, t2) =

∫

x1

∫

x2

x1x2fX(0),X(t2−t1)(x1, x2)dx2dx1,

which is not dependent on the exact values of t1 or t2, but only on the difference

t2 − t1. As a result, we can redefine the autocorrelation function for stationary

random processes as R(t2 − t1); further, reusing τ to represent this difference, we

will usually write R(τ), where

R(τ) = E[X(t)X(t + τ)]

for all t.

The properties that µ(t) = µ, σ2(t) = σ2, and R(t1, t2) = R(t2 − t1) apply only

to the first and second order statistics of the process X(t). In order to verify whether

a process is stationary, it is necessary to prove the condition (1.26) for every order

of statistics. In general this is a difficult task. However, in some circumstances, only

first and second order statistics are required. In this case, we define a wide-sense

stationary (WSS) process as any process which satisfies the first and second order

conditions of µ(t) = µ, σ2(t) = σ2, and R(t1, t2) = R(t2 − t1). We have shown that

all stationary processes are WSS, but it should seem clear that a WSS process is

not necessarily stationary.

Throughout this book, we normally consider discrete-time random processes.

In this case, it is important to remember that t1, t2 ∈ Z,

1.2.4. Power spectral density. For a wide-sense stationary random process,

the power spectral density (PSD) of that process is the Fourier transform of the

autocorrelation function:

(1.30) Sx(jω) = F [Rx(τ)] =

∫ ∞

τ=−∞
Rx(τ)e−jωτ dτ.

Properties of PSD:

10 1. REVIEW: PROBABILITY, RANDOM PROCESSES, AND LINEAR SYSTEMS

(1) Variance.

(1.31) Var(x[k]) = Rx(0) =
1

2π

∫ ∞

−∞
Sx(jω)dω.

(2) Positive and real. Sx(jω) is positive and real for all ω.

1.3. Linear time-invariant systems

1.3.1. Review of linear time-invariant systems. A linear time-invariant

(LTI) system has the following two properties:

(1) Linear. If input x1(t) produces output y1(t), and input x2(t) produces

output y2(t), then for any constants a and b, input ax1(t)+bx2(t) produces

output ay1(t) + by2(t).

(2) Time invariant. If input x(t) produces output y(t), then for any τ , input

x(t + τ) produces output y(t + τ).

An LTI system is completely characterized by its impulse response h(t). That

is, h(t) is the system output if the system input is δ(t). Given h(t) and an arbitrary

input x(t), the output y(t) of an LTI system is given by

y(t) = x(t) ⋆ h(t)(1.32)

=

∫ ∞

τ=−∞
x(τ)h(t − τ)dτ.(1.33)

Furthermore, the following relationship holds in the Fourier domain:

(1.34) F [y(t)] = F [x(t)]F [h(t)].

Discrete time ... example ...

For further details, the reader is directed to [4].

1.3.2. LTI and random processes. Apply a linear filter with frequency-

domain transfer function H(jω) to a wide-sense stationary random process with

PSD Sx(jω). The output is a random process with PSD Sw(jω), where

(1.35) Sw(jω) = Sx(jω)|H(jω)|2.

1.5. LABORATORY EXERCISE: PROBABILITY AND RANDOM PROCESSES 11

1.4. Problems

(1) For the random process in Example 1.3, show that µ(t) = t/2, and σ2(t) =

t/4. Is this process stationary? Explain.

(2) Suppose X1 and X2 are zero-mean random variables with variances σ2
1

and σ2
2 , respectively. For the correlation measure R defined in (1.24),

show that

|R| ≤ σ2
1 + σ2

2

2
.

(3) Suppose X1 and X2 have the same nonzero mean µ, and the same variance

σ2. For the correlation measure R defined in (1.24), show that |R| ≤
σ2 + µ2.

(4) Give an example of a discrete-time random process for which µ(t) = µ

and σ2(t) = σ2 for all t, but there exist t1 and t2 such that R(t1, t2) 6=
R(t2 − t1).

(5) Calculate µ(t) and R(t1, t2) for the continuous time random process given

in Example ??. Is this process stationary? Explain.

(6) Let X(t) = X sin(2πt), where X is a random variable corresponding to

the result of a single fair coin flip: X = 1 if the coin is heads, and X = −1

is the coin is tails. Does X(t) satisfy the definition of a continuous-time

random process? If so, calculate fX(t)(x); if not, explain why not.

1.5. Laboratory Exercise: Probability and Random Processes

In this laboratory exercise, you will investigate the properties of discrete-valued

random variables and random processes.

1.5.1. Generating arbitrary random variables. Let x be a discrete-valued

random variable, taking values on 1, 2, . . . , 6, with probability mass function p(x).

• MATLAB provides a routine, rand, which generates uniformly distributed

random variables on the range from 0 to 1. Given p(x), propose a way to

generate instances of x, with probabilities p(x), from rand.

• Write a MATLAB function, called xrand, implementing the method you

describe. The routine takes a 1 × 6 vector, where the first element of the

vector is p(1), the second is p(2), and so on. The routine returns a value

on 1, 2, . . . , 6 at random according to the probabilities p(x).

12 1. REVIEW: PROBABILITY, RANDOM PROCESSES, AND LINEAR SYSTEMS

Discussion of empirical distributions.

Given a distribution, write a function to calculate the mean and variance, both

empirically and theoretically.

Consider the following Gaussian random process: ... Plot the autocorrelation,

both empirically and

CHAPTER 2

Baseband Data Transmission

2.1. Hardware Model of Communication

2.1.1. Traditional communication system model.

2.1.2. Transmitter hardware model.

2.1.3. Receiver hardware model.

2.2. Noise

Although there are many sources of random distortion in communication sys-

tems, we will assume that the dominant source is thermal noise, arising from the

random motion of electrons in electrical components. This random motion results

in small current fluctuations, which can be significant in the presence of a very

weak signal. Because there are many independently-moving electrons, all of which

contribute randomly to the current fluctuations, the central limit theorem [2] can

be used to model noise as a Gaussian random variable.

Gaussian noise has zero mean. The autocorrelation of a continuous-time Gauss-

ian noise process n(t) is given by

(2.1) Rn(τ) =
N0

2
δ(τ),

and is thus wide-sense stationary. Taking the Fourier transform of Rn(τ), its power

spectral density is given by

(2.2) Sn(jω) =
N0

2
,

where N0 is a constant proportional to the temperature of the device. From (2.2),

the power spectrum is the same at all frequencies ω, so the noise is “white”, analo-

gously to white light; furthermore, the current fluctuations are added to whatever

deterministic signal is present. Thus, we refer to this type of noise as additive white

Gaussian noise (AWGN).

13

14 2. BASEBAND DATA TRANSMISSION

In discrete time, the received signal y[k] is given by

(2.3) y[k] = As[k] + n[k],

where s[k] represents the signal, A is a scaling factor representing signal attenua-

tion/amplification, and n[k] is the sampled version of the continuous-time AWGN

process n(t).

We will now determine the properties of n[k]. In the hardware model, we

precede the A-to-D converter with an ideal lowpass filter having frequency-domain

transfer function HLP (jω), where

(2.4) HLP (jω) =

1, |ω| < π/Ts,

0 otherwise.

That is, the cutoff frequency of the filter is the Nyquist frequency 1/2Ts. Let w(t)

represent the noise random process at the output of the ideal lowpass filter, and let

Sw(jω) represent its PSD. From (1.35), Sw(jω) is given by

Sw(jω) = Sn(jω)|HLP (jω)|2(2.5)

=

N0/2, |ω| < π/Ts,

0 otherwise.
(2.6)

Thus, from (1.31), the variance of w(t) (and hence each sample w[k]) is given by

Var(w(t)) = Var(w[k])(2.7)

=
1

2π

∫ ∞

ω=−∞
Sw(jω)dω(2.8)

=
1

2π
· 2π

Ts
· N0

2
(2.9)

=
N0

2Ts
.(2.10)

We also need to know whether the samples w[k] are independent. Taking the

inverse Fourier transform of Sw(jω), since Sw(jω) is rectangular, we have that (see

Appendix A)

Rx(τ) = F−1 [Sw(jω)](2.11)

=
1

Ts
sinc

(

τ

Ts

)

.(2.12)

2.3. MODULATION AND DETECTION 15

If τ is a multiple of the sampling frequency, we have

Rx(kTs) =
1

Ts
sinc (k)(2.13)

=

1
Ts

, k = 0,

0, k 6= 0.
(2.14)

Thus, recalling our discussion of correlation in Chapter 1, the noise process w[k] is

uncorrelated from sample to sample. Since w[k] is a Gaussian random process, this

is sufficient to show that it is independent from sample to sample.

2.3. Modulation and Detection

2.3.1. Modulation. Data can be represented as an arbitrarily long vector of

binary {0, 1} symbols, as in Figure X. The goal of modulation is to transform such a

vector into a function of time, which is necessary before the bit can be transmitted

over the medium.

Since this book deals with discrete-time signal processing, the modulator will

replace each bit with a non-overlapping sequence of samples; the function of time

will then be generated in digital-to-analog conversion. From Section 2.1, each bit

consists of nb = Tb/Ts samples, so we should define two sequences of nb samples

each: one to represent 0, and one to represent 1. Let s0[k] and s1[k] represent these

sequences for bits 0 and 1, respectively.

The following examples illustrate modulation in detail.

Example 2.1 (Polar nonreturn-to-zero). In polar nonreturn-to-zero (NRZ),

for any nb, let

(2.15) s0[k] =

1, 1 ≤ k ≤ nb,

0, otherwise,

and

(2.16) s1[k] = −s0[k].

Example 2.2 (Binary phase shift keying). In binary phase shift keying (BPSK),

suppose for 0, the bit time Tb contains exactly one cycle of a sinusoid; thus, there

16 2. BASEBAND DATA TRANSMISSION

would be exactly one cycle over nb samples. We can write

(2.17) s0[k] =

sin(2πk/nb), 1 ≤ k ≤ nb,

0, otherwise.

Furthermore, let

(2.18) s1[k] =

sin(2πk/nb + π), 1 ≤ k ≤ nb,

0, otherwise,

as depicted in Figure X. From (2.18), the phase is shifted by π radians in order to

transmit a 1, hence the terminology. However, also note that s1[k] = −s0[k].

Now let b = [0, 1, 1, 0, 1], and let nb = 5. Replacing 0 and 1 with s0[k] and

s1[k], respectively, from each example, we obtain discrete-time signals depicted in

Figure X.

2.3.2. Detection. From (2.3), the received signal is corrupted by an AWGN

random process n[k]. The detector’s job is to extract the value of the bit, 0 or 1,

from the noisy signal y[k], as accurately as possible.

The detector consists of two components: a filter, which performs signal pro-

cessing on y[k], and a decision device, which takes the output of the filter and

determines whether a 0 or 1 was sent. Typically, the decision device examines the

output value of the filter after each bit has been sent (i.e., at integer multiples of

the bit time Tb, or integer multiples of nb in discrete time); we will call these values

the filter outputs. We will assume that the filter is linear and time invariant, and

has impulse response h[k]. The filter outputs φ(j) are given by

(2.19) φ(j) = [y[k] ⋆ h[k]]jnb
,

where the notation ⋆ represents discrete-time convlution, and the notation [·]jnb

indicates that the expression is evaluated at time jnb.

Given φ(j), the decision device then assigns a bit, 0 or 1, to each possible

output of the filter. This is usually done through a threshold (i.e., the bit is a 0 if

the filter output exceeds the threshold, or a 1 if the filter output is less than the

threshold). Let dz(x) represent the decision function on x with threshold z, where

(2.20) dz(x) =

0, x ≥ z,

1, x < z.

2.3. MODULATION AND DETECTION 17

Thus, combining (2.19)-(2.20), the estimated bits b̂j are given by

(2.21) b̂j = dz(φ(j)).

Selection of optimal h[k] and z are non-trivial design problems, which will be

discussed extensively in the remainder of the book. However, the following example

illustrates a correctly designed detector, and its outputs in a noise-free channel.

Example 2.3. Let s0[t] and s1[t] be polar NRZ pulses, as defined in (2.15)-

(2.16). Let

(2.22) h[k] =

1, 0 ≤ k < nb,

0, otherwise.

Note that h[k] = s0[k + 1].

In the absence of noise, the filter output in response to s0[k] at time nb is

[s0[k] ⋆ h[k]]nb
=

∞
∑

i=−∞
s0[i]h[nb − i](2.23)

=

nb
∑

i=1

1(2.24)

= nb.(2.25)

Since s1[k] = −s0[k], the filter output in response to s1[k] is given by

[s1[k] ⋆ h[k]]nb
= −

∞
∑

i=−∞
s0[i]h[nb − i](2.26)

= −
nb
∑

i=1

1(2.27)

= −nb.(2.28)

From now on, we will let s0 represent the noise-free filter output when 0 is sent

(and, respectively, s1 when 1 is sent). Thus,

(2.29) s0 = [s0[k] ⋆ h[k]]nb
,

and

(2.30) s1 = [s1[k] ⋆ h[k]]nb
.

Because the detection filter is linear, the effect of noise will be added to the noise-

free output.

18 2. BASEBAND DATA TRANSMISSION

Now consider the effect of noise. From (2.3), since convolution distributes over

addition, applying the filter h[k] to y[k] will result in

y[k] ⋆ h[k] = (s[k] + n[k]) ⋆ h[k](2.31)

= s[k] ⋆ h[k] + n[k] ⋆ h[k],(2.32)

which consists of a signal term s[k]⋆h[k] and a noise term n[k]⋆h[k]. The signal term

in (2.32) can be obtained by calculating h[k] ⋆ s0[k] and h[k] ⋆ s1[k], as in Example

2.3 for polar NRZ. Considering the noise term, evaluating the filter output at time

nb, we can write

(2.33) [n[k] ⋆ h[k]]nb
=
∑

i

h[i]n[nb − i],

where the sum is over all possible values of i (which can be restricted to those values

of i for which h[i] 6= 0, i.e., the “support” of h[i]). Since n[k] is an AWGN random

process with mean zero and variance N0/2Ts (from (2.10)), the sum in (2.33) is

a weighted sum of independent Gaussian random variables, with mean zero and

variance

(2.34) σ2 =
N0

2Ts

∑

i

h[i]2.

Recalling Chapter 1, the sum of Gaussian random variables is itself a Gaussian

random variable. Thus, if the transmitted symbol is known to be 0, the filter

output has mean [s0[k] ⋆ h[k]]nb
and variance σ2. Similarly, if the transmitted

symbol is known to be 1, the filter output has mean [s1[k]⋆h[k]]nb
and variance σ2.

2.4. Error analysis

2.4.1. General form of the probability of error. An error occurs if b̂j 6= bj

(we will refer to this event as error). Using the decision function dz(φ[j]) from

(2.20), we have that b̂j = 0 if φ[j] ≥ z; thus, an error occurs if bj = 1 and φ[j] ≥ z.

Similarly, an error occurs if bj = 0 and φ[j] < z.

Remember that if bj is known, then φ[j] is a Gaussian random variable. Thus,

using properties of Gaussian random variables, we can calculate the conditional

error probabilities Pr(error|bj = 0) and Pr(error|bj = 1). The average error proba-

bility is then given by

(2.35) Pr(error) = Pr(error|bj = 0)Pr(bj = 0) + Pr(error|bj = 1)Pr(bj = 1).

2.4. ERROR ANALYSIS 19

Let’s start with Pr(error|bj = 1). Clearly

(2.36) Pr(error|bj = 1) = Pr(φ[j] ≥ z)|bj = 1).

This event is illustrated in Figure X. Given bj = 1, φ[j] is a Gaussian random

variable with mean s1 (from (2.30)) and variance σ2 (from (2.34)). The PDF of

this random variable is given by

(2.37) f(φ[k]|bj = 1) =
1√

2πσ2
exp

(

− 1

2σ2
(φ[k] − s1)

2

)

.

Thus, since φ[k] is a continuous-valued random variable,

Pr(error|bj = 1) = Pr(φ[j] ≥ z)|bj = 1)(2.38)

=

∫ ∞

φ[k]=z

1√
2πσ2

exp

(

− 1

2σ2
(φ[k] − s1)

2

)

dφ[k].(2.39)

As we mentioned in Chapter 1, integrals over the Gaussian PDF, such as the

one in (2.39), cannot be directly computed. However, we can use a special function

known as the error function complementary, erfc(·), defined in (1.13), to represent

this integral. With a change of variables, the integral in (2.39) can be expressed in

terms of erfc(·) as

(2.40) Pr(error|bj = 1) =
1

2
erfc

(

z − s1√
2σ2

)

.

By a similar derivation, Pr(error|bj = 0) is given by

(2.41) Pr(error|bj = 0) =
1

2
erfc

(

s0 − z√
2σ2

)

.

Showing the correctness of (2.40) and (2.41) are left as exercises for the reader.

Finally, substituting into (2.35), we have

Pr(error)

= Pr(error|bj = 0)Pr(bj = 0) + Pr(error|bj = 1)Pr(bj = 1)(2.42)

=
1

2
erfc

(

s0 − z√
2σ2

)

Pr(bj = 0) +
1

2
erfc

(

z − s1√
2σ2

)

Pr(bj = 1).(2.43)

20 2. BASEBAND DATA TRANSMISSION

2.4.2. Probability of error for Polar NRZ. Let’s return to Example 2.3,

which illustrated detection with Polar NRZ signals, and use a threshold z = 0. In

the example, we showed that s0 = −s1 = nb. Thus, substituting into (2.43), we

have

Pr(error)

=
1

2
erfc

(

nb − 0√
2σ2

)

Pr(bj = 0) +
1

2
erfc

(

0 − (−nb)√
2σ2

)

Pr(bj = 1)(2.44)

=
1

2
erfc

(

nb√
2σ2

)

Pr(bj = 0) +
1

2
erfc

(

nb√
2σ2

)

Pr(bj = 1)(2.45)

=
1

2
erfc

(

nb√
2σ2

)

(Pr(bj = 0) + Pr(bj = 1))(2.46)

=
1

2
erfc

(

nb√
2σ2

)

.(2.47)

From (2.47), since erfc(·) is a decreasing function, it seems like increasing nb leads

to a decrease in Pr(error). However, by examining (2.34), we can show that the

probability of error is independent of the sampling rate. In Example 2.3, we used

a filter impulse response h[k] = s0[k], so (2.34) becomes

σ2 =
N0

2Ts

nb
∑

i=1

s0[k]2(2.48)

=
N0

2Ts

nb
∑

i=1

1(2.49)

=
N0nb

2Ts
.(2.50)

However, the sample time Ts can be expressed as

(2.51) Ts =
Tb

nb
.

Substituting into (2.50), we have

(2.52) σ2 =
N0n

2
b

2Tb
,

and finally, substituting into (2.47), we have

Pr(error) =
1

2
erfc

(

nb
√

2(N0n2
b)/(2Tb)

)

(2.53)

=
1

2
erfc

(

√

Tb

N0

)

.(2.54)

2.4. ERROR ANALYSIS 21

Thus, in this example, the only important factors in determining the probability of

error are the bit duration, Tb, and the AWGN power spectral density coefficient,

N0.

2.4.3. Summary and Examples. Our calculation of probability of error for

Polar NRZ followed a procedure that can be generalized to other signalling schemes.

Given modulation signals s0[k] and s1[k], detection filter h[k], threshold z, and all

relevant system parameters (e.g., i.e., probabilities Pr(bj = 0) and Pr(bj = 1), noise

coefficient N0, sample time Ts, samples per bit nb), the following procedure may

be used to calculate the probability of error:

(1) Calculate the noise-free filter outputs s0 and s1, using equations (2.29)-

(2.30).

(2) Calculate the variance of the noise σ2 at the output of the filter, using

equation (2.34). Given that the input bit is 0 (or 1), the output of the

filter is then a Gaussian random variable with mean µ = s0 (resp., s1)

and variance σ2.

(3) Obtain probability of error by substituting all these quantities into equa-

tion (2.43).

Using this procedure, we now present two additional examples.

Example 2.4 (Binary Phase Shift Keying). Returning to example 2.2, we now

calculate the probability of error for BPSK. Let

(2.55) h[k] =

sin
(

− 2πk
nb

)

, 1 ≤ k ≤ nb

0 otherwise
,

and let the threshold z = 0. We now follow the procedure given above.

22 2. BASEBAND DATA TRANSMISSION

Noise-free filter outputs: Using (2.29), s0 is given by

s0 = [s0[k] ⋆ h[k]]nb
(2.56)

=

nb
∑

i=1

s0[i]h[nb − i](2.57)

=

nb
∑

i=1

sin

(

2πi

nb

)

sin

(

2π(i − nb)

nb

)

(2.58)

=

nb
∑

i=1

sin

(

2πi

nb

)

sin

(

2πi

nb
+ 2π

)

(2.59)

=

nb
∑

i=1

sin

(

2πi

nb

)2

.(2.60)

Furthermore, it is easy to show that

(2.61) s1 = −s0.

Variance of the noise: Using (2.34), σ2 is given by

σ2 =
N0

2Ts

nb
∑

i=1

h[i]2(2.62)

=
N0

2Ts

nb
∑

i=1

sin

(

−2πk

nb

)2

(2.63)

=
N0

2Ts

nb
∑

i=1

sin

(

2πk

nb

)2

(2.64)

=
N0

2Ts
s0,(2.65)

where (2.64) follows from (2.63) since sin(−x) = − sin(x).

Probability of error. Substituting into (2.43), we have

Pr(error)

=
1

2
erfc

(

s0 − z√
2σ2

)

Pr(bj = 0) +
1

2
erfc

(

z − s1√
2σ2

)

Pr(bj = 1)(2.66)

=
1

2
erfc

(

√

Tss0

N0

)

Pr(bj = 0) +
1

2
erfc

(

√

Tss0

N0

)

Pr(bj = 1)(2.67)

=
1

2
erfc

(

√

Tss0

N0

)

.(2.68)

2.4. ERROR ANALYSIS 23

To obtain specific numbers for this system, let Tb = 10−4, nb = 8, and N0 =

1.25 · 10−5. Then from (2.60), s0 = 4, so

Pr(error) =
1

2
erfc

(
√

(10−4/8) · 4
1.25 · 10−5

)

(2.69)

= 0.00234.(2.70)

Example 2.5 (On-off keying). Let s0[k] be the same as (2.15), and let h[k] =

s0[k + 1], as in Polar NRZ. However, let s1[k] = 0 for all k. This is referred to as

on-off keying, since the transmitter is “on” (all +1) to transmit 0, and “off” (all

zero) to transmit 1. Suppose Pr(bj = 0) = Pr(bj = 1) = 1/2. We consider two

cases: first, z = 0, and second, z = nb/2.

Noise-free filter outputs: Since s0[k] and h[k] are the same as in Polar NRZ,

s0 is also the same, so

(2.71) s0 = [s0[k] ⋆ h[k]]nb
= nb.

Since s1[k] = 0, then

(2.72) s1 = [0 ⋆ h[k]]nb
= 0.

Variance of the noise: Since h[k] is the same as in Polar NRZ, then

(2.73) σ2 =
N0

2Ts

∑

i

h[k]2 =
N0

2Ts
nb.

Probability of error. Substituting into (2.43), and using z = 0, we have

Pr(error)

=
1

2
erfc

(

s0 − z√
2σ2

)

Pr(bj = 0) +
1

2
erfc

(

z − s1√
2σ2

)

Pr(bj = 1)(2.74)

=
1

4
erfc

(

√

Tsnb

N0

)

+
1

4
erfc (0)(2.75)

=
1

4

(

erfc

(

√

Tss0

N0

)

+ 1

)

.(2.76)

On the other hand, using z = nb/2, we have

(2.77) Pr(error) =
1

2
erfc

(

√

nbTs

4N0

)

.

The probability of error in (2.77) is generally smaller (and therefore better) than

(2.76), which we illustrate in Figure X.

24 2. BASEBAND DATA TRANSMISSION

2.5. Probability of error and energy per bit

Probability of error is frequently expressed in terms of the average energy per

bit Eb, which allows the system designer to compare two systems on the basis of

the same energy expenditure.

In continuous time, the energy E0 and E1 contained in the continuous-time

modulation functions s0(t) and s1(t), respectively, are expressed by

(2.78) E0 =

∫ Tb

t=0

s0(t)
2dt

and

(2.79) E1 =

∫ Tb

t=0

s1(t)
2dt.

Average energy per bit is then given by

(2.80) Eb = E0Pr(bj = 0) + E1Pr(bj = 1).

In discrete time, calculation of the energy per bit is dependent on the digital-

to-analog hardware that is used to transform s0[k] and s1[k] into continuous-time

functions s0(t) and s1(t), respectively. In this book, we will use the following

method: each sample will be replaced with a rectangular function of width Ts and

amplitude equal to the sample value, where the rectangle corresponding to the kth

sample occupies time between t = (k − 1)Ts and t = kTs. This scheme is depicted

in Figure X.

More formally, let rTs
(t) be a rectangular function over the interval Ts, given

by

(2.81) rTs
(t) =

1, −Ts ≤ t < 0

0 otherwise

This is a more convenient form of the rect(·) function, defined in the appendix.

Furthermore, the rectangle is defined on the interval [−Ts, 0) because, from the

definition above, the rectangle “lags” the sample. Then s0(t) is given by

(2.82) s0(t) =

nb
∑

i=1

s0[i]rTs
(t − iTs).

2.6. PROBLEMS 25

To calculate energy E0 for bit 0, we can now use (2.78):

E0 =

∫ Tb

t=0

(

nb
∑

i=1

s0[i]rTs
(t − iTs)

)2

dt(2.83)

=

nb
∑

i=1

s0[i]
2

∫ Tb

t=0

rTs
(t − iTs)dt(2.84)

= Ts

nb
∑

i=1

s0[i]
2,(2.85)

where (2.84) follows from (2.83) because the rectangles rTs
(t− iTs) do not overlap,

and have unit amplitude; and where (2.85) follows from (2.84) because the area

under rTs
(t − iTs) is always Ts. Similarly for E1, we have that

(2.86) E1 = Ts

nb
∑

i=1

s1[i]
2.

For the three error calculations we gave in this chapter, we can now restate the

probability of error as a function of energy per bit. For polar NRZ, we have that

E0 = Ts

nb
∑

i=1

s0[i]
2(2.87)

= Tsnb(2.88)

= Tb,(2.89)

and E1 = E0. Thus, Eb = Tb. Substituting back into (2.53), we have

(2.90) Pr(error) =
1

2
erfc

(

√

Eb

N0

)

,

which directly relates the probability of error to the average energy consumed in

transmitting a bit. Restating the equations for the other two modulation schemes

are left as exercises.

2.6. Problems

(1) Making the changes of variables described in Chapter 1, show that (2.40)

and (2.41) are correct.

(2) Restate the error calculation for binary phase shift keying (Example 2.4)

and on-off keying (Example 2.5) in terms of average energy per bit Eb.

How do these schemes compare with Polar NRZ in terms of energy effi-

ciency?

26 2. BASEBAND DATA TRANSMISSION

2.7. Laboratory exercise

CHAPTER 3

Optimal System Design

In Chapter 2, we outlined the basic problems of modulation and detection,

without discussing how parameters such as z and h[k] should be selected. The

digital communication system design problem is to minimize the probability of

detection error, subject to constraints on the energy per bit Eb. In this chapter, we

present the optimal solution to this design problem.

3.1. Optimizing the decision threshold

In the on-off keying example from Chapter 2 (Example 2.5), we saw that the

choice of threshold had an impact on the probability of error. Given a pair of signals

s0[k] and s1[k], and a filter h[k], the threshold z should obviously be selected so as

to minimize Pr(error). How can we do this?

Recall the average error probability expression

(3.1) Pr(error) =
1

2
erfc

(

s0 − z√
2σ2

)

Pr(bj = 0) +
1

2
erfc

(

z − s1√
2σ2

)

Pr(bj = 1),

and differentiate with respect to z. Doing so, we get an expression closely related

to the Gaussian integral: let

(3.2) fT (t) =
2√
π

exp(−t2),

and let FT (t) represent the indefinite integral of fT (t) (which is not available in

closed form). Then

erfc(z) =

∫ ∞

z

fT (t)dt(3.3)

= FT (∞) − FT (z).(3.4)

However, by the fundamental theorem of calculus, it is true that

(3.5) fT (t) =
d

dt
FT (t),

27

28 3. OPTIMAL SYSTEM DESIGN

so taking the first derivative of erfc(z) with respect to z, we get

(3.6)
d

dz
erfc(z) = −fT (z).

Applying this to (3.1), and using the chain rule for derivatives, we get

d

dz
Pr(error)

=
1

2
Pr(bj = 0)

d

dz
erfc

(

s0 − z√
2σ2

)

+
1

2
Pr(bj = 1)

d

dz
erfc

(

z − s1√
2σ2

)

(3.7)

=
1

2
√

σ2
Pr(bj = 0)fT

(

s0 − z√
2σ2

)

− 1

2
√

σ2
Pr(bj = 1)fT

(

z − s1√
2σ2

)

.(3.8)

To find the minimum, we set the expression in (3.8) to zero. As a result, the

minimizing value of z is the value satisfying

(3.9) Pr(bj = 0)fT

(

s0 − z√
2σ2

)

= Pr(bj = 1)fT

(

z − s1√
2σ2

)

.

It is left as an exercise for the reader to show that this value is a minimum. Sub-

stituting into (3.9) with the expansion of fT (t), and collecting exponential terms,

we have

(3.10) exp

(

− 1

2σ2
(s0 − z)2 +

1

2σ2
(z − s1)

2

)

=
Pr(bj = 1)

Pr(bj = 0)
.

Taking the natural logarithm, log, of both sides results in

(3.11)
1

2σ2

(

(z − s1)
2 − (s0 − z)2

)

= log
Pr(bj = 1)

Pr(bj = 0)
,

and collecting terms on the left, we have

(3.12)
1

2σ2

(

2(s0 − s1)z − (s2
0 − s2

1)
)

= log
Pr(bj = 1)

Pr(bj = 0)
.

Finally, solving for z gives

(3.13) z =
σ2

s0 − s1
log

Pr(bj = 1)

Pr(bj = 0)
+

1

2
(s0 + s1).

Thus, in the polar NRZ example we presented above, z = 0 is indeed the optimal

threshold, since s1 = −s0 and Pr(bj = 0) = Pr(bj = 1) = 1/2.

We make two remarks on (3.13). First, if the two binary values 0 and 1 are

equiprobable (i.e., Pr(bj = 0) = Pr(bj = 1) = 1/2),then (3.13) reduces to

(3.14) z =
1

2
(s0 + s1),

which is exactly halfway between the two mean values s0 and s1. Thus, for any

received value y[k], the decision b̂[k] is made based on the closest point to y[k],

3.2. RECEIVER FILTER DESIGN: THE MATCHED FILTER 29

either s0 or s1. Second, if 0 and 1 are not equiprobable, then the threshold is

biased towards the less likely bit, thereby expanding the region of y[k] that maps

to the more likely bit. This reduces error since, in case of uncertainty, it is safer to

select the more likely bit. This is illustrated in Figure X.

Example 3.1. Suppose s0 = 1, s1 = −1, and σ2 = 1. Let z = 1/2. For what

values of Pr(bj = 0) and Pr(bj = 1) is this setting of z optimal?

Substituting into (3.13), we have

z =
1

2
=

σ2

s0 − s1
log

Pr(bj = 1)

Pr(bj = 0)
+

1

2
(s0 + s1)(3.15)

=
1

2
log

Pr(bj = 1)

Pr(bj = 0)
+

1

2
(0).(3.16)

Simplifying, we have

(3.17) log
Pr(bj = 1)

Pr(bj = 0)
= 1.

Thus, Pr(bj = 1)/Pr(bj = 0) = e1 = e ≃ 2.718. However, remember that Pr(bj =

1) + Pr(bj = 0) = 1. Thus,

(3.18)
Pr(bj = 1)

1 − Pr(bj = 1)
= e,

the solution for which is Pr(bj = 1) = e/(1 + e) ≃ 0.731, so Pr(bj = 1) ≃ 0.269.

In general, the optimal way to distinguish between two signals in noise is to

employ the maximum a posteriori probability (MAP) criterion

3.2. Receiver filter design: The matched filter

We now consider how to design the optimal receiver filter h[k]. The following

assumptions are used to simplify the derivation:

• The input bits are equiprobable: Pr(bj = 0) = Pr(bj = 1) = 1/2; and

• Modulation waveform s1[k] is a scalar multiple of s0[k]; i.e., there exists

α such that

(3.19) s1[k] = αs0[k].

Note that (3.19) is true of all three modulation schemes we have studied thus far:

in Polar NRZ and BPSK, we had α = −1, while in on-off keying, we had α = 0.

30 3. OPTIMAL SYSTEM DESIGN

To simplify the notation, let

(3.20) ĥ[k] = h[nb − k].

Using ĥ[k], s0 becomes

s0 = [s0[k] ⋆ h[k]]nb
(3.21)

=

nb
∑

i=1

s0[i]h[nb − i](3.22)

=

nb
∑

i=1

s0[i]ĥ[i].(3.23)

Furthermore, using (3.19), s1 becomes

s1 =

nb
∑

i=1

s1[i]ĥ[i](3.24)

= α

nb
∑

i=1

s0[i]ĥ[i](3.25)

= αs0.(3.26)

Furthermore, since ĥ[k] rearranges the elements of h[k], but does not change their

values, it should be clear that the variance is now given by

(3.27) σ2 =
N0

2Ts

∑

i

ĥ[i]2.

By assumption, the bit values are equiprobable, so we use the optimal threshold

from (3.14). This leads to

(3.28) z =
1

2
(s0 + s1) =

1 + α

2
s0.

Substituting into (3.1), we have

Pr(error)

=
1

2
erfc

(

s0 − z√
2σ2

)

Pr(bj = 0) +
1

2
erfc

(

z − s1√
2σ2

)

Pr(bj = 1)(3.29)

=
1

4
erfc

(

s0 − (1 + α)s0/2√
2σ2

)

+
1

4
erfc

(

(1 + α)s0/2 − αs0√
2σ2

)

(3.30)

=
1

2
erfc

(

(1 − α)s0

2
√

2σ2

)

.(3.31)

The filter design problem can then be stated as follows: find ĥ[k] satisfying

(3.32) min
ĥ[k]

1

2
erfc

(

(1 − α)s0

2
√

2σ2

)

.

3.2. RECEIVER FILTER DESIGN: THE MATCHED FILTER 31

However, note that erfc(x) is a decreasing function of x, so minimizing erfc is

equivalent to maximizing its argument. Thus, (3.32) is equivalent to finding ĥ[k]

satisfying

(3.33) max
ĥ[k]

(1 − α)s0

2
√

2σ2
.

The constants do not affect the value of ĥ[k] maximizing (3.33), and neither does

squaring the expression, so (3.33) becomes

(3.34) max
ĥ[k]

s2
0

σ2
.

Substituting s0 and σ2 with their expansions, given by (3.23) and (3.27) respec-

tively, the design problem becomes: find ĥ[k] satisfying

(3.35) max
ĥ[k]

(

∑nb

i=1 s0[i]ĥ[i]
)2

∑nb

i=1 ĥ[i]2
,

again eliminating the constants in the denominator. Remarkably, α is irrelevant to

the maximization, so the filter only depends on s0[k].

To solve this problem, we use the Cauchy-Schwartz inequality [3]. There are

many forms of this inequality, but the following form is most appropriate for this

problem. Let a[k] and b[k] be discrete-time functions that are supported on 1 ≤
k ≤ n. Then:

(3.36)

(

n
∑

i=1

a[i]b[i]

)2

≤
(

n
∑

i=1

a[i]2

)(

n
∑

i=1

b[i]2

)

,

with equality if and only if a[i] = b[i] for all i. This inequality is proved in Appendix

B.

Returning to the design problem, we can apply the Cauchy-Schwartz inequality

to s0[k] and ĥ[k]. Since s0[k] and ĥ[k] are supported over 1 ≤ k ≤ nb, by substituting

directly into (3.36), we can write

(3.37)

(

nb
∑

i=1

s0[i]ĥ[i]

)2

≤
(

nb
∑

i=1

s0[i]
2

)(

nb
∑

i=1

ĥ[i]2

)

.

However, s0[k] is given, so
∑nb

i=1 s0[i]
2 is a constant with respect to ĥ[i]. Rearranging

(3.37), we can write

(3.38)

(

∑nb

i=1 s0[i]ĥ[i]
)2

∑nb

i=1 ĥ[i]2
≤ K

32 3. OPTIMAL SYSTEM DESIGN

where K =
∑nb

i=1 s0[i]
2, emphasizing that this quantity is constant. The quantity

on the left of the inequality (3.38) is the same as the quantity to be maximized in

(3.35). Thus, from (3.38), we conclude that the maximum possible value of this

quantity is K, and by the equality condition for the Cauchy-Schwartz inequality,

this value is achieved if and only if

(3.39) ĥ[k] = s0[k]

for all k. Letting h⋆[k] represent the optimized filter, we have that

(3.40) h∗[k] = s0[nb − k].

The optimal filter h∗[k] is called the matched filter, since from (3.40) it is clearly

matched to s0[k].

Using h∗[k], we can find the optimized values of s0 and s1 (which we write s∗0

and s∗1, respectively), as follows:

s∗0 =

nb
∑

i=1

s0[i]
2(3.41)

=
E0

Ts
,(3.42)

recalling the definition of E0 as the energy required to send a zero. Similarly,

(3.43) s∗1 = α
E0

Ts
.

Notice that E1 = α2E0, so the average energy per bit, Eb, is given by

Eb =
1

2
(E0 + E1)(3.44)

=
1 + α2

2
E0.(3.45)

Furthermore, the optimized value of σ2, written σ2∗, is given by

σ2∗ =
N0

2Ts

nb
∑

i=1

s0[i]
2(3.46)

=
N0

2T 2
s

E0.(3.47)

3.3. OPTIMIZED WAVEFORM DESIGN 33

Substituting all of the above into (3.31), we have

Pr(error) =
1

2
erfc

(

(1 − α)s∗0

2
√

2σ2∗

)

(3.48)

=
1

2
erfc

√

(1 − α)2

4

E0

N0

(3.49)

=
1

2
erfc

(
√

(1 − α)2

2(1 + α2)

Eb

N0

)

.(3.50)

Thus, under our design assumptions, the probability of error for the optimal filter

can be expressed in terms of Eb/N0. It is interesting to note that the individual

values of Eb and N0 are irrelevant – only their ratio matters. Thus, Eb/N0 is often

used as a figure of merit for digital communication systems.

Example 3.2.

3.3. Optimized waveform design

The parameter α relates s0[k] to s1[k]. Since, from (3.50), the probability

of error is a function of α, we may consider the value of α that minimizes the

probability of error.

We need to find α satisfying

(3.51) min
α

1

2
erfc

(
√

(1 − α)2

2(1 + α2)

Eb

N0

)

.

Note that Eb/N0 is independent of α, so taking the same apporach as we took

leading up to (3.35): we need to find α maximizing

(3.52) max
α

(1 − α)2

1 + α2
.

Taking the first derivative, we get

(3.53)
d

dα

(1 − α)2

1 + α2
=

−2(1 − α)(1 + α)

(1 + α2)2
,

which has critical points at α = −1 and α = +1; it is straightforward to show

that these are a maximum and a minimum, respectively. Thus, using the optimal

signalling scheme s1[k] = −s0[k], optimal filter h[k], and optimal threshold z, the

best possible probability of error is given by

(3.54) Pr(error) =
1

2
erfc

(

√

Eb

N0

)

.

34 3. OPTIMAL SYSTEM DESIGN

Intuitively, it makes sense that α = +1 is a minimum, since in that case,

s0[k] = s1[k] – in other words, there is no difference between the signals used to

transmit 0 and 1, so there is no way to tell them apart. On the other hand, for

constant Eb, this result suggests that the best approach is to set s0[k] = −s1[k],

as we did in Polar NRZ and BPSK. Thus, on-off keying, in which α = 0, is not an

optimal signalling scheme. Furthermore, in (3.54), the details of s0[k] and s1[k] are

not relevant – they only affect Pr(error) through Eb. Thus, any optimal signalling

scheme with the same Eb should have the same error performance. (However, there

are other criteria, such as bandwidth, that make some signalling schemes more

useful than others; we will discuss these in later chapters.)

3.4. Summary

Optimal parameter selections derived in this chapter are given as follows:

• Optimal threshold. Given in (3.13). If 0 and 1 are equiprobable, the

optimal threshold is z = (s0 + s1)/2.

• Optimal filter. The matched filter is optimal, with h∗[k] = s0[nb − k].

• Signal selection. Given s0[k], set s1[k] = −s0[k]. Every such setting of

s0[k] and s1[k] with the same Eb has the same Pr(error).

Unless otherwise noted, these optimal settings will be used throughout the rest of

the book.

3.5. Problems

(1) Show that the value of z satisfying (3.9) is a minimum of Pr(error).

(2) For the three modulation schemes introduced in Chapter 2, demonstrate

that the optimal threshold and matched filter were correctly chosen in

each example.

3.6. Laboratory exercise

CHAPTER 4

Signal Space and Nonbinary Data Transmission

In Chapters 2 and 3, we introduced the basic elements of the digital com-

muncations problem, including modulation, detection, and optimized receiver de-

sign. However, our analysis in those chapters was binary and one-dimensional: we

could only transmit one bit at a time. Furthermore, we restricted ourselves to the

case where s1[k] was a scalar multiple of s0[k], which is not necessarily optimal when

nonbinary signals are transmitted. In this chapter, we introduce signal space, which

provides a mathematical framework for nonbinary and multi-dimensional modula-

tion schemes. Furthermore, we introduce limitations on bandwidth, and discuss

their importance on signal design.

4.1. Introduction to Signal Space

4.1.1. Vector spaces. Chapter 2 established that the modulation functions

s0[k] and s1[k] are discrete functions supported on 1 ≤ k ≤ nb. These functions

can instead be represented as 1 × k row vectors s0 and s1, respectively, where

(4.1) s0 = [s0[1], s0[2], . . . , s0[nb]] ,

and

(4.2) s1 = [s1[1], s2[1], . . . , s2[nb]] .

In Chapter 3, we assumed that s1 was a scalar multiple of s0; let us now relax

that assumption. Recall the definition of vector dot product: if a = [a1, a2, . . . , an]

and b = [b1, b2, . . . , bn] are 1 × n vectors, then

(4.3) a · b =
n
∑

i=1

aibi.

Now suppose there exists a vector s̄0 and constants α and β such that

(4.4) s1 = αs0 + βs̄0,

35

36 4. SIGNAL SPACE AND NONBINARY DATA TRANSMISSION

where s̄0 · s0 = 0. That is, s̄0 is orthogonal to s0.

The pair s0, s̄0 thus form a two-dimensional vector space containing both s0

and s1. Vector spaces consist of a set of basis vectors, where any vector in the space

can be composed of a linear combination of the basis vectors. Furthermore, vector

spaces are closed, in the sense that any linear combination of vectors in the vector

space is also in the vector space. This is illustrated in the following example, using

the well-known Cartesian space.

Example 4.1 (Cartesian vector space). Let x = [1, 0] and y = [0, 1] be 1 × 2

basis vectors. Firstly, note that x and y are orthogonal:

x · y = x1y1 + x2y2(4.5)

= 1 · 0 + 0 · 1(4.6)

= 0.(4.7)

Clearly, any two-dimensional vector can be expressed as

(4.8) [α, β] = αx + βy,

and therefore all such vectors are in the two-dimensional Cartesian vector space.

Furthermore, from (4.8), the summation of any pair of vectors in this space is also

in the space. To see this, we can write

[α1, β1] + [α2, β2] = α1x + β1y + α2x + β2y(4.9)

= (α1 + α2)x + (β1 + β2)y(4.10)

= [α1 + α2, β1 + β2].(4.11)

The same arguments apply to any vector space with orthogonal basis vectors.

The norm of a 1 × n vector a is given by

(4.12) |a| =
√

a · a =

√

√

√

√

n
∑

i=1

a2
i .

From the above example, the vectors x and y have the additional useful property

that |x| = |y| = 1. A basis for a vector space for which the basis vectors are

all orthogonal to each other, and all have unit norm, is called an orthonormal

basis. Given any m linearly independent vectors (i.e., none of the m vectors can

4.1. INTRODUCTION TO SIGNAL SPACE 37

be expressed as a linear combination of the others), it always possible to generate

an m-dimensional orthonormal basis using the Gram-Schmidt procedure. Here we

give this procedure for m = 2, which is the largest case that we will require in this

book. Let a and b represent the two (linearly independent) vectors, and suppose

they are both 1 × n:

(1) Normalize a: let

(4.13) â =
a

|a| .

Using (4.12), it is easy to show that |â| = 1, so â is the first basis vector.

(2) Remove the component of b in the direction of â: let

(4.14) b′ = b− â(b · â).

Using (4.3), it is easy to show that b′ is orthogonal to â, i.e., b′ · â = 0.

(3) Normalize b′: let

(4.15) b̂ =
b′

|b′| .

Again using (4.12), it is easy to show that |b̂| = 1, and b̂ is still orthogonal

to â, so b̂ is the second basis vector.

(4) The orthonormal basis is finally given by the pair of vectors â and b̂.

We now verify that a and b can be represented in terms of this basis: from (4.13),

a is given by

(4.16) a = |a|â,

(with a coefficient of zero in the b̂ direction), and from (4.14)-(4.15), b is given by

(4.17) b = (b · â)â + |b′|b̂.

Thus, a and b are in the vector space formed by â and b̂.

Since we will be treating signals (like s0[k]) as vectors throughout this chapter,

vector notation may be applied to a signal as well as a vector (for example, |s0[k]|
will signify the norm of s0[k]).

38 4. SIGNAL SPACE AND NONBINARY DATA TRANSMISSION

4.2. Signal Space in Digital Communication

4.2.1. Introduction to M-ary digital communication. In introducing

signal space, we are mostly interested in discussing schemes where more than one

bit is transmitted at once. Whereas in binary communication, only one of two

symbols can be used (i.e., 0 and 1), in M -ary communication, any one of M sym-

bols can be transmitted. Without loss of generality, we will call these symbols

{0, 1, 2, . . . , M − 1}.
One simple way to think about M -ary communication is to start with a binary

data stream, and group adjacent bits. Consider the following example:

Example 4.2. Suppose we wish to transmit the binary vector

(4.18) b = [0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1].

Suppose this vector is to be transmitted as 4-ary data, i.e., using symbols {0, 1, 2, 3}.
We can group the bits in b into pairs, and map them into elements of {0, 1, 2, 3}
using the usual mapping, as follows:

b = [(0, 1), (0, 0), (1, 1), (1, 0), (1, 0), (1, 1)](4.19)

= [1, 0, 3, 2, 2, 3].(4.20)

Similarly, grouping the bits in b into triplets, we can transmit the vector as 8-ary

data using symbols {0, 1, 2, 3, 4, 5, 6, 7}, as follows:

b = [(0, 1, 0), (0, 1, 1), (1, 0, 1), (0, 1, 1)](4.21)

= [2, 3, 5, 3].(4.22)

However, M -ary transmission need not have a direct binary translation, i.e.,

M need not be a power of 2. Consider the following example.

Example 4.3. Suppose we want to encode the 26 letters of the English alphabet,

as well as the space character, for a total of 27 encoding symbols. We will assign

these to numbers as follows: (space)=0, A=1, B=2, ..., Z=26.

Suppose that this data is to be transmitted as 3-ary data. Note that 27 = 33, so

each symbol can be represented by exactly three 3-ary symbols.

4.2. SIGNAL SPACE IN DIGITAL COMMUNICATION 39

Suppose we encode the phrase “BROWN FOX”. This can be represented as the

vector

(4.23) b = [2, 18, 15, 23, 14, 0, 6, 15, 24].

Representing each number {0, 1, . . . , 26} as a triplet of {0, 1, 2}, we have

(4.24)

b = [(0, 0, 2), (2, 0, 0), (1, 2, 0), (2, 1, 2), (1, 1, 2), (0, 0, 0), (0, 2, 0), (1, 2, 0), (2, 2, 0)].

In any M -ary system, the number of bits per symbol is given by

(4.25) β = log2 M.

This quantity is frequently used to allow two systems to be compared on a per-bit

basis, rather than a per-symbol basis (since bits are the fundamental unit of digital

information, and symbols may be used to convey different numbers of bits). For

example, in the 3-ary system from Example 4.3, each symbol conveys log2 3 = 1.585

bits.

In the remainder of this section, we will use the ideas of signal space to de-

sign M -ary communication systems. Extending our notation from Chapter 2, for

each i ∈ {0, 1, . . . , M − 1}, we will write si[k] to represent the modulation signal

corresponding to the ith symbol.

4.2.2. One-dimensional signal space. In a one-dimensional signal space,

there is only one vector in the basis, and all valid signals are linear multiples of

that basis vector. We have implicitly used one-dimensional signal space in the

previous chapters of this book – e.g., see (3.19) in Chapter 3.

Let s[k] represent the single basis vector in the space, where |s[k]| = 1. For

each i ∈ {0, 1, . . . , M − 1}, assign a coefficient αi, such that

(4.26) si[k] = αis[k].

Without loss of generality, suppose the coefficients αi are arranged so that

(4.27) α0 ≥ α1 ≥ . . . ≥ αM−1.

We now consider the probability of error in M -ary transmission schemes. To

do so, we will follow a similar approach to the one we saw in Chapter 2: namely,

we will obtain the noise-free filter outputs and the noise variance, and we will use

40 4. SIGNAL SPACE AND NONBINARY DATA TRANSMISSION

these to calculate the probability of error given that each symbol {0, 1, . . . , M − 1}
was sent.

We start with the filter outputs. Suppose the signal is passed through a detec-

tion filter h[k]. Let si, i ∈ {0, 1, . . . , M − 1}, represent the noise-free filter outputs;

then

si = [si[k] ⋆ h[k]]nb
(4.28)

= [αis[k] ⋆ h[k]]nb
(4.29)

= αi[s[k] ⋆ h[k]]nb
.(4.30)

Letting H = [s[k] ⋆ h[k]]nb
, we then have si = Hαi. Assuming that H > 0, we then

have that

(4.31) s0 ≥ s1 ≥ . . . ≥ sM−1.

This one-dimensional arrangement is depicted in Figure X.

The noise variance is dependent only on the detection filter h[k], and not on

the transmitted signals. As a result, we can still use (2.34) from Chapter 2.

In order to calculate probability of error, we need to specify the decision thresh-

olds on the filter output. From (4.31), the noise-free filter outputs are arranged

along the real number line. Suppose symbol j, 0 < j < M − 1 is transmitted, so

that the noise-free filter output is sj . There are noise-free filter outputs both less

than sj (e.g., sj+1) and greater than sj (e.g., sj−1). Thus, a single threshold, like

in the binary case, is inadequate: we need to distinguish j from both j+1 and j−1.

Instead, we will use a vector of thresholds [z1, z2, . . . , zM−1] to distinguish among

the M signals.

We will require that

(4.32) z1 > z2 > . . . > zM−1.

4.2. SIGNAL SPACE IN DIGITAL COMMUNICATION 41

Thus, given filter outputs φ[j], the decision function d(·) has the form

(4.33) d(φ[k]) =

0, φ[k] > z1

1, z1 ≥ φ[k] > z2

...
...

j, zj ≥ φ[k] > zj+1

...
...

M − 1, zM−1 ≥ φ[k].

Note that this rule is a generalization of the binary case: if M = 2, then we have

two symbols {0, 1}, and we only use one threshold z1, deciding 0 if φ[k] > 0 and

deciding 1 if φ[k] ≤ 0. These thresholds are also depicted on Figure X.

From (4.33), we decide j if φ[k] is on the interval [zj , zj+1) (except for the two

end points, 0 and M − 1). We can now calculate the probability of error given that

j was sent. (For now, we ignore the possibility that j = 0 or j = M − 1.) An error

occurs if j was sent and φ[k] is not on the interval [zj , zj+1). Furthermore, since

the noise is not affected by the transmitted signal, the noise is Gaussian with mean

zero and variance σ2, like in Chapter 2; thus, φ[k] is a Gaussian random variable

with mean sj and variance σ2. Thus, if b represents the transmitted symbol,

Pr(error|b = j) = Pr(φ[k] > zj|b = j) + Pr(φ[k] ≤ zj+1|b = j)(4.34)

=

∫ ∞

zj

1√
2πσ2

exp

(

− 1

2σ2
(φ[k] − sj)

2

)

dφ[k]

+

∫ zj+1

−∞

1√
2πσ2

exp

(

− 1

2σ2
(φ[k] − sj)

2

)

dφ[k].(4.35)

In Chapter 1, we showed how to replace each of the Gaussian inegrals in (4.35)

with the erfc(·) function. Using this transformation, we have

(4.36) Pr(error|b = j) =
1

2
erfc

(

zj − sj√
2σ2

)

+
1

2
erfc

(

sj − zj+1√
2σ2

)

.

Now let’s reconsider the case of b = 0. Because anything greater than z1 is mapped

into 0, an error occurs if φ[k] < z1. This is equivalent to the probability of error

given b = 0 in the binary case, resulting in

(4.37) Pr(error|b = 0) =
1

2
erfc

(

s0 − z1√
2σ2

)

.

42 4. SIGNAL SPACE AND NONBINARY DATA TRANSMISSION

Similarly, if b = M − 1, an error occurs if φ[k] ≥ zM−1, which is analogous to the

binary case where b = 1. Thus, we have that

(4.38) Pr(error|b = M − 1) =
1

2
erfc

(

zM−1 − sM−1√
2σ2

)

.

Finally, we can write

Pr(error)

=

M−1
∑

j=0

Pr(b = j)Pr(error|b = j)(4.39)

= Pr(b = 0)
1

2
erfc

(

s0 − z1√
2σ2

)

+ Pr(b = M − 1)
1

2
erfc

(

zM−1 − sM−1√
2σ2

)

+

M−2
∑

j=1

Pr(b = j)

[

1

2
erfc

(

zj − sj√
2σ2

)

+
1

2
erfc

(

sj − zj+1√
2σ2

)]

.(4.40)

From now on, we will assume that the input symbols are equiprobable, so

(4.41) Pr(b = 0) = Pr(b = 1) = . . . = Pr(b = M − 1) =
1

M
.

It is natural to ask how to select the optimal thresholds z1, z2, . . . , zM−1. Recall

in the binary case that if 0 and 1 were equiprobable, then the optimal threshold

z was z = (s0 + s1)/2, i.e., halfway between s0 and s1. Thus, assuming that

the input symbols are equiprobable, it is intuitive that the thresholds should be

halfway between the noise-free filter outputs (i.e., z1 is halfway between s0 and s1,

z1 is halfway between z1 and z2, and so on). Using the techniques in Chapter 3, it

can be shown that this intuition is correct. The decision boundaries then become

(4.42) zi =
1

2
(si−1 + si),

and (4.40) becomes

Pr(error)

=
1

2M
erfc

(

s0 − s1

2
√

2σ2

)

+
1

2M
erfc

(

sM−2 − sM−1

2
√

2σ2

)

+
1

2M

M−2
∑

j=1

[

erfc

(

sj−1 − sj

2
√

2σ2

)

+ erfc

(

sj − sj+1

2
√

2σ2

)]

.(4.43)

4.2. SIGNAL SPACE IN DIGITAL COMMUNICATION 43

Example 4.4. 3-ary example ...

Finally, suppose si − si+1 is equal for all i, 0 ≤ i < M − 1, and let

(4.44) D = si − si+1.

That is, all the noise-free filter outputs are the same distance D apart. In this case,

(4.43) becomes

Pr(error)

=
1

2M
erfc

(

s0 − s1

2
√

2σ2

)

+
1

2M
erfc

(

sM−2 − sM−1

2
√

2σ2

)

+
1

2M

M−2
∑

j=1

[

erfc

(

sj−1 − sj

2
√

2σ2

)

+ erfc

(

sj − sj+1

2
√

2σ2

)]

(4.45)

=
1

2M
erfc

(

D

2
√

2σ2

)

+
1

2M
erfc

(

D

2
√

2σ2

)

+
1

2M

M−2
∑

j=1

[

erfc

(

D

2
√

2σ2

)

+ erfc

(

D

2
√

2σ2

)]

(4.46)

= 2
1

2M
erfc

(

D

2
√

2σ2

)

+
1

2M
2(M − 2)erfc

(

D

2
√

2σ2

)

(4.47)

=
M − 1

M
erfc

(

D

2
√

2σ2

)

,(4.48)

where (4.46) follows from the definition of D, and (4.47)-(4.48) follow from collecting

identical terms.

In the following example, we show that the binary (M = 2) probability of error

function emerges directly from this analysis:

Example 4.5. Suppose M = 2. Then since the only two noise-free filter out-

puts are s0 and s1, there is only one interval between them, so “all” intervals

are identical. Further, there is only one threshold; from (4.42), this is given by

z1 = (s0 + s1)/2, halfway between the two noise-free filter outputs. Under these

circumstances, if s1 = αs0, the probability of error is given by (3.31) in Chapter 3.

However, by substituting these values into (4.48), we get the same result, namely

(4.49)
1

2
erfc

(

s0 − αs0

2
√

2σ2

)

.

44 4. SIGNAL SPACE AND NONBINARY DATA TRANSMISSION

Thus, the expression in (4.48) generalizes the optimal binary probability of error

equation.

It is worth noting that Pr(error) is now given in terms of probability of error per

symbol rather than probability of error per bit. In cases where the M -ary scheme

is created by joining binary symbols (like 4-ary and 8-ary in Example 4.2), the

probability of error per bit is dependent on the mapping from binary to M -ary,

and is not available in closed form. However, in general, there are log2 M bits per

M -ary symbol. If a symbol error occurs, the best case scenario is that only one of

these bits is different, and the worst case scenario is that all of the bits are different.

Thus, if Prbit(error) represents the probability of error per bit, it must be true that

(4.50)
Pr(error)

log2 M
≤ Prbit(error) ≤ Pr(error).

Evaluation of probability of error per bit is covered in this chapter’s laboratory

exercises.

Finally, to determine the optimal filter h[k], we return to the notion of signal

space. Since (4.48) has the same form as the binary probability of error function,

it should be clear that the matched filter h[k] = s[nb − k] is optimal. In fact this is

correct and can be shown using the same arguments that were used in Chapter 3.

However, we can now show that this filter is optimal using signal space arguments.

Recall the definition of ĥ[k] from Chapter 3, and let ĥ represent the vector

(4.51) ĥ = [ĥ[1], ĥ[2], . . . , ĥ[nb]].

Then variance is given by

σ2 =
N0

2Ts

∑

i

ĥ[i]2(4.52)

=
N0

2Ts
|ĥ|2.(4.53)

Thus, if the norm |ĥ| is fixed, the variance σ2 is constant. We will therefore fix

|ĥ| = 1, so that ĥ is a normalized vector.

4.2. SIGNAL SPACE IN DIGITAL COMMUNICATION 45

From (4.48), with constant σ2, the problem is to maximize D = si−si−1, which

is constant for all i. Remember that

si = αi

nb
∑

i=1

s[k]ĥ[k](4.54)

= αis · ĥ.(4.55)

In Figure X, we give a geometric interpretation of the vectors s0 and ĥ. Since ĥ

is normalized, the dot product s · ĥ is the projection of s onto ĥ. Clearly, from

Figure X, the distance D is maximized if the projection has maximum length, and

this occurs if ĥ is parallel to s. (In fact, this is an intuitive explanation of the

Cauchy-Schwartz inequality.) Thus, we choose

ĥ =
s

|s|(4.56)

= s,(4.57)

since we defined s with unit norm. Since s = ĥ, we have that

(4.58) s · ĥ = |s|2 = 1,

and thus si = αi. In other words, the noise-free filter output is the component of

the signal in the s direction. Furthermore, D = αi − αi−1 for any i.

4.2.3. Two-dimensional signal space. Suppose we now have two basis sig-

nals, sx and sy, with the following properties:

• |sx| = |sy| = 1, and

• sx · sy = 0.

In other words, sx and sy form a two-dimensional orthonormal basis. Now suppose

any signal in our M -ary scheme has a component in both the sx and the sy direction,

i.e.,

(4.59) si = αisx + βisy.

In the one-dimensional case, we used a matched filter to extract the component

of si in the direction of the basis signal s. That is now impossible: we have two

basis signals that are orthogonal to each other, so a single matched filter cannot

possibly be parallel with both. Instead, we use two matched filters: one aligned

with sx, and one aligned with sy. We therefore have an ordered pair of filter

46 4. SIGNAL SPACE AND NONBINARY DATA TRANSMISSION

outputs. Thus, the decision device needs to map regions of the two-dimensional

space into elements from {0, 1, . . . , M − 1}; furthermore, the thresholds become

one-dimensional boundaries between the regions. This is illustrated in Figure X.

Analogously to the one-dimensional case, the filter outputs, φx and φy, are

given by

φx = y · sx(4.60)

φy = y · sy,(4.61)

where y represents the vector of samples observed from the channel. The noise-free

filter output for symbol i, 0 ≤ i ≤ M − 1, are then given by the pair (si,x, si,y),

where

si,x = (αisx + βisy) · sx(4.62)

= αi(sx · sx) + βi(sy · sx)(4.63)

= αi,(4.64)

bearing in mind that sx · sx = |sx|2 = 1, and sy · sx = 0, both by assumption;

similarly,

(4.65) si,y = (αisx + βisy) · sy = βi.

Thus, the ith noise-free filter output is

(4.66) si = (αi, βi),

i.e., the coordinates of the signal in signal space.

Example 4.6. Suppose

(4.67) sx =

[

+
1

2
, +

1

2
, +

1

2
, +

1

2

]

,

and

(4.68) sy =

[

+
1

2
, +

1

2
,−1

2
,−1

2

]

.

It is straightforward to show that

4.2. SIGNAL SPACE IN DIGITAL COMMUNICATION 47

Again, we use the “nearest neighbor” principle to determine the locations of

the decision boundaries. In other words, for any pair of filter outputs (φx, φy), we

calculate the distance to each noise-free filter output, given by

(4.69) |(φx − αi, φy − βi)|.

We then decide that the symbol is equal to the closest signal in signal space to the

received values (φx, φy), i.e., the decision funciton d(φx, φy) is given by

(4.70) d(φx, φy) = argmin
i

|(φx − αi, φy − βi)|.

Thus, decision boundaries are always located halfway between each signal point

(αi, βi), and its nearest neighbors in signal space. This is also depicted in Figure

X. The regions in space closest to each signal point are called the Voronoi regions.

To calculate the probability of error, consider a signal point (αi, βi) with

Voronoi region V . Given that symbol i was sent, then clearly the probability of

a correct decision is

(4.71)

∫ ∫

V
f(φx, φy |i)dφxdφy .

This is analogous to the one-dimensional case, but here the integral is over a two-

dimensional region in space, rather than a one-dimensional interval. Now, let V̄
represent the complement of the region V (i.e., everything outside V). From (4.71),

the probability of an error given i is

Pr(error|bk = i) =

∫ ∫

V̄
f(φx, φy |i)dφxdφy(4.72)

= 1 −
∫ ∫

V
f(φx, φy |i)dφxdφy ,(4.73)

where the second line follows from the fact that total probability must be 1. (We

will find it most convenient to write the probability in the form of the second line.)

Consider f(φx, φy|i). If φx and φy are independent, then we can split this term

into

(4.74) f(φx, φy |i) = f(φx|i)f(φy |i).

Since φx and φy are both matched filter outputs, it should be clear that φx is

a Gaussian random variable with mean αi and variance N0/2Ts, and φy is also

a Gaussian random variable with mean βi and variance N0/2Ts. In fact, since

48 4. SIGNAL SPACE AND NONBINARY DATA TRANSMISSION

sx · sy = 0, it can be shown that φx and φy are independent; the reader is asked to

prove this in the problems. We now have

(4.75) Pr(error|bk = i) = 1 −
∫ ∫

V
f(φx|i)f(φy|i)dφxdφy.

Now suppose that the region V is rectangular. That is, V consists of all points (x, y)

satisfying xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax (we will allow the boundaries to

be infinite). Then we can write

Pr(error|bk = i)

= 1 −
∫ ymax

φy=ymin

∫ xmax

φx=xmin

f(φx|i)f(φy|i)dφxdφy(4.76)

= 1 −
(∫ xmax

φx=xmin

f(φx|i)dφx

)

(

∫ ymax

φy=ymin

f(φy|i)dφy

)

.(4.77)

(If the region V is not rectangular, then we cannot in general perform this separa-

tion, so the calculation is still possible but much more complicated.) Each of the

two separated terms is the probability of a Gaussian random variable landing on

an interval. Thus, we can use our results from the one-dimensional case, it is easy

to show that

(4.78)

∫ xmax

φx=xmin

f(φx|i)dφx = 1 −
(

1

2
erfc

(

αi − xmin
√

N0/Ts

)

+
1

2
erfc

(

xmax − αi
√

N0/Ts

))

,

and similarly

(4.79)

∫ ymax

φy=ymin

f(φy|i)dφy = 1 −
(

1

2
erfc

(

βi − ymin
√

N0/Ts

)

+
1

2
erfc

(

ymax − βi
√

N0/Ts

))

.

4.2.4. Energy per bit. In a one-dimensional signal space, energy per symbol

can be calculated in the same way we described in Chapter 2. The energy per

symbol, Es, is given by

Es =

M−1
∑

i=0

Pr(bk = i)Ei(4.80)

=

M−1
∑

i=0

Pr(bk = i)α2
i |s|2Ts(4.81)

=
Ts

M

M−1
∑

i=0

α2
i ,(4.82)

4.2. SIGNAL SPACE IN DIGITAL COMMUNICATION 49

since all the symbols are equiprobable by assumption. Furthermore, the number of

bits per symbol is log2 M , we have that

Eb =
Es

log2 M
(4.83)

=
Ts

M log 2M

M−1
∑

i=0

α2
i .(4.84)

For the same probability of symbol error, one-dimensional M-ary transmission gen-

erally requires far more energy per bit, as illustrated in the following example.

Example 4.7. ... 1-d energy per bit ...

We now consider the calculation of energy per bit for signals in a two-dimensional

signal space. Generally, the energy in a signal s is given by

E(s) = Ts|s|2(4.85)

= Ts(s · s).(4.86)

Thus, the energy in the ith signal, Ei, is given by

Ei = Ts(si · si)(4.87)

= Ts [(αisx + βisy) · (αisx + βisy)](4.88)

= Ts

[

(α2
i sx · sx + β2

i sy · sy + 2αiβisx · sy)
]

(4.89)

= Ts(α
2
i |sx|2 + β2

i |sy|2)(4.90)

= Ts(α
2
i + β2

i).(4.91)

The result in (4.91) is interesting: since Ei = |si|2, energy per symbol is merely the

square of the length of the vector si. Further, the length of the vector in signal space

is
√

α2
i + β2

i , since the coordinates αi and βi are with respect to an orthonormal

basis. Thus, vector length is preserved under a change of basis.

Finally, energy per symbol and energy per bit are calculated similarly to the

1-d case, as illustrated in the following example.

Example 4.8. ... 2-d energy per bit ...

4.2.5. Hardware model.

50 4. SIGNAL SPACE AND NONBINARY DATA TRANSMISSION

4.3. Problems

(1) For the alphabetic encoding of Example 4.3, propose binary and 4-ary

alphabets, and calculate their bit rates. Why are these bit rates higher

than the 3-ary encoding?

(2) (show φx and φy are independent)

4.4. Laboratory exercises

(probability of error per bit versus per symbol)

CHAPTER 5

Multiple Access Communication Systems

5.1. Passband Data Transmission

Two-dimensional signal space is most commonly seen in passband data trans-

mission, in which a carrier frequency is used in order to fit a signal in a specific

frequency band.

5.1.1. Bandwidth and analog modulation. In practical communication

systems, signals are allocated a certain bandwidth in frequency space. This band-

width may result from hardware limitations (e.g., traditional telephone line signals

cannot contain a DC component), or to allow the sharing of spectrum (e.g., in

broadcast radio, each station is allocated a certain frequency band for its exclusive

use).

Given a baseband signal, and a specified frequency band, two things must be

true in order to deposit that signal into the given band:

(1) The baseband signal must be band-limited, i.e. to fit in a bandwidth B,

the signal must start out with bandwidth not greater than B.

(2) There must be a way of modulating the baseband signal to fit in an arbi-

trary frequency band.

The first condition is satisfied by examining the Fourier transform S(f) of the

signal. There are many possible definitions of B, but the following is suitable for

our purposes:

(5.1) B = 2 min{f : |S(f ′)| ≤ ǫ ∀f ′ > f}.

There are many valid settings of ǫ, and we will not consider the selection of this

parameter. However, under this definition, it is not generally feasible to select ǫ = 0;

all time-limted signals have infinite support in the frequency domain. (It is worth

remembering that, so long as B/2 ≥ 2/Ts, the signal satisfies the Nyquist sampling

51

52 5. MULTIPLE ACCESS COMMUNICATION SYSTEMS

criterion.) Furthermore, the bandwidth B is proportional to Tb, the amount of

time spent to transmit one bit. Throughout the remainder of this document, we

will assume that

(5.2) B =
2

Tb
.

The second criterion is satisfied if the signal is multiplied by a pure sinusoid,

called a carrier. For example, suppose we have a signal s(t), with Fourier transform

S(f). Further, suppose the bandwidth of S(f) is B. We then form the modulated

signal

(5.3) s′(t) = s(t) cos(2πfct).

Taking the Fourier transform S′(f) of s′(t), it is well known that S′(f) is centered

around fc, and has support from fc −B/2 to fc + B/2. That is, the signal still has

bandwidth B, but in the passband. In this case, fc is called the carrier frequency.

It makes no difference to apply an arbitrary phase shift to the carrier, so we

can rewrite (5.3) as

(5.4) s′(t) = s(t) cos(2πfct + θ).

If θ = −π/2, then s′(t) = s(t) sin(2πfct). We will use this property to form a

two-dimensional signal space in passband, with one basis vector formed by a cos(·)
carrier, and the other formed by a sin(·) carrier.

5.1.2. Passband hardware model. The hardware model for passband com-

munication is shown in Figure X. It is important to note two modifications from

the baseband hardware model. First, the passband signal is digitally downconverted

from the passband to the baseband – that is, following analog-to-digital conversion,

it is multiplied by sinusoids and lowpass filtered to center the signal at zero fre-

quency as a baseband signal. Once in the baseband, we handle the signal in the

same way as we did in Chapters 2 and 4. Second, as we suggested above, we use

two sinusoids to downconvert: one cosine, and one sine.

5.1. PASSBAND DATA TRANSMISSION 53

First consider the problem of downconversion. Let s′[k] represent the sampled

version of s′(t), where (supposing θ = 0)

s′[k] = s(kTs) cos(2πfckTs)(5.5)

= s[k] cos(2πfdk),(5.6)

where s[k] = s(kTs) is the sampled version of s(t), and where fd = fcTs is the

equivalent digital carrier frequency. For convenience, we will assume that fd is an

integer multiple of 1/nb (i.e., each symbol contains an integer number of cycles of

the digital carrier).

The downconverter multiplies s′[k] by 2 cos(2πfdk), obtaining

s′[k](2 cos(2πfdk)) = 2s[k] cos(2πfdk)2(5.7)

= s[k] + s[k] cos(4πfdk
2).(5.8)

As long as fd is much greater than the bandwidth of s[k], the term s[k] cos(4πfdk
2)

can be eliminated by a lowpass filter; we omit the details. Thus, the output of the

downconverter is the baseband signal s[k].

Second, suppose

(5.9) s′(t) = s(t) sin(2πfct),

i.e., replacing cosine with sine. Then (5.7)-(5.8) become

s′[k](2 cos(2πfdk)) = 2s[k] sin(2πfdk)cos(2πfdk)2(5.10)

= s[k] sin(4πfdk
2).(5.11)

which is eliminated by the lowpass filter; thus, the output of the downconverter is

zero. However, suppose we multiply instead by 2 sin(2πfct). Then

s′[k](2 sin(2πfdk)) = 2s[k] sin(2πfdk)2(5.12)

= s[k] − s[k] sin(4πfdk
2),(5.13)

which again returns s[k] after lowpass filtering.

We can use this property to form a signal space: signal sI [k] (called the in phase

signal) can be transmitted with carrier cos(2πfct), while signal sQ[k] (called the

quadrature signal) can be transmitted with carrier sin(2πfct). Two downconversion

54 5. MULTIPLE ACCESS COMMUNICATION SYSTEMS

legs are used: the in phase leg extracts sI [k], while the quadrature leg extracts

sQ[k].

Suppose s[k] is constant ...

Example 5.1 (Quadrature phase shift keying).

5.2. Interference-free spectrum sharing

Passband techniques may be used to share bandwidth among multiple users.

In this section, we consider two interference-free techniques: frequency division

multiple access (FDMA), and time division multiple access (TDMA).

5.2.1. Frequency division multiple access.

5.2.2. Time division multiple access.

5.3. Spread-spectrum techniques

In the previous section, we considered methods for interference-free spectrum

sharing, in which no interference is permitted between users of the system. Al-

though such methods provide the best possible channel to each user, they have two

important disadvantages. First, these schemes are inefficient when the users’ traffic

is intermittent, such as in packet data systems. Since TDMA time slots and FDMA

frequency bands are allocated for relatively long periods of time, it is difficult for

the system to take advantage of pauses when a user is silent. Second, these schemes

require a great deal of overhead to set up and maintain. Either a central controller

must be used to allocate slots, or some sort of contention window must be used to

allow users to compete for slots.

On the other hand, if some interference is allowed between users, both these

problems are mitigated. Systems using this principle are generally called spread

spectrum systems, as their transmissions are “spread out” over the entire system

bandwidth, but in a clever way so as to minimize (though not completely eliminate)

interference with other users. In this section, we will mainly discuss direct sequence

spread spectrum, also known as code division multiple access (CDMA), but the

same principles apply to other spread spectrum systems.

5.3. SPREAD-SPECTRUM TECHNIQUES 55

5.3.1. CDMA: System Model. From the perspective of a single user, CDMA

may be viewed as a binary transmission scheme, where the modulation waveform

s0[k] is composed of sub-waveforms, called chips.

Let c0[k] and c1[k] represent chips, which have support on 1 ≤ k ≤ nc. In order

to form s0[k], we obtain a binary vector known as a chip sequence h. For each bit

in the chip sequence, we replace that bit in s0[k] with the corresponding chip. For

example, if h = [0, 1, 0, 0, 1], then

(5.14) s0[k] = [c0[k], c1[k], c0[k], c0[k], c1[k]].

Thus, if the length of h is ℓc, then nb = ℓcnc.

Unless otherwise specified, we will use s1[k] = −s0[k], and c1[k] = −c0[k].

Except for the unusual structure of s0[k] and s1[k], all of the analysis from Chapters

2 and 3 are still valid from the perspective of a single user.

Example 5.2. chip sequence, bandwidth

The main idea in CDMA is to provide each user with a unique chip sequence,

carefully chosen so as to be almost orthogonal under any time shift. The users can

then use their chip sequences at the same time, without significantly interfering

with each other.

5.3.2. Feedback shift registers. Chip sequences with the required proper-

ties can be generated using feedback shift registers.

5.3.3. Probability of error analysis: Optimal. We take two approaches to

the problem of analyzing CDMA’s error performance: first, we consider the optimal

approach in a two-user synchronized system, and then we consider a suboptimal but

low-complexity approach in a multi-user unsynchronized system.

Consider the two-user case. Suppose users 1 and 2 have chip sequences h(1)

and h(2), respectively, where

h(1) = [1, 1, 1, 0, 1, 0, 0](5.15)

h(2) = [0, 0, 1, 0, 1, 1, 1].(5.16)

56 5. MULTIPLE ACCESS COMMUNICATION SYSTEMS

Furthermore, suppose the chips are given by

(5.17) c0[k] =

1, 1 ≤ k ≤ nc,

0, otherwise,

and suppose c1[k] = −c0[k].

Similarly to our approach from Chapter 4, we can form c0[k] and c1[k] into

vectors. Thus, c0 = [1, 1, . . . , 1] (of length nc), and c1 = −c0. Let s(1) and s(2) be

basis vectors corresponding to the two users, and let s
(j)
i represent the modulation

function corresponding to the jth user’s ith symbol. Thus, recalling h(1) and h(2),

we have

s(1) = [c1, c1, c1, c0, c1, c0, c0](5.18)

s(2) = [c0, c0, c1, c0, c1, c1, c1],(5.19)

and

s
(1)
0 = s(1)(5.20)

s
(1)
1 = −s(1)(5.21)

s
(2)
0 = s(2)(5.22)

s
(2)
1 = −s(2).(5.23)

We assume that the users are bit-synchronized, i.e., each user’s bit starts at the

same time. Thus, the transmitted signal can be written as a vector x, where

(5.24) x = (1 − 2b(1))s(1) + (1 − 2b(2))s(2),

where b(1) ∈ {0, 1} and b(2) ∈ {0, 1} are the bits transmitted by users 1 and 2,

respectively; the expression (1 − 2b) maps the bit b into {+1,−1}.
Although from (5.24), s(1) and s(2) form a basis for the signal x, it should

be clear that they do not form an orthonormal basis. Following the procedure

from Chapter 4, we can orthonormalize the basis, as follows. First, we find sx by

normalizing s(1):

sx =
s(1)

|s(1)|(5.25)

=
1√
7nc

s(1).(5.26)

5.3. SPREAD-SPECTRUM TECHNIQUES 57

Next, we remove the component of sx from s(2), and normalize. We first need to

find s(2) · sx, given by

s(2) · sx =
1√
7nc

(s(1) · s(2))(5.27)

=
1√
7nc

([c1, c1, c1, c0, c1, c0, c0] · [c0, c0, c1, c0, c1, c1, c1])(5.28)

=
1√
7nc

(2(c1 · c1) + c0 · c0 + 4(c1 · c0)),(5.29)

where the last line follows from breaking up the vector into its c0 and c1 compo-

nents, as well as the fact that dot product is commutative. It is easy to see that

c1 · c1 = c0 · c0 = nc, while c1 · c0 = −nc, so we have

s(2) · sx =
1√
7nc

(2nc + nc − 4nc)(5.30)

= − 1√
7nc

nc(5.31)

= −
√

nc

7
.(5.32)

Now, sy is given by

(5.33) sy =
s(2) − (s(2) · sx)sx

|s(2) − (s(2) · sx)sx|
.

The numerator of this expression is given by

s(2) − (s(2) · sx)sx

= [c0, c0, c1, c0, c1, c1, c1] +

√

nc

7

1√
7nc

[c1, c1, c1, c0, c1, c0, c0](5.34)

= [c0, c0, c1, c0, c1, c1, c1] +
1

7
[c1, c1, c1, c0, c1, c0, c0](5.35)

= [
6

7
c0,

6

7
c0,−

8

7
c0,

8

7
c0,−

8

7
c0,−

6

7
c0,−

6

7
c0],(5.36)

where the last line follows since c1 = −c0. Finally, the norm of the numerator is
√

48nc/7. Thus,

(5.37) sy =

√

7

48nc
[
8

7
c0,

8

7
c0,−

6

7
c0,

6

7
c0,−

6

7
c0,−

8

7
c0,−

8

7
c0].

Expressing our original basis vectors in terms of the orthonormal basis, we have

(5.38) s(1) =
√

7ncsx,

58 5. MULTIPLE ACCESS COMMUNICATION SYSTEMS

and

(5.39) s(2) =

√

48nc

7
sy +

nc

7
sx.

The four possible transmitted signals, along with their corresponding Voronoi re-

gions, are depicted in Figure X. We can see that the Voronoi regions are not rect-

angular. This approach, known as multiuser detection, is optimal but becomes

intractably complex as the number of users increases beyond two.

5.3.4. Probability of error analysis: Suboptimal. The complexity of the

above detection problem stems from the need to optimally detect both users’ trans-

missions at the same time. On the other hand, we can ignore the interference from

other users, and assume that it is equivalent to noise.

The quantity s(1) · s(2) is known as cross-correlation. We see from the above

derivation that cross-correlation is a key parameter to determine the probability

of error in multiuser detection. More generally, cross-correlation can be defined in

terms of any possible relative delay between user 1 and user 2’s chip sequences.

First define

(5.40) s
(2)
→k = [s

(2)
k+1, s

(2)
k+2, . . . , s

(2)
nb

, s
(2)
1 , s

(2)
2 , . . . , s

(2)
k]

as the kth circular shift of s(2). The cross-correlation under this circular shift can

be found by calculating

(5.41) C(1,2)[k] = s(1) · s(2)
→k.

If s(2) is user 2’s spreading code, then the first nb − k samples from s(2) are

modulated with bit b1 ∈ {+1,−1}, while the last k samples are modulated with bit

b2 ∈ {+1,−1}. Thus, define

(5.42) s
(2)
→k(b1,b2)

= [b1s
(2)
k+1, b1s

(2)
k+2, . . . , b1s

(2)
nb

, b2s
(2)
1 , b2s

(2)
2 , . . . , b2s

(2)
k]

as user 2’s interfering signal, assuming that user 1’s signal is of interest.

Following the arguments from previous chapters, let sx represent the normalized

basis vector corresponding to s(1), that is,

sx =
s(1)

|s(1)|(5.43)

=
1√
nb

s(1).(5.44)

5.3. SPREAD-SPECTRUM TECHNIQUES 59

The signal observed at the input of user 1’s matched filter is

(5.45) y = αs(1) + s
(2)
→k(b1,b2)

+ n,

where n is a vector of additive white Gaussian noise. The noise-free matched filter

outputs are thus given by

sx · (αs(1) + s
(2)
→k(b1,b2)

) = αsx · s(1) + sx · s(2)
→k(b1,b2)(5.46)

=
√

nbα + sx · s(2)
→k(b1,b2)

.(5.47)

User 1’s signal is contained in the
√

nb term, while the interference from user 2 is

contained in the sx · s(2)
→k(b1,b2)

term.

In suboptimal analysis, we treat the interference term sx · s(2)
→k(b1,b2)

as noise.

Noise in our system is Gaussian, which is characterized by its variance (since the

mean is always zero). Furthermore, from Chapter 1, since the interference and

noise are independent, we have that

(5.48) Var(s
(2)
→k(b1,b2) · sx + n · sx) = Var(s

(2)
→k(b1,b2)

· sx) + Var(n · sx),

where Var(n·sx) = N0/2Ts is the variance of the noise at the output of the matched

filter. In (5.48), the variance is taken with respect to k, b1, and b2, since these are

all random.

Example 5.3. Calculation of Var(s
(2)
→k(b1,b2)

)

We can take (5.48) further. Suppose there are u ≥ 2 users, all interfering with

user 1. By assumption, all their transmissions are statistically independent. Thus,

the total variance of the interference and noise is given by

(5.49) σ2 =
N0

2Ts
+

u
∑

j=2

Var(s
(j)
→k(b1,b2)

· sx)

Let’s assume that this variance is the same for all users and is equal to v. Then

(5.49) reduces to

(5.50) σ2 =
N0

2Ts
+ (u − 1)v.

60 5. MULTIPLE ACCESS COMMUNICATION SYSTEMS

Substituting this value of σ2 back into the probability of error expressions from

Chapter 2, we have

Pr(error) =
1

2
erfc

(

sx · s(1)

√
2σ2

)

(5.51)

=
1

2
erfc

(
√

nbTs

N0 + 2Ts(u − 1)v

)

.(5.52)

CHAPTER 6

An Introduction to Information Theory

6.1. Error-control coding

6.1.1. Capacity.

6.1.2. Linear block codes.

6.1.3. Convolutional codes.

6.2. Data compression

6.2.1. Entropy.

6.2.2. Huffman codes.

61

Bibliography

[1] A. Leon-Garcia, Probability and Random Processes for Electrical Engineering, 2nd ed., Read-
ing, MA: Addison-Wesley, 1994.

[2] A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed., New York,
NY: McGraw-Hill, 1991.

[3] S. Haykin, Communication Systems, 4th ed., New York, NY: Wiley, 2000.
[4] A. Asif, Signals and Systems, Cambridge: Cambridge University Press, ???.

63

APPENDIX A

Fourier Transforms

A.1. Properties

A.2. Table of fourier transform pairs

A.2.1. Definitions.

(A.1) rect(t) =

1, |t| < 1/2

1/2, |t| = 1/2

0, |t| > 1/2

(A.2) sinc(t) =
sin(πt)

πt

A.2.2. Table.

Fourier transform ↔ Time domain

rect(jω)
1

2π
sinc

(

t

2π

)

(A.3)

65

APPENDIX B

The Cauchy-Schwartz Inequality

In this appendix, we prove the Cauchy-Schwartz inequality, which we used in

Chapter 3 to design the optimal detection filter.

67

APPENDIX C

Table of Notation

Notation Meaning

Z The set of integers {. . . ,−2,−1, 0, 1, 2, . . .}
δ(t) The Dirac delta function

a(t) ⋆ b(t) Convolution of a(t) and b(t)

F [x(t)] Fourier transform of x(t)

F−1[X(jω)] Inverse fourier transform of X(jω)

69

