====== Lectures ====== The Lectures for this course include: * {{:lecture1b.ppt|Lecture 1 - course introduction and fuzzy logic}} * {{:lecture_2x.ppt|Lecture 2 - preliminaries and fuzzy logic}} * {{:rs-kdd.ppt|Alternative Lecture 2 - rough sets in KDD: Tutorial Notes}} * {{:lecture_3x.ppt|Lecture 3 - finish fuzzy logic and begin rough sets}} * {{:flcases.pdf|fuzzy logic cases}} * {{:lecture_4x.ppt|Lecture 4 - more rough sets}} * {{:lecture_5x.ppt|Lecture 5 - more rough sets-Various Reducts & Rough Sets Applications}} * {{:umuai2007_aug31.pdf|application 1}} * {{:ohrn_thesis.pdf|application 2}} * {{:p1120548004.pdf|application 3}} * {{:camwa2008pp.pdf|application 4}} * {{:full3912.pdf|application 5}} * {{:dbrough.pdf|Lecture 5a - DBROUGH}} * {{:lecture_6.ppt|Lecture 6 - Neural Networks}} * {{:lecture_7a.ppt|Lecture 7 - More on Neural Networks}} * {{:lecture_7b.pdf|Lecture 7 - More on Neural Networks pdf version}} * {{:nn_tutorial.pdf|Lecture 7+ - Neural Networks tutorial video}} * {{:backpropagation.pdf|Lecture 7++ - Neural Networks - backpropagation}} * {{:lecture_14_copy.ppt|actually lecture 8-9 - Lecture 14 - Recurrent Neural Networks}} * {{:lecture_14aa.ppt|Lecture 14a - The Next Generation Neural Networks - G. Hinton}} * {{:lecture_14b.ppt|Lecture 14b - Neural Networks - Single Layer}} * {{:lecture_14c.ppt|Lecture 14c - Neural Networks - Probabilistic}} * {{:lecture_14d.ppt|Lecture 14d - Neural Networks - Learning}} * {{:lecture_14f.ppt|Lecture 14e - Neural Networks - Feed Forward}} * {{:cse4403lec8.pdf|Lecture 10 - Evolutionary Computing: What}} * {{:evolutionary_algorithm.pdf|Daniel Dennett’s lectures on evolutionary computing}} * {{:cse4403lec9.pdf|Lecture 11 - Genetic Algorithms & Evolution Strategies}} * {{:cse4403lec10.pdf|Lecture 12 - Evolutionary & Genetic Programming}} * {{:lecture_20.ppt|actually Lecture 13 - Lecture 20 & 21- Ontology and Representation}} * {{:hmm_nicky.pdf|Lecture 14 - Hidden Markov Models}} * {{:cse4403lec11.pdf|Lecture 11 - Probabilistic Reasoning: Why}} * {{:cse4403lec12.pdf|Lecture 15 - Bayesian Networks}} * {{:cse4403lec13.pdf|Lecture 15+ - Discussion on Bayesian Networks}} * {{:lecture_15.ppt||Lecture 16 - Web Intelligence, Brain Informatics and Granular Computing}} * {{:wimbit.ppt|Lecture 16a - Web Intelligence meet Brain Informatics}} * {{:lecture_16.ppt|Lecture 17 - Granular Computing}} * {{:att00207.ppt|Lecture 17a - Zadeh's Granular Computing}} * {{:conceptual_granularity_fuzzy_and_rough_sets.ppt|Lecture 17b - Erich's Granular Computing}} * {{:granular_computing.pdf|Lecture 17c - Skrowon's Granular Computing}} * {{:lecture_17.ppt|Lecture 18 - Introduction to Expert Systems}} * {{:bayesian_network_modeling_for_evolutionary_genetic_structures.ppt|Lecture 19 - Bayesian Network Modeling for evolutionary genetic structures}} * {{:cercone.ppt|Lecture 20 - A graph theory approach to characterize the relationship between protein functions and structure of biological networks}} * {{:lecture_22.ppt|Lecture 21 - Course Review}} Student project presentations for this course include: * {{:cse4403.ppt|Noada Lugaj and Jason Panas - An investigation about the application of Artificial Neural Networks in medical diagnosis}} * {{:sentencesimpliprojectpresentation_nicky_mee.ppt|Ameeta Agrawal and Nikolay Yakovets - Sentence simpliFIcation using simple wikipedia}} * {{:4403_presentation.ppt|Albert VanderMeulen - Phoneme Recognition Using Neural Networks }} * {{|}} * {{:00-kickoff-ppt.ppt|Eiben-Smith Lectures - Kickoff}} * {{:01-introduction-ppt.ppt|Eiben-Smith Lectures - Introduction}} * {{:02-what_is_an_ea-ppt.ppt|Eiben-Smith Lectures - What is an EA}} * {{:03-genetic_algorithms-ppt.ppt|Eiben-Smith Lectures - Genetic Algorithms}} * {{:04-evolution_strategies-ppt.ppt|Eiben-Smith Lectures - Evolutionary Strategy}} * {{:05-evolutionary_programming-ppt.ppt|Eiben-Smith Lectures - Evolutionary Programming}} * {{:06-genetic_programming-ppt.ppt|Eiben-Smith Lectures - Genetic Programming}} * {{:08-parameter_control-ppt.ppt|Eiben-Smith Lectures - Parameter Tuning}} * {{:09-multi-ppt.ppt|Eiben-Smith Lectures - Multimodal Problems}} * {{:10-memetic_algorithms-ppt.ppt|Eiben-Smith Lectures - Memetic Algorithms}} * {{:11-theory-ppt.ppt||Eiben-Smith Lectures - Theory}} * {{:12-constraints-ppt.ppt|Eiben-Smith Lectures - Constraints}} * {{:http.pdf|Probabilistic inference lectures}}