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Rough set theory can be applied to rule induction. There are two different types of classi-
fication rules, positive and boundary rules, leading to different decisions and consequences.
They can be distinguished not only from the syntax measures such as confidence, coverage
and generality, but also the semantic measures such as decision-monotocity, cost and risk.
The classification rules can be evaluated locally for each individual rule, or globally for a set
of rules. Both the two types of classification rules can be generated from, and interpreted
by, a decision-theoretic model, which is a probabilistic extension of the Pawlak rough set
model.
As an important concept of rough set theory, an attribute reduct is a subset of attributes
that are jointly sufficient and individually necessary for preserving a particular property
of the given information table. This paper addresses attribute reduction in decision-theo-
retic rough set models regarding different classification properties, such as: decision-
monotocity, confidence, coverage, generality and cost. It is important to note that many
of these properties can be truthfully reflected by a single measure c in the Pawlak rough
set model. On the other hand, they need to be considered separately in probabilistic mod-
els. A straightforward extension of the c measure is unable to evaluate these properties.
This study provides a new insight into the problem of attribute reduction.

Crown Copyright � 2008 Published by Elsevier Inc. All rights reserved.
1. Introduction

In recent years, researchers, motivated by a desire to represent information qualitatively, have proposed many models to
incorporate probabilistic approaches into rough set theory, which was introduced by Pawlak [22,24,26,27]. The proposals
include probabilistic rough set models [12,20,28,40,44,45,53,54], decision-theoretic rough set models [43,47,48], variable
precision rough set models [21,52], rough membership functions [25], parameterized rough set models [27,30,34], and
Bayesian rough set models [8,9,32,33]. All these proposals share the common feature by introducing thresholds into the
standard model. For example, the decision-theoretic rough set models were proposed in the early 1990’s, in order to gener-
alize the probabilistic rough set model [22]. The decision-theoretic models systematically calculate the parameters based on
a set of loss functions according to the Bayesian decision procedure. The physical meaning of the loss functions can be inter-
preted based on more practical notions of costs and risks. The results of these studies increase our understanding of rough set
theory and its domain of applications.

The results drawn from rough set based classification can be used for decision making. In the Pawlak model, one can have
two types of rules, positive rules and boundary rules [45]. A positive rule indicates that an object or an object set for sure
belongs to one decision class, which enables us to make a positive decision. A boundary rule indicates that an object or
an object set partially belongs to the decision class, which leads to another type of decision. In a probabilistic rough set
model, one can also have positive rules and boundary rules. A probabilistic positive rule expresses that an object or an object
2008 Published by Elsevier Inc. All rights reserved.
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set belongs to one decision class beyond a certain confidence threshold. A probabilistic boundary rule expresses that an
object or an object set belongs to one decision class beyond another weaker confidence threshold. Besides these two types
of rules, there is another situation, such that one cannot indicate to which decision class the object or the object set belongs,
since the confidence is too low to support any decision making. The probabilistic positive and boundary rules can be distin-
guished not only by the syntax measures, such as confidence, coverage and generality, but also the semantics measures, such
as decision-monotocity, cost and risk. The syntax properties focus on the discovery of the rules, while the semantics prop-
erties focus on the utilization of the rules, and thus are more practical for the real applications. Measures regarding the
semantics properties are less studied in the rough set literature.

The theory of rough sets has been applied to data analysis, data mining and knowledge discovery. A fundamental notion
supporting such applications is the concept of attribute reduction [22]. The objective of reduct construction is to reduce the
number of attributes, and at the same time, preserve a certain property that we want. Different algorithms, approaches and
methodologies have been extensively studied [1,36,2,4,11,13,17,20,29,35,41,51]. Suppose, we are interested in the property of
concept classification. A reduct should be able to preserve the original classification power provided by the whole attribute
set. This power may be interpreted by syntax properties and semantics properties for both positive and boundary rule sets.

For the Pawlak model, a single measure c is suggested for evaluating the performance of classification and attribute
reduction. For a probabilistic model, by introducing the probabilistic thresholds, the properties are not necessarily mono-
tonic with respect to the set inclusion, and cannot be evaluated by a single measure. Instead, we need to consider multiple
properties and multiple measures for evaluation. More specifically, this paper addresses different criteria, such as confidence,
coverage, generality, cost, and decision-monotocity criteria based on the decision-theoretic rough set models.

2. The Pawlak rough set model

In many data analysis applications, information and knowledge are stored and represented in an information table, where
a set of objects are described by a set of attributes [22]. An information table represents all available information and knowl-
edge. That is, objects are only perceived, observed, or measured by using a finite number of attributes.

Definition 1. An information table is the following tuple:
S ¼ ðU;At; fVa j a 2 Atg; fIa j a 2 AtgÞ;
where U is a finite nonempty set of objects, At is a finite nonempty set of attributes, Va is a nonempty set of values of a 2 At,
and Ia : U ! Va is an information function that maps an object in U to exactly one value in Va.

In classification problems, we consider an information table of the form S ¼ ðU;At ¼ C [ fDg; fVag; fIagÞ, where C is a set of
condition attributes describing the objects, and D is a decision attribute that indicates the classes of objects. In general, we
may have a set of decision attributes. A table with multiple decision attributes can be easily transformed into a table with a
single decision attribute by considering the Cartesian product of the original decision attributes.

An equivalence relation with respect to A � At is denoted as EA, or simply E. That is, EA ¼ fðx; yÞ 2 U � U j
8a 2 AðIaðxÞ ¼ IaðyÞÞg. Two objects in U satisfy EA if and only if they have the same values on all attributes in A. An equivalence
relation is reflexive, symmetric and transitive.

The pair ðU; EAÞ is called an approximation space defined by the attribute set A. The equivalence relation EA induces a par-
tition of U, denoted by U=EA or pA. The equivalence class of U=EA containing x is given by ½x�EA

¼ ½x�A ¼ fy 2 U j ðx; yÞ 2 EAg, or
½x� if EA is understood.

Consider an equivalence relation E on U. The equivalence classes induced by the partition p (i.e., U=E) are the basic blocks
to construct the Pawlak rough set approximations. For a subset X � U, the lower and upper approximations of X with respect
to p are define by [22]:
aprpðXÞ ¼ fx 2 U j ½x� � Xg;
¼ fx 2 U j PðX j ½x�Þ ¼ 1g;

aprpðXÞ ¼ fx 2 U j ½x� \ X 6¼ ;g;
¼ fx 2 U j PðX j ½x�Þ > 0g;

ð1Þ
where PðX j ½x�Þ denotes the conditional probability that an object x belongs to X given that the object is in the equivalence
class ½x�, i.e., PðX j ½x�Þ ¼ j½x�\Xj

j½x�j .
Based on the rough set approximations of X defined by p, one can divide the universe U into three disjoint regions: the

positive region POSpðXÞ indicating the union of all the equivalence classes defined by p that each for sure can induce the
decision class X; the boundary region BNDpðXÞ indicating the union of all the equivalence classes defined by p that each
can induce a partial decision of X; and the negative region NEGpðXÞwhich is the union of all equivalence classes that for sure
cannot induce the decision class X [22]:
POSpðXÞ ¼ aprpðXÞ;
BNDpðXÞ ¼ aprpðXÞ � aprpðXÞ;
NEGpðXÞ ¼ U � POSpðXÞ [ BNDpðXÞ ¼ U � aprpðXÞ ¼ ðaprpðXÞÞc:

ð2Þ
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Let pD ¼ fD1;D2; . . . ;Dmg be a partition of the universe U, defined by the decision attribute D, representing m classes, where
m ¼ jVDj. The lower and upper approximations of the partition pD with respect to p are the families of the lower and upper
approximations of all the equivalence classes of pD. That is [23],
Table 1
The s�

w1

w2

. . .

wj

. . .

ws
aprpðpDÞ ¼ ðaprpðD1Þ; aprpðD2Þ; . . . ; aprpðDmÞÞ;
aprpðpDÞ ¼ ðaprpðD1Þ; aprpðD2Þ; . . . ; aprpðDmÞÞ:

ð3Þ
For this m-class problem, we can solve it in terms of m two-class problems. Then, POSpðpDÞ indicates the union of all the
equivalence classes defined by p that each for sure can induce a decision. BNDpðpDÞ indicates the union of all the equivalence
classes defined by p that each can induce a partial decision. Formally, we have [45]:
POSpðpDÞ ¼
[

16i6m
POSpðDiÞ;

BNDpðpDÞ ¼
[

16i6m
BNDpðDiÞ;

NEGpðpDÞ ¼ U � POSpðpDÞ [ BNDpðpDÞ:

ð4Þ
We can easily verify the following properties of the three regions in the Pawlak model:

(1) The three regions are pairwise disjoint, and the union is a covering of U. Furthermore, POSpðpDÞ \ BNDpðpDÞ ¼ ; and
POSpðpDÞ [ BNDpðpDÞ ¼ U. That means, for any equivalence class in p, it can either make a sure decision or a partial
decision. Thus, NEGpðpDÞ ¼ ;.

(2) For an equivalence class in POSpðpDÞ, it associates with at most one decision class Di 2 pD. The family of positive
regions fPOSpðDiÞ j 1 6 i 6 mg contains pairwise disjoint sets, i.e., POSpðDiÞ \ POSpðDjÞ ¼ ;, for any i 6¼ j.

(3) For an equivalence class in BNDpðpDÞ, it associates with at least two decision classes Di;Dj 2 pD. The family of bound-
ary regions fBNDpðDiÞ j 1 6 i 6 mg does not necessarily contain pairwise disjoint sets, i.e., it may happen that
BNDpðDiÞ \ BNDpðDjÞ 6¼ ;, for some i 6¼ j.

An information table is consistent if each equivalence class defined by C decides a unique decision. In this case,
BNDpC ðpDÞ ¼ NEGpC ðpDÞ ¼ ; and POSpC ðpDÞ ¼ U. An inconsistent information table contains at least one equivalence class
½x�C 2 pC, such that it associates with more than one decision.

3. Decision-theoretic rough set models

A decision-theoretic rough set model brings new insights into the probabilistic rough set approaches. The Bayesian deci-
sion procedure deals with making decisions with minimum risk based on observed evidence. We present a brief description
of the procedure from the book by Duda and Hart [6]. Different probabilistic models can be easily derived from the decision-
theoretic model.

3.1. The Bayesian decision procedure

Given an object x, let x be a description of the object, X ¼ fw1; . . . ;wsg be a finite set of s states that x is possibly in, and
A ¼ fa1; . . . ; atg be a finite set of t possible actions. Let Pðwj j xÞ be the conditional probability of x being in state wj, and the
loss function kðaijwjÞ denote the loss (or cost) for taking the action ai when the state is wj.

All the values of loss functions can be conveniently expressed as an s� t matrix illustrated in Table 1, with the rows
denoting the set X of s states and the columns the set A of t actions. Each cell denotes the cost kðaijwjÞ for taking the action
ai in the state wj. The cost kðaijwjÞ can be written as kaiwj

for simplicity.
For an object x with description x, suppose action ai is taken. The expected cost associated with action ai is given by:
Rðai j xÞ ¼
Xs

j¼1

kðaijwjÞPðwj j xÞ: ð5Þ
The quantity Rðai j xÞ is called the conditional risk.
t matrix for all the values of loss functions

a1 a2 . . . ai . . . at

kða1jw1Þ kða2jw1Þ . . . kðaijw1Þ . . . kðat jw1Þ
kða1jw1Þ kða2jw2Þ . . . kðaijw2Þ . . . kðat jw2Þ

kða1jwjÞ kða2jwjÞ . . . kðaijwjÞ . . . kðat jwjÞ

kða1jwsÞ kða2jwsÞ . . . kðaijwsÞ . . . kðatwsÞ
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The s� t matrix has two important applications. First, given the loss functions and the probabilities, one can compute the
expected cost of a certain action. Furthermore, comparing the expected costs of all the actions, one can decide a particular
action with the minimum cost. Second, according to the loss functions, one can determine the condition or probability for
taking a particular action.

Example 1. The idea of the Bayesian decision procedure can be demonstrated by the following example. Suppose, there are
two states: w1 indicates that a meeting will be over in less than or equal to 2 h, and w2 indicates that the meeting will be over
in more than 2 h. Two states are complement. Suppose, the probability for having the state w1 is 0.80, then the probability for
having the state w2 is 0.20, i.e., Pðw1 j xÞ ¼ 0:80 and Pðw2 j xÞ ¼ 1� 0:80 ¼ 0:20. There are two actions: a1 means to park the
car on meter, and a2 means to park the car in the parking lot. The loss functions for taking different actions in different states
can be expressed as the following matrix:
a1 (Park on meter) a2 (Park in a parking lot)

w1 (62 h) $2.00 $7.00
w2 (>2 h) $12.00 $7.00
In this case, the cost for each action can be calculated as follows:
X
Xc
Rða1 j xÞ ¼ $2:00 � 0:80þ $12:00 � 0:20 ¼ $3:00;
Rða2 j xÞ ¼ $7:00 � 0:80þ $7:00 � 0:20 ¼ $7:00:
Since $3:00 < $7:00, according to the minimum cost, one may decide to park the car on meter, instead of in a parking lot.
Suppose, a person wants to decide where to park the car. It is interesting to know if parking on meter is more suitable.

According to Eq. (5), one obtains:
$2:00 � Pðw1 j xÞ þ $12:00 � ð1� Pðw1 j xÞÞ 6 $7:00:
That is, Pðw1 j xÞP 0:50. Thus, if the probability that the meeting is over within 2 h is greater than or equal to 0.50, then it is
more profitable to park the car on meter, otherwise, park in a parking lot.
3.2. Decision-theoretic rough set models

In an approximation space ðU; EÞ, the equivalence relation E induces a partition p ¼ U=E. Let Desð½x�Þ denote the descrip-
tion of x. For simplicity, we write Desð½x�Þ as ½x� in the subsequent discussions. The partition p is the set of all possible descrip-
tions. The classification of objects can be easily fitted into the Bayesian decision framework. The set of states is given by
X ¼ pD ¼ fX;Xcg, indicating that an object is in a decision class X and not in X, respectively. We use the same symbol to de-
note both a subset X and the corresponding state. The probabilities for these two complement states are denoted as
PðX j ½x�Þ ¼ jX\½x�jj½x�j and PðXc j ½x�Þ ¼ 1� PðX j ½x�Þ.

With respect to the three regions defined by a partition p, the set of actions regarding the state X is given by
A ¼ faP; aN; aBg, where aP , aN and aB represent the three actions of deciding an object to be in the sets POSpðXÞ, NEGpðXÞ
and BNDpðXÞ, respectively. When an object belongs to X, let kPP , kBP and kNP denote the costs of taking the actions aP , aB

and aN , respectively. When an object does not belong to X, let kPN , kBN and kNN denote the costs of taking the same three ac-
tions. The loss functions regarding the states X and Xc can be expressed as a 2� 3 matrix as follows:
aP aB aN

kPP kBP kNP

kPN kBN kNN
The expected costs Rðai j ½x�Þ of taking individual actions can be expressed as:
RðaP j ½x�Þ ¼ kPPPðX j ½x�Þ þ kPNPðXc j ½x�Þ;
RðaN j ½x�Þ ¼ kNPPðX j ½x�Þ þ kNNPðXc j ½x�Þ;
RðaB j ½x�Þ ¼ kBPPðX j ½x�Þ þ kBNPðXc j ½x�Þ:

ð6Þ
The Bayesian decision procedure leads to the following minimum-risk decision rules:

(P) If RðaP j ½x�Þ 6 RðaN j ½x�Þ and RðaP j ½x�Þ 6 RðaB j ½x�Þ, decide ½x� � POSpðXÞ;
(N) If RðaN j ½x�Þ 6 RðaP j ½x�Þ and RðaN j ½x�Þ 6 RðaB j ½x�Þ, decide ½x� � NEGpðXÞ;
(B) If RðaB j ½x�Þ 6 RðaP j ½x�Þ and RðaB j ½x�Þ 6 RðaN j ½x�Þ, decide ½x� � BNDpðXÞ.
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Tie-breaking criteria should be added so that each object is classified into only one region. Since for any state X,
PðX j ½x�Þ þ PðXc j ½x�Þ ¼ 1, we can simplify the rules to classify any object x based only on the probability PðX j ½x�Þ and the
loss functions.

Consider a special kind of loss functions with kPP 6 kBP < kNP and kNN 6 kBN < kPN . That is, the cost of classifying an object x
into the positive region POSpðXÞ is less than or equal to the cost of classifying x into the boundary region BNDpðXÞ, and both
of these costs are strictly less than the cost of classifying x into the negative region NEGpðXÞ. The reverse order of costs is used
for classifying an object that does not belong to X. This assumption implies that a 2 ð0;1�, c 2 ð0;1Þ, and b 2 ½0;1Þ. In this
case, the minimum-risk decision rules (P)–(B) can be written as:

(P) If PðX j ½x�ÞP c and PðX j ½x�ÞP a, decide ½x� � POSpðXÞ;
(N) If PðX j ½x�Þ 6 b and PðX j ½x�Þ 6 c, decide ½x� � NEGpðXÞ;
(B) If PðX j ½x�ÞP b and PðX j ½x�Þ 6 a, decide ½x� � BNDpðXÞ,

where
a ¼ kPN � kBN

ðkPN � kBNÞ þ ðkBP � kPPÞ
;

c ¼ kPN � kNN

ðkPN � kNNÞ þ ðkNP � kPPÞ
;

b ¼ kBN � kNN

ðkBN � kNNÞ þ ðkNP � kBPÞ
:

ð7Þ
When ðkPN � kBNÞðkNP � kBPÞ > ðkBP � kPPÞðkBN � kNNÞ, we have a > b, and thus a > c > b. After tie-breaking, we obtain:

(P1) If PðX j ½x�ÞP a, decide ½x� � POSpðXÞ;
(N1) If PðX j ½x�Þ 6 b, decide ½x� � NEGpðXÞ;
(B1) If b < PðX j ½x�Þ < a, decide ½x� � BNDpðXÞ.

After computing the two parameters a and b from the loss functions, the probabilistic lower and upper approximations
can be defined by:
aprpða;bÞ ðXÞ ¼ fx 2 U j PðX j ½x�ÞP ag;
aprpða;bÞ ðXÞ ¼ fx 2 U j PðX j ½x�Þ > bg:

ð8Þ
The probabilistic positive, boundary and negative regions are defined by:
POSpða;bÞ ðXÞ ¼ aprpða;bÞ ðXÞ;
BNDpða;bÞ ðXÞ ¼ aprpða;bÞ ðXÞ � aprpða;bÞ ðXÞ;
NEGpða;bÞ ðXÞ ¼ U � POSpða;bÞ ðXÞ [ BNDpða;bÞ ðXÞ

¼ U � aprpða;bÞ ðXÞ ¼ ðaprpða;bÞ ðXÞÞ
c
:

ð9Þ
Similar to the Pawlak rough set model, we can extend the concept of probabilistic approximations and regions of a single
decision to a partition pD. For simplicity, we assume that the same loss functions are used for all decisions. That is,
aprpða;bÞðpDÞ ¼ ðaprpða;bÞ ðD1Þ; aprpða;bÞ ðD2Þ; . . . ; aprpða;bÞ ðDmÞÞ;
aprpða;bÞðpDÞ ¼ ðaprpða;bÞ ðD1Þ; aprpða;bÞ ðD2Þ; . . . ; aprpða;bÞ ðDmÞÞ:

ð10Þ
We can define the three regions of the partition pD for the probabilistic rough set models [45]:
POSpða;bÞ ðpDÞ ¼
[

16i6m
POSpða;bÞ ðDiÞ;

BNDpða;bÞ ðpDÞ ¼
[

16i6m
BNDpða;bÞ ðDiÞ;

NEGpða;bÞ ðpDÞ ¼ U � POSpða;bÞ ðpDÞ [ BNDpða;bÞ ðpDÞ:

ð11Þ
We can verify the following properties of the three regions in probabilistic models:

(1) The three regions are not necessarily pairwise disjoint. Nevertheless, the union is a covering of U, i.e.,
POSpða;bÞ ðpDÞ [ BNDpða;bÞ ðpDÞ [NEGpða;bÞ ðpDÞ ¼ U. Furthermore, it may happen that POSpða;bÞ ðpDÞ \ BNDpða;bÞ ðpDÞ 6¼ ;, and

NEGpða;bÞ ðpDÞ is not necessarily empty.
(2) The family of probabilistic positive regions f POSpða;bÞ ðDiÞ j 1 6 i 6 mg does not necessarily contain pairwise disjoint

sets, i.e., it may happen that POSpða;bÞ ðDiÞ \ POSpða;bÞ ðDjÞ 6¼ ;, for some i 6¼ j.
(3) The family of probabilistic boundary regions f BNDpða;bÞ ðDiÞ j 1 6 i 6 mg does not necessarily contain pairwise disjoint

sets, i.e., it may happen that BNDpða;bÞ ðDiÞ \ BNDpða;bÞ ðDjÞ 6¼ ;, for some i 6¼ j.
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The Pawlak model, as a special case, can be derived from the general probabilistic model by having ða ¼ 1Þ > ðb ¼ 0Þ, and
a ¼ 1� b [28]. From decision rules (P1)-(B1), we can compute the approximations as aprpð1;0Þ ðpDÞ ¼ POSpð1;0Þ ðpDÞ and
aprpð1;0Þ ðpDÞ ¼ POSpð1;0Þ ðpDÞ [ BNDpð1;0Þ ðpDÞ ¼ U.

We can derive the 0.50 probabilistic model [28], the symmetric variable precision rough set model [52], and the asym-
metric variable precision rough set model [14]. More specifically, we may have the following probabilistic rough set models
[45]:

� If a > 0:50, POSpða;bÞ ðpDÞ contains pairwise disjoint sets.
� If b > 0:50, POSpða;bÞ ðpDÞ, BNDpða;bÞ ðpDÞ and NEGpða;bÞ ðpDÞ contain pairwise disjoint sets.
� If b ¼ 0, NEGpða;bÞ ðpDÞ ¼ ;.

When generalizing results from the Pawlak rough set model to the probabilistic rough set models, it is necessary to con-
sider the implications of those properties.

Example 2. Consider an example discussed by Yao and Herbert [42]. Suppose there are two complementary states after a
series of diagnoses for a certain type of cancer: wC is a confirmed cancer state and wH is a confirmed no-cancer state, thus
wH ¼ wc

C . There are three actions regarding the three regions of the decision: aP is to take some cancer-treatments to a
patient, aB is to wait-and-see when the decision is pending, and aN is to discharge the patient without any further treatment.

The loss function for taking an action should include the cost and risk of further testing, follow-up diagnoses, treatments,
and the cost of the corresponding results. For example, the loss function kðaP jwCÞ indicates the cost of taking proper
treatments for a confirmed patient and the price of postoperative effects. The loss function kðaBjwCÞ indicates the risk of the
potential delay of the proper treatment to a cancer patient. The loss function kðaNjwHÞ, indicating to discharge a no-cancer
patient, contains very little cost. Suppose one can estimate all the values of the loss functions and express them in the
following matrix:
aP (Treat) aB (Wait-and-see) aN (Discharge)

wC (cancer) $1200.00 $1500.00 $3500.00
wH (no-cancer) $2500.00 $1000.00 $0
According to the given matrix of loss functions, we can calculate the values of the two thresholds a and b according to Eq. (7):
a ¼ $2500:00� $1000:00
ð$1500:00� $1000:00Þ � ð$1200:00� $2500:00Þ ¼ 0:83

b ¼ $1000:00� $0
ð$3500:00� $0Þ � ð$1500:00� $1000:00Þ ¼ 0:33:
4. Rule induction

One of the important applications of rough set theory is to induce decision or classification rules. In this section, we con-
sider two related issues. The first issue is the form and interpretation of rules. Two different types of classification rules are
introduced and examined. The second issue is the evaluation of a single rule and a set of rules. The evaluation is investigated
by considering the local evaluation of each single rule and the global evaluation of a set of rules.

4.1. Two types of classification rules

Typically, a rule in rough set theory is expressed in the form of ½x� ! Di, stating that an object with description ½x� would
be in the decision class Di. Based on the notions of positive and boundary regions, we may introduce two types of rules [45].
One type is called positive rules and the other is called boundary rules.

Consider a partition p defined by a subset of condition attributes and the partition pD ¼ fD1;D2; . . . ;Dmg defined by the
decision attribute. For any ½x� 2 p, one can induce one of the following two types of classification rules [45]:

� Positive rule: If ½x� � POSpða;bÞ ðpDÞ, the induced rule is a positive rule, denoted as:
½x�!PDi; where Di 2 pD and ½x� � POSpða;bÞ ðDiÞ:
� Boundary rule: If ½x� � BNDpða;bÞ ðpDÞ, the induced rule is a boundary rule, denoted as:
½x�!BDi; where Di 2 pD and ½x� � BNDpða;bÞ ðDiÞ:
In the Pawlak model, we have a ¼ 1 and b ¼ 0. In probabilistic models, we require a > b. Both models can generate these two
types of rules.
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Although the two types of rules have the same form and are characterized by the same quantitative measures, they have
different interpretations, and hence lead to different decisions and actions. For example, Yao and Herbert suggest that an
‘‘immediate positive decision” is made based on a positive rule, and a ‘‘delayed positive decision” is made based on a bound-
ary rule [10,42]. Regarding the previous medical example, a positive rule ½x�!PwC means that treatment should be applied
immediately to a patient with a high probability of having cancer. A positive rule ½x�!PwH results in the discharge of a patient
with a high probability of not having cancer (i.e., low probability of having cancer). A boundary rule, in forms of ½x�!BwC or
½x�!BwH , means that the doctor may put the patient in a wait-and-see status requiring further diagnoses and investigations.

Another example is the academic paper review process. A positive rule means a paper is accepted or rejected right away.
A boundary rule means a paper requires minor or major revisions, and the final acceptance/rejection decision is pending.

In the induction and utilization of rules, we in fact consider two slightly different types of decisions or actions. One deci-
sion determines the region to which an equivalence class belongs. According to the decision-theoretic model, we can deter-
mine if an equivalence class ½x� belongs to the positive region of a decision class Di, i.e., ½x� � POSpðDiÞ, or ½x� belongs to the
boundary region of Di, i.e., ½x� � BNDpðDiÞ. Another kind of decision is to determine the action resulted from a rule. According
to a positive rule ½x�!PDi, we can determine a positive action towards the decision class Di; according to a boundary rule, we
can determine a pending action towards Di. Since the former decisions determine the latter decisions, we use these two types
of decisions interchangeably in this paper.
4.2. Single rule evaluation

Many quantitative measures associated with rules have been studied [3,5,46,49]. We review some measures for single
rule (local) evaluation.

4.2.1. Confidence
Given a rule ½x� ! Di, the confidence measure is defined as the ratio of the number of objects in an equivalence class ½x�

that are correctly classified as the decision class Di and the number of objects in the equivalence class ½x�:
confidenceð½x� ! DiÞ ¼
# of objects in ½x� correctly classified as Di

# of objects in ½x� ¼ j½x� \ Dij
j½x�j ¼ PðDi j ½x�Þ; ð12Þ
where j:j denotes the cardinality of the set. Confidence focuses on the classification of an equivalence class ½x�. The higher the
confidence, the stronger the rule is.

The confidence measure is directly associated with the thresholds a and b. That is, the confidence of a positive rule is
greater than or equal to a. A positive rule can be a certain rule with confidence being 1, or a probabilistic rule with confidence
in ½a;1Þ. For an equivalence class ½x� � POSpða;bÞ ðpDÞ, if a > 0:50, it induces only one positive rule, and if a 6 0:50, it may in-
duce more than one positive rule. The confidence of a boundary rule is greater than b and less than a. For an equivalence
class ½x� � BNDpða;bÞ ðpDÞ, it induces only one boundary rule if b > 0:50, and may induce more than one boundary rule if
b 6 0:50. If ½x� � NEGpða;bÞ ðpDÞ, the rule with the confidence less than b is too weak to be meaningful, and does not support
any action towards a decision class of pD.
4.2.2. Coverage
The coverage measure of a rule is defined as the ratio of the number of correctly classified objects in the decision class Di

by an equivalence class ½x� and the number of objects in the decision class Di:
coverageð½x� ! DiÞ ¼
# of objects in ½x� correctly classified as Di

# of objects in Di
¼ j½x� \ Dij

jDij
¼ Pð½x� j DiÞ: ð13Þ
Coverage focuses on the recall of a decision class Di 2 pD by ½x�. A rule with a higher coverage is more general with respect to
the decision class Di.

In general, a high confidence rule is not necessarily a low coverage rule, and a high coverage rule is not necessarily a low
confidence rule. In many situations, however, there may exist an inverse relationship between confidence and coverage. A
reduction of confidence may lead to an increase of coverage. Such a relationship in fact is one of the motivations for the study
of probabilistic rough set models. By weakening the requirement of confidence being 1 in the Pawlak positive rules, one ex-
pects to increase the coverage of probabilistic positive rules.

4.2.3. Generality
The generality of a rule is the ratio of the number of objects to which the rule can be applied and the total number of

objects in the universe. It only tells us the degree of applicability of the rule, and does not say anything about its confidence
nor its coverage. The generality measure can be denoted as:
generalityð½x� ! DiÞ ¼
# of objects in ½x�
# of objects in U

¼ j½x�jjUj : ð14Þ
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4.2.4. Cost
A positive rule ½x�!PDi decides that all the objects in ½x� are put into the positive region of the decision class Di with con-

fidence greater than or equal to a. If a positive action aP of Di is taken for ½x�, the corresponding expected cost of applying the
positive rule can be calculated as follows:
Rð½x�!PDiÞ ¼ RðaDi
P j ½x�Þ ¼ kPPPðDi j ½x�Þ þ kPNPðDc

i j ½x�Þ
¼ confidenceð½x�!PDiÞkPP þ ð1� confidenceð½x�!PDiÞÞkPN ¼ kPN þ ðkPP � kPNÞconfidenceð½x�!PDiÞ: ð15Þ
Generally, it is reasonable to assume that kPP < kPN . That is, the cost for putting an object with the decision Di into the positive
region of Di is always lower than the cost of putting an object not with the decision Di into the positive region of Di. In this
case, the cost measure of positive rules is decreasing with respect to the confidence measure. In decision-theoretic terms, the
threshold a in fact imposes the following upper bound cost for each positive rule:
Rð½x�!PDiÞ 6 akPP þ ð1� aÞkPN:
For the special case of kPP ¼ 0 and kPN ¼ 1, we have:
Rð½x�!PDiÞ 6 1� a:
The quantity 1� a becomes the error rate of a rule. In this special case, we in fact impose this upper bound on the error rate
for positive rules.

A boundary rule ½x�!BDi decides that all the objects in ½x� are put into the boundary region of the decision class Di with
confidence greater than b and less than a. If a wait-to-see action aB of Di is taken for ½x�, the corresponding expected cost of
applying the boundary rule can be calculated as follows:
Rð½x�!BDiÞ ¼ RðaDi
B j ½x�Þ ¼ kBPPðDi j ½x�Þ þ kBNPðDc

i j ½x�Þ
¼ confidenceð½x�!BDiÞkBP þ ð1� confidenceð½x�!BDiÞÞkBN ¼ kBN þ ðkBP � kBNÞconfidenceð½x�!BDiÞ: ð16Þ
From the Eqs. (15) and (16) we can see that two types of rules do lead to different decisions and have different costs and
consequences. Such differences are explicitly shown by the cost measure, but cannot be differentiated by both the confi-
dence and coverage measures.

Example 3. In Example 2, we have calculated a ¼ 0:83 and b ¼ 0:33. Suppose, we have a patient x, whose symptoms are
described by the description ½x�. Based on the diagnoses, the probability for x getting cancer is 0:90, i.e., the confidence of the
rule is written as confidenceð½x�!PwCÞ ¼ 0:90. The cost of this positive rule is:
RðawC
P j ½x�Þ ¼ 0:90 � $1200:00þ 0:10 � $2500:00 ¼ $1330:00:
Suppose, we have another patient y. Based on the diagnoses, the probability for y getting cancer is 0.40. In other words, the
probability for y not getting cancer is 0.60. We pick the rule with a higher confidence, i.e. confidenceð½y�!BwHÞ ¼ 0:60. The
cost of the boundary rule is:
RðawH
B j ½y�Þ ¼ 0:40 � $1500:00þ 0:60 � $1000:00 ¼ $1200:00:
4.3. Rule set evaluation

Given a partition p defined by a subset of condition attributes, we obtain two sets of rules about the decision classifica-
tion: the sets of positive rules and the set of boundary rules. Let PRS and BRS be these two sets of rules, respectively.

In general, the evaluation of a rule set depends on the interaction of rules and rule conflict resolution for overlapping
rules. These concepts are first discussed before introducing specific measures.

Definition 2. Given a rule set RS induced from a partition p, if two rules in RS involving the same equivalence class ½x� and
different decisions, that is,
½x� ! Di and ½x� ! Dj with Di 6¼ Dj;
they are called overlapping rules. The rule set RS is called an overlapping rule set.

The notion of overlapping rules is also known as conflicting rules or inconsistent rules. We want to emphasize the fact
that the left-hand-sides of those rules have an overlap. If a 6 0:50, we may have two or more distinct positive rules for each
equivalence class; if b 6 0:50, we may have two or more distinct boundary rules for each equivalence class. In these cases, we
may have conflict decisions for each equivalence class and an overlapping rule set. The condition a > b > 0:50 is sufficient for
obtaining non-overlapping rules and rule sets. For general cases, the values of a and b are calculated from the loss functions,
and thus are not necessarily bounded by 0.50. The non-overlapping rule set is a special case of an overlapping rule set.

For a non-overlapping rule set, we can easily induce the unique rule ½x� ! Di for each equivalence class. For an overlap-
ping rule set, rule conflict resolution is required. We adopt a simple maximum-confidence criterion for rule conflict
resolution.
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Definition 3. For an overlapping rule set RS, the maximum-confidence criterion for each rule involving ½x� is denoted as
½x� ! Dmaxð½x�Þ; where Dmaxð½x�Þ ¼ arg max
ð½x�!DiÞ2RS

fconfidenceð½x� ! DiÞg:
If kPP < kPN , the maximum-confidence criterion is equivalent to the minimum-risk criterion, i.e.,
½x�!PDmaxð½x�Þ; where Dmaxð½x�Þ ¼ arg min
ð½x�!DiÞ2RS

fRðaDi
P j ½x�Þg;

½x�!BDmaxð½x�Þ; where Dmaxð½x�Þ ¼ arg min
ð½x�!DiÞ2RS

fRðaDi
B j ½x�Þg:
Other conflict resolution methods can also be defined.
We are now ready to examine measures of a set of rules and their relationships with the measures of single rules.

4.3.1. Confidence
The confidence of the set of positive rules can be interpreted as the ratio of the number of correctly classified objects and

the number of classified objects covered by all positive rules. We define the confidence measure as follows:
confidenceðPRSÞ ¼ # of correctly classified objects by PRS
# of classified objects by PRS

¼
j
S
½x��POSpða;bÞ ðpDÞ½x� \ Dmaxð½x�Þj
j
S
½x��POSpða;bÞ ðpDÞ½x�j

¼

P
½x��POSpða;bÞ ðpDÞ

j½x� \ Dmaxð½x�Þj

jPOSpða;bÞ ðpDÞj
¼
X

½x��POSpða;bÞ ðpDÞ
j½x�j

jPOSpða;bÞ ðpDÞj
� confidenceð½x� ! Dmaxð½x�ÞÞ: ð17Þ
That is, for a set of positive rules, its confidence is the weighted sum of the confidence of individual rules in the set.

4.3.2. Coverage
The coverage of the set of positive rules is the ratio of the number of correctly classified objects in the set and the number

of all objects in the universe. The coverage measure is defined as follows:
coverageðPRSÞ ¼ # of correctly classified objects by PRS
# of objects in U

¼
j
S
½x��POSpða;bÞ ðpDÞ½x� \ Dmaxð½x�Þj

jUj

¼

P
½x��POSpða;bÞ ðpDÞ

j½x� \ Dmaxð½x�Þj

jUj ¼
X

½x��POSpða;bÞ ðpDÞ
jDmaxð½x�Þj
jUj � coverageð½x� ! Dmaxð½x�ÞÞ: ð18Þ
That is, for a set of positive rules, its coverage is the weighted sum of the coverage of individual rules in the set.

4.3.3. Generality
For the set of positive rules, we can define the generality measure as follows:
generalityðPRSÞ ¼ # of objects covered by PRS
# of objects in U

¼
j
S
½x��POSpða;bÞ ðpDÞ½x�j

jUj ¼
X

½x��POSpða;bÞ ðpDÞ
j½x�j
jUj

¼
X

½x��POSpða;bÞ ðpDÞ
generalityð½x� ! Dmaxð½x�ÞÞ ¼

jPOSpða;bÞ ðpDÞj
jUj : ð19Þ
Again, the generality of a set of positive rules can be computed from the generality of individual rules in the set.

4.3.4. Cost
The cost of the set of positive rules is defined as:
RðPRSÞ ¼ confidenceðPRSÞkPP þ ð1� confidenceðPRSÞÞkPN

¼
X

½x��POSpða;bÞ ðpDÞ

j½x�j
jPOSpða;bÞ ðpDÞj

� confidenceð½x� ! Dmaxð½x�ÞÞ

0
@

1
A � kPP

þ 1�
X

½x��POSpða;bÞ ðpDÞ

j½x�j
jPOSpða;bÞ ðpDÞj

� confidenceð½x� ! Dmaxð½x�ÞÞ

0
@

1
A � kPN

¼
X

½x��POSpða;bÞ ðpDÞ
j½x�j

jPOSpða;bÞ ðpDÞj
� ½confidenceð½x� ! Dmaxð½x�ÞÞkPP þ ð1� confidenceð½x� ! Dmaxð½x�ÞÞÞkPN �

¼
X

½x��POSpða;bÞ ðpDÞ
j½x�j

jPOSpða;bÞ ðpDÞj
�Rð½x� ! Dmaxð½x�ÞÞ: ð20Þ
That is, for a set of positive rules, the cost equals to the weighted sum of the cost of individual positive rules in the set.
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By following the same argument, the confidence, coverage, generality and cost of the boundary rule set can be defined as
follows:
confidenceðBRSÞ ¼
X

½x��BNDpða;bÞ ðpDÞ
j½x�j

jBNDpða;bÞ ðpDÞj
� confidenceð½x� ! Dmaxð½x�ÞÞ;

coverageðBRSÞ ¼
X

½x��BNDpða;bÞ ðpDÞ
jDmaxð½x�Þj
jUj � coverageð½x� ! Dmaxð½x�ÞÞ;

generalityðBRSÞ ¼
X

½x��BNDpða;bÞ ðpDÞ
generalityð½x� ! Dmaxð½x�ÞÞ;

RðBRSÞ ¼
X

½x��BNDpða;bÞ ðpDÞ
j½x�j

jBNDpða;bÞ ðpDÞj
�Rð½x� ! Dmaxð½x�ÞÞ:
This is, for the evaluation of the boundary rule set, we obtain the measures by replacing POS with BND in the corresponding
positive measures.

According to the relationships between measures on individual rules and measures on rule sets, we can easily obtain the
following theorem.

Theorem 1. For a set of rules,
8ð½x� ! Dmaxð½x�ÞÞ 2 PRSðconfidenceð½x�!PDmaxð½x�ÞÞP aÞ ) confidenceðPRSÞP a;

8ð½x� ! Dmaxð½x�ÞÞ 2 BRSðconfidenceð½x�!BDmaxð½x�ÞÞ > bÞ ) confidenceðBRSÞ > b:
Theorem 1 shows that the confidence bound of individual rules is the same as the confidence bound of the rule set. This im-
plies that in a rule induction process one can ensure that the confidence of a rule set is above a certain threshold if one im-
poses the same bound on each individual rule. However, the reverse is not necessarily true. Thus, the requirement on the
level of confidence of all individual rules is sufficient to guarantee the same level of performance of the rule set, but is
not necessary.
5. Attribute reduction in the Pawlak model

The main results of rule induction in the last section can be summarized as follows. A subset of attributes defines an
equivalence relation. Based on the corresponding partition, one can induce a set of positive rules and a set of boundary rules,
respectively. An important issue not discussed yet is the choice of a suitable subset of attributes for rule induction. In ma-
chine learning, this is commonly referred to as the problem of feature selection. In rough set analysis, the problem is called
attribute reduction, and a selected set of attributes for rule induction is called a reduct [22]. Intuitively speaking, an attribute
reduct is a minimal subset of attributes whose induced rule sets have the same level of performance as the entire set of attri-
butes, or a lower but satisfied level of performance.

5.1. Pawlak reducts

A Pawlak reduct R � C, more precisely a relative reduct with respect to the decision attribute D, is defined by requiring
that the positive region of pD is unchanged [22].

Definition 4. Given an information table S ¼ ðU;At ¼ C [ fDg; fVa j a 2 Atg; fIa j a 2 AtgÞ, an attribute set R � C is a Pawlak
reduct of C with respect to D if it satisfies the following two conditions:

(s) Jointly sufficient condition:
POSpR ðpDÞ ¼ POSpC ðpDÞ;
(n) Individually necessary condition:
for any attribute a 2 R; POSpR�fag ðpDÞ 6¼ POSpC ðpDÞ:
Based on this simple definition of a Pawlak reduct, we can make several important observations.

5.1.1. Two extreme cases of the confidence
In the definition of a Pawlak reduct, the positive region of the partition pD is used. Recall that the definition of the positive

region requires an equivalence class ½x� to be a subset of a decision class Di. Thus, the definition of a reduct implicitly uses a
condition that requires a Pawlak positive rule with a confidence of 1, which is the maximum value of confidence. On the
other hand, the confidence of a Pawlak boundary rule must have a confidence greater than 0, which is the minimum value
of confidence.
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5.1.2. Implicit consideration of the boundary region
In the Pawlak model, for a reduct R � C, we have POSpR ðpDÞ \ BNDpR ðpDÞ ¼ ;, and POSpR ðpDÞ [ BNDpR ðpDÞ ¼ U. The con-

dition POSpR ðpDÞ ¼ POSpC ðpDÞ is equivalent to BNDpR ðpDÞ ¼ BNDpC ðpDÞ. Therefore, the requirement of the same boundary re-
gion is implicitly stated in the definition of a Pawlak reduct. It is sufficient to consider only the positive rule set in the Pawlak
model.

5.1.3. Monotocity of positive regions and decision rules
The definition of a Pawlak reduct is based on the relationships between positive regions and, in turn, sets of positive rules,

induced by different subsets of attributes. By introducing the concept of decision-monotocity of rules with respect to set
inclusion of attributes, we can shed new lights on the notion of a reduct.

Consider any two subsets of attributes A; B � C with A � B. For any x 2 U, we have ½x�B � ½x�A. We immediately obtain the
monotocity of the positive regions with respect to set inclusion of attributes. That is,
A � B) 8Di 2 pDðPOSpA ðDiÞ � POSpB ðDiÞÞ; and thus
A � B) POSpA ðpDÞ � POSpBðpDÞ:
Therefore, if ½x�A � Di for some decision class Di 2 pD, which implies ½x�A � POSpA ðpDÞ, we can conclude that ½x�B � Di for the
same decision class Di, which implies ½x�B � POSpB ðpDÞ. This suggests that the Pawlak positive rules induced by different sub-
sets of attributes satisfy the following decision-monotocity with respect to set inclusion of attributes:
A � B) ð8x 2 Uð½x�A!PDi ) ½x�B!PDiÞÞ:
That is, if we can make a positive decision based on a smaller set of attributes, the decision must be consistent with the deci-
sion made by a larger set of attributes. However, the reverse is not necessarily true. By demanding that a reduct R produces
the same positive region as the entire set C, we in fact ensure the reverse is also true. In terms of rules, condition (s) of a
reduct can be equivalently expressed by:

(s1) 8x 2 Uð½x�R!PDi () ½x�C!PDiÞ, or equivalently,
(s2) 8x 2 Uð½x�R � Di () ½x�C � DiÞ.

5.1.4. Monotonicity of the quantitative measures
Many authors [3,11,22,29,38] use an equivalent quantitative definition of a Pawlak reduct. It is based on the following

measure, called the quality of classification or the degree of dependency of D [24], on an attribute set A � C:
cðpD j pAÞ ¼
jPOSpA ðpDÞj
jUj : ð21Þ
Based on the monotocity of positive regions, we can obtain the monotocity of the c measure. That is,
A � B) cðpD j pAÞ 6 cðpD j pBÞ:
By monotocity, the condition (s) of the definition can be re-expressed as:

(s3) cðpD j pRÞ ¼ cðpD j pCÞ.

In other words, R and C are the same under the c measure.
In general, any monotonic measure f can be used to define a Pawlak reduct if it satisfies the condition
ðf ðpD j pRÞ ¼ f ðpD j pCÞÞ () ðPOSpR ðpDÞ ¼ POSpC ðpDÞÞ:
For example, Shannon’s entropy and many of its variations have been explored to measure the uncertainty in rough set the-
ory [3,7,15,19,28,37,39], and thus can be understood as different forms of the f measure.

The equivalence of the two conditions cðpD j pRÞ ¼ cðpD j pCÞ and POSpR ðpDÞ ¼ POSpC ðpDÞ is true under the condition
a ¼ 1 used in defining the Pawlak positive region. They are no longer equivalent in the probabilistic rough set models when
a different value of a is used in defining a probabilistic positive region.

5.2. Interpretations of the c measure

In order to gain more insights into a reduct defined by the c measure, we need to explicitly establish connections between
c and other measures of rule sets discussed in the last section.

5.2.1. Confidence
The Pawlak positive region is formed by the condition a ¼ 1. Therefore, each positive rule has a confidence of 1. By Eq.

(17), we have:
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confidenceðPRSAÞ ¼
jPOSpA ðpDÞj
jPOSpA

ðpDÞj
¼ 1:
If POSpA ðpDÞ ¼ ;, we assume confidenceðPRSAÞ ¼ 1. It can be observed that the confidence of a Pawlak positive rule set is al-
ways 1, independent of the set of attributes A � C. Similarly, the confidence of a Pawlak boundary rule set is always less than
1 and greater than 0, and is independent of the set of attributes A � C. The confidence of positive rules is imposed by the
requirement of a ¼ 1, and it determines the positive region used in the c measure. On the other hand, the c measure does
not determine the confidence of rules.

5.2.2. Coverage
According to Eq. (18), the coverage of a Pawlak positive rule set can be computed by:
coverageðPRSAÞ ¼
jPOSpA

ðpDÞj
jUj ¼ cðpD j pAÞ:
Thus, cðpD j pAÞ is in fact the coverage of the Pawlak positive rule set.

5.2.3. Generality
According to Eq. (19), the generality of a Pawlak positive rule set is given by:
generalityðPRSAÞ ¼
jPOSpA

ðpDÞj
jUj ¼ cðpD j pAÞ:
In the Pawlak model the coverage and generality of the positive rule set are the same as the c measure.

5.2.4. Cost
According to Eq. (20), the cost measure of a Pawlak positive rule set is given by:
RðPRSAÞ ¼ confidenceðPRSAÞkPP þ ð1� confidenceðPRSAÞÞkPN ¼ kPP:
This means that the cost of the Pawlak positive rule set is a constant and, moreover, the c measure does not tell us anything
about the cost.

The following theorem summarizes the main results developed so far:

Theorem 2. For a reduct R � C, the following conditions are equivalent in the Pawlak model:

(i) cðpD j pRÞ ¼ cðpD j pCÞ;
(ii) POSpB ðpRÞ ¼ POSpC ðpDÞ;

(iii) coverageðPRSRÞ ¼ coverageðPRSCÞ;
(iv) generalityðPRSRÞ ¼ generalityðPRSCÞ;
(v) for all x 2 U ð½x�R!PDiÞ () ð½x�C!PDiÞ.

Theorem 2 shows that a Pawlak reduct R � C produces a positive rule set with the same level of coverage and generality as
the entire set C. In addition, for any rules induced by R, it makes the same classification decision as the entire set C. The same
conclusions of (i)–(iv) are also true for the set of boundary rules induced by R. Therefore, the c measure is a good choice for
defining a reduct in the Pawlak model.

6. Attribute reduction in probabilistic models

According to the analysis in the previous section, the c measure truthfully reflects many properties of a reduct in the Paw-
lak model. We examine the possibility of defining a single measure in the probabilistic models and propose a general def-
inition of an attribute reduct in probabilistic models.

6.1. A definition of a probabilistic attribute reduct

Being parallel to the study of a Pawlak reduct, a probabilistic attribute reduct can be defined by requiring that the prob-
abilistic positive region of pD is unchanged.

Definition 5. Given an information table S ¼ ðU;At ¼ C [ fDg; fVa j a 2 Atg; fIa j a 2 AtgÞ, an attribute set R � C is a reduct of
C with respect to D if it satisfies the following two conditions:

(s) Jointly sufficient condition:
POSpRða;bÞ
ðpDÞ ¼ POSpCða;bÞ

ðpDÞ;
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(n) Individually necessary condition:
for any attribute a 2 R; POSpR�fagða;bÞ
ðpDÞ 6¼ POSpCða;bÞ

ðpDÞ:
A similar definition has been proposed by Kryszkiewicz as a b-reduct for the variable precision rough set model [16]. Based
on this definition, we can also make several observations.

6.1.1. Bounded confidence
In this definition, the probabilistic positive region of pD is used. The definition of a probabilistic region indicates that the

intersection of an equivalence class ½x� and a decision class is not empty, i.e., ½x� \ Dmaxð½x�Þ 6¼ ;. More specifically, a positive
rule ½x�!PDmaxð½x�Þ is constrained by the confidence threshold a, and a boundary rule ½x�!BDmaxð½x�Þ is constrained by the con-
fidence threshold b. Note that a is not necessarily the maximum value 1, and b is not necessarily the minimum value 0.

6.1.2. Ignorance of the boundary region
In probabilistic models, for a reduct R � C, we many have POSpR ðpDÞ [ BNDpR ðpDÞ 6¼ U. The cða;bÞ measure only reflects the

probabilistic positive region and does not evaluate the probabilistic boundary region. Attribute reduction in probabilistic
rough set models needs to consider criteria for both the probabilistic positive region and the probabilistic boundary region.

6.1.3. Non-monotocity of probabilistic positive regions and decision rules
In a probabilistic model, we cannot obtain the monotocity of the probabilistic positive regions with respect to set inclu-

sion of attributes. That is, for A;B � C with A � B, we may obtain POSpAða;bÞ
ðDiÞ 	 POSpBða;bÞ

ðDiÞ for some Di 2 pD, and thus
POSpAða;bÞ

ðpDÞ 	 POSpBða;bÞ
ðpDÞ. These results have two consequences. First, for any x 2 U, we may have two decision rules

involving the equivalence classes ½x�A and ½x�B, such that they are not connected by the decision-monotocity property. That
is, we may make different decisions based on set A and its super set B of attributes, and the strength of such two decisions
may be different. Second, the equality condition (s) POSpRða;bÞ

ðpDÞ ¼ POSpCða;bÞ
ðpDÞ is not enough for verifying a reduct, and

may miss some reducts. Furthermore, the condition (n) should consider all the subsets of a reduct R, not only all the subsets
R� fag for all a 2 R.

6.1.4. Non-monotocity of the cða;bÞ measure
In probabilistic models, many proposals have been made to extend the Pawlak attribute reduction by using extended and

generalized measure of c. For example, a straightforward transformation of the c measure is denoted as follows [52]. For
A � C,
cða;bÞðpD j pAÞ ¼
jPOSpAða;bÞ

ðpDÞj
jUj :
Based on the fact that the probabilistic positive regions are not monotonic with respect to set inclusion, the cða;bÞ measure is
also non-monotonic. That is, given A � B, we may have cða;bÞðpD j pAÞP cða;bÞðpD j pBÞ.

Based on the condition cða;bÞðpD j pRÞ ¼ cða;bÞðpD j pCÞ, we can obtain j POSpRða;bÞ
ðpDÞj ¼ jPOSpCða;bÞ

ðpDÞj, but cannot guarantee
POSpRða;bÞ

ðpDÞ ¼ POSpCða;bÞ
ðpDÞ. This means that the quantitative equivalence of the probabilistic positive regions does not im-

ply the qualitative equivalence of the probabilistic positive regions.

6.2. Interpretations of the cða;bÞ measure

Although the definition based on the extended cða;bÞ measure is adopted by many researchers [4,11,35,52], the measure
itself is inappropriate for attribute reduction in probabilistic models. Even if consider the evaluation of the probabilistic po-
sitive rule set only, we have the following observations and problems regarding the classification measures we have dis-
cussed so far.

6.2.1. Confidence
According to Theorem 1, a 6 confidenceðPRSÞ 6 1. The confidence of a probabilistic positive rule set is bounded by the

value of a, and it determines the probabilistic positive regions used in cða;bÞ. The cða;bÞ measure does not determine the con-
fidence of the rules.

6.2.2. Coverage
According to Eq. (18), the coverage of the positive rule set in a probabilistic model is computed as:
coverageðPRSAÞ 6
jPOSpAða;bÞ

ðpDÞj
jUj ¼ cða;bÞðpD j pAÞ:
Thus, cða;bÞðpD j pAÞ does not equal to the coverage measure of the probabilistic positive rule set.



Y. Yao, Y. Zhao / Information Sciences 178 (2008) 3356–3373 3369
6.2.3. Cost
According to Eq. (20), the cost of the positive rule set in a probabilistic model is related to the confidence measure and the

values of loss functions. Since the cða;bÞ measure does not determine the confidence of the rules, it does not determine the
cost of the rules.
6.2.4. Generality
According to Eq. (19), the generality of the positive rule set in a probabilistic model is computed as:
generalityðPRSAÞ ¼
jPOSpAða;bÞ

ðpDÞj
jUj ¼ cða;bÞðpD j pAÞ:
Thus, we can establish a two-way implication between cða;bÞ and the generality of the positive rule set in a probabilistic
model.

The consequence is that Theorem 2 does not hold in probabilistic models. Instead, we have the following theorem.

Theorem 3. For R � C, the following conditions are equivalent in a probabilistic model:

(i) cða;bÞðpD j pRÞ ¼ cða;bÞðpD j pCÞ;
(ii) jPOSpR ða;bÞ ðpDÞj ¼ jPOSpC ða;bÞ ðpDÞj;

(iii) generalityða;bÞðPRSRÞ ¼ generalityða;bÞðPRSCÞ.

Theorem 3 shows that a reduct R � C produces a probabilistic positive rule set with the same level of generality as the entire
set C. The same conclusion is not true for the set of boundary rules induced by R. The other properties, such as coverage and
decision-monotocity, cannot be kept for both rule sets.

6.3. A general definition of a probabilistic attribute reduct

In light of the previous analysis, although the c measure is suitable for attribute reduction in the Pawlak model by reflect-
ing many properties of classification, the straightforward extension of the c measure might not be suitable for attribute
reduction in probabilistic rough set models. Instead, we need to consider multiple properties, such as confidence, coverage,
generality, cost and decision-monotocity criteria.

For one certain property, we can use a particular measure as its indicator. A measure, roughly denoted as e : 2C ! ðL;
Þ,
maps a condition attribute set to an element of a poset L, which is equipped with the partial order relation 
. That is, 
 is
reflexive, anti-symmetric and transitive. Based on the partial order relation, we are able to pick the attribute set preserving
the property. The evaluation of a reduct R � C with respect to e is the same or superior to eðCÞ, and the evaluation of any
subset of R with respect to e is inferior to eðCÞ.

Given a certain property, a measure representing it is not unique. We have three basic forms. The first form, denoted as
eP;B, is to distinguish the positive regions from the boundary regions. This allows us emphasize the effectiveness of positive
rules while keeping in mind the effectiveness of boundary rules. The second form, denoted as eP[B, keeps tracking all the rules
by combining boundary rules with positive rules. However, by doing so, the certainty of the positive rules are degraded. The
third form, denoted as eP;P[B, is to evaluate positive regions and non-negative regions separately. Inuiguch has commented
that the third form should be a better choice for the definition [13]. We may also have distributed versions of the above three
forms. For example, a distributive measure distr� eP;B is to evaluate the distribution of positive regions and boundary regions
of individual decision classes.

By considering multiple criteria and multiple measures, a general definition of an attribute reduct can be described as
follows.

Definition 6. Given an information table S ¼ ðU;At ¼ C [ fDg; fVa j a 2 Atg; fIa j a 2 AtgÞ. Suppose, we can evaluate the
properties of S by a set of measures E ¼ fe1; e2; . . .g. An attribute set R � C is a reduct of C with respect to D if it satisfies the
following two conditions:

(s) Jointly sufficient condition:
eðpD j pRÞ 
 eðpD j pCÞ for all e 2 E;
(n) Individually necessary condition:
for any subset R0 � R; eðpD j pR0 Þ � eðpD j pCÞ for all e 2 E:
We explain three criteria, decision-monotocity, generality and cost, in the following sub-sections. The confidence and cov-
erage criteria can be explored in a similar manner.
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6.3.1. The decision-monotocity criterion
For a particular object, it is desirable that the decision made with more attributes should stay the same with the decision

made with less attributes. Let R � C be a reduct. The decision-monotocity property for a set of rules can be interpreted as:
For all x 2 U,
Table 2
An info

o1

o2

o3

o4

o5

o6

o7
ð½x�C!PDmaxð½x�CÞÞ ) ð½x�R!PDmaxð½x�CÞÞ and
ð½x�C!BDmaxð½x�CÞÞ ) ð½x�R!B=PDmaxð½x�CÞÞ:
The decision-monotocity criterion requires two things. First, the criterion requires that by reducing attributes a positive rule
is still a positive rule of the same decision. That is, for any x 2 POSpC ðDiÞ, we must have x 2 POSpR ðDiÞ. In other words, if
x 2 aprpC ðDiÞ, then x 2 aprpR ðDiÞ. Therefore, aprpC ðDiÞ � aprpR ðDiÞ for all Di 2 pD.

The confidence of the positive rule ½x�R!PDmaxð½x�CÞ is not lower than the threshold a, but may be lower than the confi-
dence of the positive rule ½x�C!PDmaxð½x�CÞ. In this case, the unique and same decision can be made for the equivalence class
½x� in the positive region. The decreasing confidence of positive rules causes two consequences: (a) It increases the generality
of the rule. In the domain of machine learning, this is exactly the idea of pruning an over-fitted rule to a more general rule by
dropping off some descriptions of the rule. (b) It increases the cost of the rule. This is because under the general assumption
kPP < kPN , the cost of positive rules is monotonically increasing with respect to the decreasing confidence. Therefore, for po-
sitive rules, the decision-monotocity property normally means sacrificing the confidence and the cost for an increased
generality.

Second, the criterion requires that by reducing attributes a boundary rule is still a boundary rule, or is upgraded to a po-
sitive rule with the same decision. That is, for any x 2 BNDpC ðDiÞ, we must have x 2 BNDpR ðDiÞ or x 2 POSpR ðDiÞ. In other
words, if x 2 aprpC ðDiÞ, then x 2 aprpR ðDiÞ. Therefore, aprpC ðDiÞ � aprpR ðDiÞ for all Di 2 pD.

The confidence of the rule ½x�R!B=PDmaxð½x�CÞ is not lower than the threshold b, and may be higher than the confidence of
the boundary rule ½x�C!BDmaxð½x�CÞ. In this case, the unique and same decision can be made for the equivalence class ½x� in the
boundary region. The interpretation of the decision-monotocity criterion is only one-way upgrading. The degradation is not
allowed by this interpretation. This is ensured by two conditions:
aprpRða;bÞ
ðDiÞ 	 aprpCða;bÞ

ðDiÞ and

aprpRða;bÞ
ðDiÞ 	 aprpCða;bÞ

ðDiÞ for all Di 2 pD:
In this sense, the decision-monotocity criterion is consistent with the general definition of a reduct.
A criterion similar to decision-monotocity has been proposed by Slezak as the majority decision criterion [31] and by

Zhang et al. as the maximum distribution criterion [50]. The majority decision criterion uses a binary information vector
for each equivalence class to indicate to which decision class it belongs. As Slezak suggested, there are many possibilities
to modify, combine and generalize the majority decision function [31]. For example, instead of using a binary information
vector, Kryszkiewicz defined a rough membership for each equivalence class with respect to all decision classes [17]. The
partition based on the membership distribution vector is finer and more complex, and can preserve the quality of the deci-
sions. Li et al. compare the differences of decision-monotocity criteria recently [18].

Example 4. A simple information table S ¼ ðU;At ¼ C [ fDg; fVag; fIagÞ shown in Table 2 is used for exemplifying the
decision-monotocity criterion. Suppose the two thresholds a ¼ 0:81 and b ¼ 0:58 are calculated from the loss functions for
the three states regarding M, Q and F.

The equivalence relation EC partitions the universe into five equivalence classes. The partition pC induces the following
five rules:
fo1g!PM; ðconfidence ¼ 1Þ;
fo2; o5; o7g!BF; ðconfidence ¼ 0:67Þ;
fo3g!PQ ; ðconfidence ¼ 1Þ;
fo4g!PQ ; ðconfidence ¼ 1Þ;
fo6g!PF; ðconfidence ¼ 1Þ:
rmation table

C D

c1 c2 c3 c4 c5 c6

1 1 1 1 1 1 M
1 0 1 0 1 1 M
0 0 1 1 0 0 Q
1 1 1 0 0 1 Q
1 0 1 0 1 1 F
0 0 0 1 1 0 F
1 0 1 0 1 1 F
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The equivalence relation Efc2 ;c5g partitions the universe into four equivalence classes. The partition pfc2 ;c5g induces the follow-
ing four rules:
fo1g!PM; ðconfidence ¼ 1Þ;
fo2; o5; o6; o7g!BF; ðconfidence ¼ 0:75Þ;
fo3g!PQ ; ðconfidence ¼ 1Þ;
fo4g!PQ ; ðconfidence ¼ 1Þ:
For the two equivalence classes of object o6, we have a positive rule ½o6�C!PF and a boundary rule ½o6�fc2 ;c5g!BF of the same
decision class F. This result does not satisfy the decision-monotocity criterion of reducts. Thus, the attribute set fc2; c5g is not
a reduct according to the decision-monotocity criterion. It can be easily verified that fc2; c5g satisfies the majority decision
criterion, and thus is a majority decision reduct.
6.3.2. The generality criterion
It is reasonable to request that the generality of the new set of rules is kept or increased by the partition defined by a

reduct. Let R � C be a reduct. The generality criterion means that the covered set derived from the partition pR is more gen-
eral than the covered set derived from the partition pC, i.e.,
generalityðpR ! pDÞP generalityðpC ! pDÞ:
Although the generality criterion is used in many rough set models [4,24,52], it has crucial problems in the probabilistic
rough set models. For example, suppose we have two positive rules ½x�C!PDi and ½x�R!PDj with:
generalityð½x�R!PDjÞP generalityð½x�C!PDiÞ:
In this case, even though we preserve the generality by the attribute set R, for these two particular rules, Di and Dj may not be
the same, and the rule ½x�C!PDi may not exist. Therefore, the generality criterion may conflict with the decision-monotocity
criterion.

Example 5. We can use a simple example to demonstrate the problem of the generality criterion. In information Table 2,
suppose the thresholds a ¼ 0:81 and b ¼ 0:58. The equivalence relation Efc5g partitions the universe into two equivalence
classes. The partition pfc5g induces the following two rules:
fo1; o2; o5; o6; o7g!BF; ðconfidence ¼ 0:60Þ;
fo3; o4g!PQ ; ðconfidence ¼ 1Þ:
For the two equivalence classes of object o1, we have a positive rule of the decision class M, i.e., ½o1�C!PM, with the generality
being 1/7, and a boundary rule of the decision class F, i.e., ½o1�fc5g!BF, with the generality being 5/7. Thus, the attribute set
fc5g is a reduct according to the generality criterion. Although this result satisfies the generality criterion, it does not satisfy
the decision-monotocity criterion of reducts. Therefore, the generality criterion may disagree with the decision-monotocity
criterion.
6.3.3. The cost criterion
Let R � C be a reduct. The cost criterion means that we need to make sure that the cost derived by the partition pR does

not increase, i.e.,
RðpR ! pDÞ 6 RðpC ! pDÞ:
The cost for the entire rule set can be defined as a distributed form for the cost of the positive rule set and the cost of the
boundary rule set. It can be defined as the sum of the two costs. In a formal mathematical form:
RP;Bðp! pDÞ ¼
X

½x��POSpða;bÞ ðpDÞ
RðaP j ½x�Þ;

X
½x��BNDða;bÞðpDÞ

RðaB j ½x�Þ

0
@

1
A;

RP[Bðp! pDÞ ¼
X

½x��POSpða;bÞ ðpDÞ
RðaP j ½x�Þ þ

X
½x��BNDpða;bÞ ðpDÞ

RðaB j ½x�Þ:
It is important to note that the cost criterion should not be used alone. It should be used with decision-monotocity criterion
and/or generality criterion. That is, the decrease of the cost should not change the original decision. Also, it should not sac-
rifice the generality of the rule set. This may not always be achievable.

Example 6. The cost criterion can be illustrated by the same information Table 2. Suppose the two thresholds a ¼ 0:81 and
b ¼ 0:58 are calculated from the loss functions for the three states regarding M, Q and F.

The partition pC determines three regions: POSpCð0:81;0:58Þ
ðpDÞ ¼ fo1; o3; o4; o6g, BNDpCð0:81;0:58Þ

ðpDÞ ¼ fo2; o5; o7g and
NEGpCð0:81;0:58Þ

ðpDÞ ¼ ;. The cost of the entire rule set is:
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RP[BðpC ! pDÞ ¼ kPP þ
2
3

kBP þ
1
3

kBN:
The partition pfc2 ;c5g defines another three regions: POSU=fc2 ;c5gð0:81;0:58Þ ðpDÞ ¼ fo1; o3; o4g, BNDU=fc2 ;c5gð0:81;0:58Þ ðpDÞ ¼ fo2; o5; o6; o7g
and NEGU=fc2 ;c5gð0:81;0:58Þ ðpDÞ ¼ ;. The cost of the entire rule set is:
RP[Bðpfc2 ;c5g ! pDÞ ¼ kPP þ
3
4

kBP þ
1
4

kBN:
Comparing the costs of the two rule sets, if kBP 6 kBN then fc2; c5g is a reduct regarding the cost criterion RP[B, otherwise, it is
not.
7. Conclusion

Regarding classification tasks, positive rules and boundary rules, derived from both the Pawlak model and probabilistic
models have different confidence, coverage, costs and risks, and lead to different decisions and consequences. An attribute
reduct should be able to preserve the classification power of both positive rules and boundary rules. This can be better
understood and explained in the decision-theoretic rough set models.

We discuss various criteria for attribute reduction for probabilistic rough set models, such as decision-monotocity, gen-
erality and cost. It is noted that these criteria can be integrated as one simple quantitative measure in the Pawlak rough set
model. However, for probabilistic models, these criteria have different expressive powers, and lead to different decision mak-
ing and consequences. A systematic study of attribute reduction should consider one or more of these criteria, by using one
or more corresponding measures, instead of using an oversimplified straightforward extension of the Pawlak c measure.

This study provides a new insight into the problem of attribute reduction. It suggests that more semantics properties pre-
served by an attribute reduct should be carefully examined.
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