
An Introduction to Soft Computing m A Tool for Building 
Intelligent Systems 

B Azvine, N Azarmi and K C Tsui 

Intelligent Systems Research, Advanced Applications & Technology Department, 
BT Laboratories, Martlesham Heath, Ipswich, Suffolk, IP5 7RE, UK. 

E-mail: ben.azvine@bt-sys.bt.co.uk 
azarmin@info.bt.co.uk 
tsuikc@info.bt.co.uk 

"The essence of soft computing is that unlike the traditional, hard 
computing, soft computing is aimed at an accommodation with the 
pervasive imprecision of the real world. Thus, the guiding principle of 
soft computing is: '...exploit the tolerance for imprecision, uncertainty 
and partial truth to achieve tractability, robustness, low solution cost 
and better rapport with reality'. In the f'mal analysis, the role model for 
soft computing is the human mind." [1] 

In this paper terms associated with soft computing are defined and its 
main components are introduced. It is argued, using a number of 
practical applications, that the hybrid approach of soft computing can 
provide a methodology for increasing machine intelligence. 

I. Introduct ion  

One of the primary issues in artificial intelligence (AI) has been the choice between 
two fundamentally different (and often viewed as competing) approaches to building 
intelligent systems - -  traditional symbolic AI and numeric (sub-symbolic) artificial 
neural networks (ANNs). This has been an issue engaging the AI community for three 
decades, and there have been attempts to bridge the gap between these two paradigms 
in order to take advantage of the relative merits of each [1]. 

In an attempt to model the human mind/brain it has been necessary to oversimplify 
the structure (resulting in ANNs) and the function (resulting in precisely defined 
symbolic- AI programmes) of the brain. Symbolic AI attempts to pre-program 
intelligence into a deterministic algorithm. On the other hand, most ANNs are equipped 
with relatively weak forms of learning (i.e. tuning a fixed set of parameters or weights). 
It has been argued [2] that despite the seemingly different approaches that symbolic AI 
and ANNs take to building intelligent systems, they both share common origins, and 
are both based on the hypothesis that cognition can be modelled by computation. Tasks 
performed by ANNs can be performed by symbolic AI and vice versa as both 
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paradigms rely on different but essentially equivalent models of computation [2]. 
Decades of collective experience by theoreticians and practitioners in several areas of 
computer science have shown that it is efficiency, robustness and elegance that 
determine the best approach. Hybrid systems resulting from the integration of concepts 
and technologies drawn from both traditional AI systems and ANNs clearly 
demonstrate the potential benefits for the design of truly robust, flexible and adaptive 
intelligent systems in a wide application domain. This paper concentrates on one of 
many promising approaches for developing hybrid intelligent systems known as soft 
computing (SC). SC is not a single methodology, rather it is a parmership. The 
principal partners at this juncture are fuzzy logic (FL), neuro-computing (NC), and 
probabilistic reasoning (PR) which subsumes genetic algorithms (GA), chaotic 
systems, belief networks and parts of learning theory. 

The term soft computing was coined by Zadeh, the inventor of fuzzy set theory, to 
be an extension to fuzzy logic by merging it mainly with neural networks and 
evolutionary computing. A concise definition for SC is: 'A term that describes a 
collection of techniques capable of dealing with imprecise, uncertain or vague 
information'. Zadeh advocates that SC has the means to extend what conventional AI 
has achieved in the past 40 years, and that a prerequisite to building an intelligent 
machine is a model of human cognitive capability [3]. The philosophical argument for 
SC is stated elegantly in Mamdani [4]. 

It is obvious that humans deal with uncertain and imprecise information everyday 
and are remarkably consistent in processing such information. This is the primary aim 
of SC ~ to exploit the tolerance of imprecision, uncertainty and partial truth associated 
with almost every aspect of real-world problems. 

The aim of this paper is to describe SC in terms of the techniques associated with it, 
and how they are being combined to produce hybrid systems. There are three sections 
describing three techniques accepted as the main (but by no means the only) 
constituents of SC - -  fuzzy logic, neural networks and genetic algorithms. The fmal 
section describes hybrid techniques and their applications in the industry. 

2. Intelligent Systems from a Soft Computing Perspective 

There are many features that can be attributed to an intelligent system. Among them 
one can mention robustness, adaptivity, autonomy and the ability to communicate, 
including man/machine communication in multiple modalities. Dealing with real- 
world uncertainty or robustness is one of the most important characteristics of an 
intelligent system (Fig 1). 

Uncertainty arises from many sources among which are nonlinear behaviour, time- 
varying behaviour (e.g. degradation over time) and interaction with uncertain 
environments. All of these features are present in human behaviour and therefore are 
important in the context of machines that interact with, co-operate with or replace 
humans in certain tasks. Humans do not seem to be as affected by uncertainty in 
sensory data as present-day computing machines. One explanation is that humans do 
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Fig. 1. Essential features of an intelligent machine. 
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not rely directly on raw data for decision making but on abstract, uncertain rules, e.g. in 
the rule ' i f  it is cold, put on an extra jumper' ,  the actual temperature is not important, 
neither is the season nor the time of day. A definite advantage of using abstract rules is 
that a large amount of  irrelevant information can be filtered out and the decision- 
making process is simplified. This is particularly important in the context of  machines 
that rely on search techniques. It can be argued that in many real applications the 
relevant information belongs to a class that is not well defined, and its membership 
changes from time to time. To use the above example 'cold'  means one thing today and 
its meaning may change next week, or next month. A fixed rule may be able to deal 
with this particular task, but it lacks the degree of adaptability required to work in 
changing environments. Humans seem to have the ability to change with their 
environment. Adaptive behaviour can be captured in a machine by using symbolic 
meta-level rules. For example, a rule can be def'med that adjusts other rules according 
to a mean temperature based on the season, such that ' i f  it is winter then the mean 
temperature is 10~ ', and 'in summer the mean temperature is 30~ ', and define cold 
relative to these. This provides a fixed meta-level rule and an adaptive base-level rule. 
This is a partial solution, but what if  there is an exceptional circumstance such as a 
particularly cold winter. This highlights one of the shortcomings of such an approach, 
namely that fixed symbolic meta-level rules can be restrictive in some circumstances. 

The question that arises is how are these rules derived? Humans develop general 
rules from specific observations and then generalise from specific instances to new 
situations. For example, it can be seen that touching a specific hot object will result in 
pain and personal injury, so a general rule is developed - -  ' i f  an object is hot, do not 
touch it'. In this case it is assumed that we have some sensory information received by 
one or several of  our five senses as to the temperature of  an object. On the other hand, 
generally, humans do not develop rules for recognising friends' faces. Picking a 
familiar face in a crowd is performed instantaneously. Humans recognise vast numbers 
of  patterns and exhibit many skills without having to develop rules for them or even 
know the rules that would result in such behaviours. Studies of  the human brain have 
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shown that the pre-attentive processing of stimuli is carried out in as few as 70 to 100 
ms. We look, see, pay attention and then recognise without using rules. Then we 
address the higher cognitive functions such as reasoning, decision making, planning 
and control using rules. An intelligent machine therefore should be able to combine 
signal-level (sub-symbolic) intelligence with symbolic, more abstract level intelligence 
(rules). In this sense intelligence can become a property of a hybrid dynamical system. 

SC enables the pre-processing of sensory information, reasoning using symbolic 
rules, and learning directly from observations. Adaptive systems must be able to 
develop rules for themselves and update the rules in view of new sensory data, i.e. learn 
from their experience. Leaming (adaptability) is the second important feature of  an 
intelligent system (Fig 1). Learning can be viewed as change in system behaviour 
based on experience. From a dynamical system's point of view, learning is the rate of 
change of an analytic function describing the system's behaviour [5]. As the analytic 
function is a mapping from the input to the output space, it can therefore be a collection 
of  rules or a mathematical function. Clustering techniques are one aspect of learning 
addressed by SC. 

Application of SC to real-world problems has been aimed at increasing machine 
intelligence quotient (MIQ). MIQ is measured by the level of  control that a system can 
have over its own operation (autonomy) (Fig 1). For example a robot that can navigate 
its way around obstacles has a certain MIQ, another that can navigate and cope with 
unforeseen moving obstacles has a higher MIQ. Another measure for MIQ is the 
degree to which the machine assists humans in a particular task, e.g. a washing 
machine that chooses its own program has a certain degree of MIQ, another one that 
can program itself and use cheap electricity has a higher MIQ. 

3. Fuzzy Logic in Brief 

There are two reasons for using fuzzy logic in real applications. Firstly, in certain 
circumstances the definition of the problem is vague and uncertain. The information 
available does not lend itself readily to precise mathematical reasoning as in rule- 
based systems. A second class of applications are well defined but a precise solution is 
not necessary; the tolerance for imprecision can be exploited to simplify the solution. 
Most of the applications of fuzzy logic today fall into the second category. 

Fuzzy logic can be viewed as a superset of Boolean logic in the sense that it can 
handle the concept of partial truth [6]. This concept has been used to develop more 
general extensions such as fuzzy calculus and fuzzy differential equations. Fuzzy logic 
is based on the principle of fuzzy subsets. In classical set theory, based on Boolean 
logic, membership of a subset Ucan be defined as a mapping from the elements of a set 
Sto the elements of another set L with two members: 0 and 1. So an element is mapped 
to 0 if it is not a member of S and to 1 if it is. In fuzzy sets, a similar mapping exists to 
a set F with the difference that F contains all values between 0 and 1. This gives rise to 
the concept of degree of truth. A mapping to 0.3 is less true than a mapping to 0.6. The 
degree of membership of a set is defined by a membership function ~t. Boundaries of 
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fuzzy subsets are not sharp but fuzzy and overlapping. This implies that a particular 
entity A could be a member of two subsets with different degrees of membership - -  
~I(A) and ~2(A). 

There are two important concepts that are central to the application of  fuzzy logic: 

�9 a linguistic variable; 

�9 fuzzy if-then rules. 

A linguistic variable is a variable that takes linguistic values such as height, age, 
speed, quality, etc. Such variables can take linguistic values like tall, young, fast, good, 
etc. A linguistic value is a label for a fuzzy set. Within fuzzy sets, degree of  
membership is characterised by membership functions, e.g. a membership function 
'tall' determines the degree of tallness of someone of a certain height as shown in Fig 
2. For example, it depicts a person who is 180 cm as tall with a degree of membership 
0.45, while someone who is 185 cm tall is 'tall' with a degree of membership 0.6. 

0.6 

~t 

0.45 

! 

180 185 
height, cm 

tall 

Fig. 2 Membership function 'tall' in a fuzzy set height. 

A linguistic variable can be defined as a micro-language with context-free grammar 
and attributed-grammar semantics [3]. The context-free grammar defines the legal 
linguistic values for the variable and the grammar semantics defines the membership 
functions for any value within the linguistic variable, using the membership functions 
of primary terms. For a linguistic variable height, the legal values could be tall, short, 
very tall, not very tall, almost tall. The grammar semantics in this case def'me the 
membership functions for all values in terms of two primary membership functions - -  
tall and short. For example: 

I-tnot very tall(A) = 1 - 0.t tall(A)) 2 

This introduces the idea of linguistic hedges or modifiers such as very, more or less 
and almost. Such terms are used extensively in natural language in a purely subjective 
way and therefore do not have a universal definition within different applications. 
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However, once they have been defined, consistency can be ensured within a particular 
application. Some common definitions are: 

~very(A) = O,(A) 2 

]2more or less(A) = ~ tall(A) �89 

The reason fuzzy logic includes such terms is that linguistic terms are essential to 
the way humans perceive, reason and communicate. By using words, people compress 
data to achieve economy of communication. Fuzzy logic aims to exploit this important 
feature of natural language combined with the consistency of a logical approach. 

Another way of  looking at the degree of membership of a value in a fuzzy set is a 
possibility distribution, e.g. g(A) = 0.45 is equivalent to the statement: 'the possibility 
that A is tall is 0.45'. It should be noted that this is quite different to the statement: 'the 
probability of A being tall is 0.45', since probability represents randomness and 
depends on the frequency of observations, while the possibility depends on uncertainty 
and vagueness and remains the same irrespective of the number of  observations. As 
long as the definition of  tall is fixed by the membership function, A would always be 
tall to the same degree. 

Fuzzy rules in their most simple form can be expressed as i f X  is A then Y is B, 
where A and B are fuzzy values. This can be represented by the cartesian product of A 
and B i.e. A x B, so that the membership function of the above rule can be written as: 

~ A x B (X,D= P.A(X) ^ gB (}5 

where ^ is the conjunction operator usually defined as min(AxB). For example, a fuzzy 
rule can express a simple rule of thumb. If X is tall then X is a good basketball 
player'.This rule can be visualised in terms of two membership functions defining 'tall' 
and 'good_basketball_player' as shown in Fig 3. Any player of any height has a certain 
degree of being a good basketball player between 0 and 1. 

1.0 

0.0 

! 

height 

1.0 
tall 

0.C 

good_basketball_player 

I 

quality of play 

Fig. 3. Visualisation of a fuzzy rule. 
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A collection of fuzzy rules can be represented as a fuzzy graph. Fuzzy rules can be 
written as i fX  is A i then Y is Bi, i = 1...n. For example, consider the following simple 
rules: 

�9 i fXis  small then Yis large; 

�9 i fX is medium then Y is small; 

�9 i fX is large then Y is large. 

This system can be represented by a fuzzy graph, f *  as shown in Fig 4. A fuzzy 
graph represents a coarse characterisation of functional dependency between X and Y. 
In this context, interpolation of rules becomes an important issue, i.e. what value of Y 
results if the inputXis not a perfect match with any of the antecedent variables defined. 
This is carried out by considering each fuzzy rule and its degree of truth. Then 
defuzzification of the outputs is performed using one of many available techniques. 
The most widely used is the centre of gravity method. Interpolation is one of the most 
important features of fuzzy systems which can be exploited in situations where 
complex functional relationships are to be represented by a small number of fuzzy 
rules. This has been demonstrated in a number of complex industrial problems where 
the number of fuzzy rules have been typically between 10 and 20 [7]. 

small 
x 

large large x large 

Fig. 4. Visualisation of a fuzzy graph. 

One of the central issues in fuzzy logic is how to induce rules from observations. 
This is the problem of obtaining deep structure from surface structure [8]. It is 
relatively easy to write down a set of fuzzy rules to describe a particular behaviour. 
However, to calibrate these rules, i.e. to choose the type and characterisation of the 
membership functions, is not a trivial problem. A number of techniques have been used 
to solve this problem, such as dynamic and gradient programming (developed for 
multi-stage optimisation), genetic algorithms, reinforcement learning, and trial and 
error [8]. 
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4. Artificial Neural Networks 

The structure of the brain has been the subject of intense research in the past several 
decades. Many of the pioneers of AI drew upon biological inspiration for their work. 
Analogies were established between artificial processing elements and real neurons, 
between network connection and axions, and between connection strengths and 
synapses. A key aspect of the brain that ANNs try to imitate is its parallelism. ANNs 
achieve this by using densely interconnected simple processing units to store and 
process information. Each aspect of the neuron is represented mathematically by real 
numbers. The basic processing unit, or artificial neuron, is characterised by a set of 
input connections, a set of output connections, an activation level, an output level, and 
a bias value (Fig 5). 

w 

X ~ Y=f(~:wixi+b~i) ~ y 
Fig. 5. A simple artificial neuron. 

The output level of a neuron is determined according to a function of the activation 
level, which is a weighted sum of the signal from the input connections. ANNs have 
many characteristics such as nonlinear mapping, self-organisation and learning. 
Learning in ANNs is viewed as the problem of finding a set of connection weights so 
that given a set of inputs the desired outputs are generated. ANNs effectively perform a 
parallel version of curve fitting and their capabilities should be assessed as adaptive 
function approximators [5]. When viewed in this manner they are powerful tools that 
can be used in an intelligent system to give it the learning capability. Many learning 
algorithms have been proposed, mostly network-architecture-specific. Supervised- 
learning algorithms rely on a teacher module to provide a set of training data which 
contains the input and the associated expected output. The learning algorithm then 
minimises the difference between the network output and the expected output. A 
possible application is a function- learning task. Unsupervised-learning algorithms take 
only the input patterns as training data and try to organise the neurons which best 
classify the data [9]. With reinforce-ment-leaming algorithms, instead of providing a 
desired output for each input as in supervised learning, only a scalar reinforcement 
signal is used, which may be available only occasionally. Typical application of 
reinforcement learning algorithms is in automatic control applications like the pole 
balancing problem [9]. 

A most common ANN architecture, called the feedforward net, arranges neurons 
into layers, namely input, hidden and output layers. Connections are restricted to the 
area between neurons in different layers. Many learning algorithms have been 
developed to train such neural networks. Most applications that employ feedforward 
net use the backpropagation algorithm for learning. In a multi-layer network, the input 



199 

is coded into an internal representation, and it is this internal representation that 
generates the outputs. Given a large enough set of  hidden units, it is possible to perform 
any mapping from the input set to the output set. 

Another common type of ANN that allows connections between any two neurons is 
called the recurrent net. This allows complex interaction between the neurons. An 
example is the Hopfield net which has been used as an associative memory. There are 
connections between any two neurons in a Hopfield net, and some neurons are 
designated as input while others, not necessarily different, as output. Upon completion 
of training, a Hopfield net is capable of retrieving the stored information when a part of 
the string used during training is presented to the network. Relaxing the restriction of  
having only inter-layer feedforward connections leads to the development of  a network 
architecture called the Elman net. For each neuron in the hidden layer, there are 
backward connections to some neurons in the input layer. These extra connections 
allow the network to include temporal information during its course of  deriving a 
solution [10]. 

It is clear that the most important contribution that ANNs make to a smart system is 
that they make it adaptive. ANNs can automatically adjust their weights using the 
learning algorithm to optimise the system behaviour. This capability allows ANNs to 
continually track solutions in changing environments. However, it is not true to say that 
ANNs would be able to compete with conventional techniques at performing well- 
defined, precise, numerical calculations such as matrix inversion. They have produced 
the best results in problems that not only involve ambiguity but are also difficult to 
model, such as pattern recognition. It is this key characteristic of  ANNs that is 
exploited within the framework of SC. 

5. Genetic Algorithms 

Genetic algorithms (GAs) are search techniques which derive their inspiration from 
biological natural selection and genetics. The starting point is a population of  
individuals, each representing a possible solution to a problem. Each individual is 
allocated a fitness measure according to the quality of  the solution it produces. The 
fittest individuals survive to the next generation while the individuals that produce 
unsatisfactory solutions are eliminated. This represents survival of  the fittest. The 
transition from one generation to the next is by means of reproduction among the 
survived individuals only. The reproduction results in new individuals as offspring who 
share some features taken from each parent. 

A basic GA processes a finite population of binary strings. There are three basic 
operations - -  selection, crossover and mutation. Selection chooses two individuals to 
produce offspring. The primary objective of  selection is to produce a partial ranking of 
the population so that fitter individuals will have a higher chance to reproduce. 
Crossover takes the two selected individuals and divides randomly their binary 
representation into two sections, called heads and tails. The two tails are then swapped 
to produce new individuals. For example 11111 and 00000 can produce two new 
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strings 11000 and 00111, or 11110 and 00001. Mutation is applied to each offspring 
after crossover. It is an occasional alteration of a bit (gene) position. The quality of the 
offspring is evaluated in the same way as the parents. 

The GA's application domain is wide. It can be applied to any optimisation 
problem and has produced impressive results in a number of applications [11]. General 
Electric developed a CAD system that combined expert systems with genetic 
algorithms. This system was used on a 100-variable portion of a gas-turbine design and 
produced a 92% increase in efficiency over human designers. 

Variations to the basic form of  the GA described above include real number and 
integer representation, different selection schemes that give various reproduction 
advantage to fitter individuals, and crossover operators that divide a string into more 
than two sections. Common to various forms of  GA is their robustness in reaching an 
optimal solution in the presence of minimal, if any, prior knowledge of the problem at 
hand. It is also best used in situations which involve a large number of parameters. As a 
result, the search conducted by a GA is very computationally intensive. Recent 
research has produced an analytical theory of GAs based on stochastic differential 
equations which may fiarther establish GAs as an efficient tool for optimisation and 
simulation of distributed systems. 

6. Soft Computing and Hybrid Systems 

In the past decade a number of  hybrid techniques have been developed that take 
advantage of  the relative merits of  fuzzy systems, ANNs and GAs [ 12]. In the previous 
sections, these merits were discussed and can be summarised as shown in Table I. 

There are five categories in Table I used for the comparison - -  learning and 
optimisation refer to sub-symbolic learning and optimisation. (The techniques have 
been assessed on the basis of whether learning and optimisation are implicit features or 
have to be built in.) Knowledge extraction refers to symbolic knowledge extraction as 
defined in conventional AI systems. Real-time operation is linked with implementation 
issues, i.e. whether each method lends itself readily to hardware implementation or not. 
Knowledge representation is either symbolic or numeric. The entries for fuzzy systems, 
ANNs, GAs and conventional systems are as shown. It should be noted that Table 1 
also assumes a simplistic binary set of  entries - -  yes and no. In reality, they could 
themselves be fuzzy. 

Two observations can be made from Table 1. Firstly, there is a good case for 
combining fuzzy, ANNs and GAs for building intelligent systems because each method 
can complement the other. Secondly, such a combination can enhance the capabilities 
of conventional AI systems. Some proponents of  SC [ 13] use this as a strong argument 
for developing new ways of producing hybrid systems to address the shortcomings of  
conventional AI. 

It has been argued [3] that the success of SC (as indicated by an explosion of  
applications in the present decade) is due to its emphasis on computational intelligence 
(CI) which is for the most part numeric rather than symbolic. CI is det-med by Bezdek 
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[14] as the first step of achieving biological, or human-level, intelligence (131), and it is 
purely based on numerical computation using sensory signals. AI lies somewhere 
between CI and BI and can be achieved by extending CI with symbolic representation 
and manipulation of non-numeric data (see Table 2). Fuzzy models are particularly 
suitable for a smooth transition between CI and AI because they can accommodate both 
numeric and symbolic information in a common framework. 

Table 1. Relative merits of Fuzzy, ANN, GA and conventional AI systems. 

Sub- Symbolic Real- Knowledge Optim- 
symbolic knowledge time repre- isation 
learning extraction operation sentation 

Fuzzy no yes yes symbolic/ 
system numeric 

ANN yes no yes numeric 

GA yes no no numeric 

Conven- no yes no symbolic/ 
tional A/ number 
systems 

llo 

n o  

yes 

no 

Table 2. The ABC of intelligence [14]. 

Complex i ty  

Biological 
Human knowledge 
+ sensory inputs 

Artificial Symbolic 
+ numeric + sensor 
data 

Computational 
Numeric 

BNN 

ANN 

CNN 

BI 

AI 

CI 

Bezdek presents the case for combining symbolic and sub-symbolic techniques by 
introducing a distinction between computational neural networks (CNNs) and artificial 
neural networks (ANNs). He argues [14] that ANNs result from the combination of 
CNNs, which are based purely on numerical processing of sensory data, and some 
knowledge usually in the form of non-numeric rules. 

The most widely researched hybrid system in the area of SC is neuro-fuzzy 
systems. Here the learning capabilities of ANNs are exploited within the framework of 
fuzzy logic. In some systems, ANNs can be used to generate and tune the membership 
functions in a fuzzy system (Fig 6). A number of models have been suggested for such 
hybrid systems, e.g. fuzzy ART [15], Fuzzy LVQ [16] and radial basis functions [17]. 
The process of obtaining and tuning the fuzzy rules is one that is particularly suitable 
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for ANNs, resulting in substantial reductions in cost and development time. Here, 
gradient descend methods have been used to define the shape and position of 
membership functions. This hybrid method has been used to design triangular, 
Gaussian, sigmoidal and bell-shaped membership functions [ 18]. 

fuzzy system 

ANN 

Fig. 6. ANN for tuning membership functions. 

A number of applications have been reported in which fuzzy systems and ANNs are 
employed in series [19]. In such situations, either the sensor output is not suitable for 
direct input to the fuzzy system in which case an ANN pre-processes the input to the 
fuzzy system (Fig 7(a)), or the output of the fuzzy system is not suitable for direct 
interface with the external devices and an ANN is used as a post-processor to perform a 
mapping or conversion not easily achievable by other analytical techniques (see Fig 
7(b)). For example, Toshiba's microwave-oven-cum-toaster estimates the temperature 
and the number of pieces of bread using an ANN and decides the optimum toasting 
time by using fuzzy reasoning, i.e. its model resembles closely Fig 7(a). 

fuzzy system i ,uzz    tem  
ANN (a) (b) ANN 

Fig. 7. Serial hybrid ANN-fuzzy systems. 

--------i i-  

In some applications ANN and fuzzy systems are used in parallel. One possible 
configuration uses a fuzzy system as the main system and an ANN to fine-tune the 
output to suit users' personal preferences. The ANN learns from the fine adjustments 
made by the user and corrects the output of the fuzzy system (Fig 8). 

Another class of systems, known as neural fuzzy systems, have been used for 
knowledge acquisition and learning. In such systems, experts' knowledge in symbolic 
form is used to initialise a structured ANN. The ANN is then trained using the input/ 
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output from an actual system. Symbolic knowledge is then acquired from the trained 
ANN in fuzzy logic representation (Fig 9). 

ANN 

fuzzy system 

correcting 
value 

"1 
Fig. 8. Parallel hybrid ANN/fuzzy systems. 

actual I ANN system 

exped 
2t , 

fuzzy system 

Fig. 9. Neural/fuzzy systems. 

A significant number of researchers have concentrated their efforts on 
implementing fuzzy systems on a neural network representation. These include fuzzy 
weights, fuzzy neurons and fuzzy neural networks in which the neural network layers 
perform the fuzzification and defuzzification on crisp input/output data. The structure 
of fuzzy neural networks is shown in Fig 10. There are three groups of layers each 
performing one of the three functions of a fuzzy system. 

The initial layers process crisp input data by assigning groups of nodes to the labels 
of linguistic variables and implementing membership functions in these nodes. The 
output of these layers goes to layers that function as fuzzy rules operating on fuzzy 
input. The final layer aggregates the results of applying the rules and defuzzifies the 
results [19]. GARIC [20] is an example of such a scheme which uses a five-layer neural 
network. It has been used in the space shuttle orbital operations control by NASA. 
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crisp 
input 

fuzzifier fuzzy rules 

crisp 
output 

defuzzifier 

Fig. 10. Fuzzy/neural networks. 

Development tools are becoming available for integrating fuzzy and neural 
networks which should pave the way for the exploitation of the available architectures 
in information systems applications. Two such tools are NEFCON-I [21] and O'INCA 
[19] by Intelligent Machines Inc. 

Fuzzy-GA systems combine the optimisation capabilities of GAs with fuzzy logic 
(Fig 11). Such systems can develop the best possible set of rules for use by a fuzzy 
inference engine. They can also be used to optimise the choice of the membership 
functions. 

ANN/fuzzy 

I heuristir 
modification ~ 

Fig. 11. GA for optimisation of ANN/fuzzy hybrid systems. 

The applications of hybrid genetic and fuzzy systems are in adaptive process 
control, pattern recognition, robot trajectory generation and face recognition. GAs can 
be used to improve the performance of neural networks by changing their parameters, 
topologies or both. Applications include structure organisation of fuzzy neural 
networks, evolving ANNs and self-organising maps. 

There are many other possible combinations of FL, ANN and GA. However, this 
paper has only presented the most widely published ways of combining these 
techniques within the context of SC. The references provide a more comprehensive list 
for further reading. 
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7. Some Applications o f  Soft Comput ing  Techniques 

Although SC is a relatively new field of research it has already been established as one 
of the fastest growing areas of AI technology in terms of consumer and industrial 
applications. Japanese companies lead the way both in research and development, 
although many European and American companies are allocating large resources to 
this technology and the products have already appeared in the market. The majority of  
the applications are in the areas of expert systems, control, pattern recognition, 
clustering and image processing. However, active research is being carried out in many 
other areas such as decision support systems, user interfaces, speech recognition, face 
recognition and natural language systems. This section gives a brief description of a 
small number of recent applications of this technology. The emphasis here will be on 
applications resulting from the fusion of  SC techniques rather than applications of 
individual techniques. 

7.1 A Smart Washing Machine 

Hitachi has produced a washing machine that uses the parallel structure of Fig 8 [22]. 
The smart controller inside the washing machine determines the washing programme 
automatically by measuring the amount and type of clothes placed inside the machine. 
A fuzzy rule-based system then uses this information to control the water flow and the 
programme parameters such as washing time, rinsing time and spinning time. A neural 
network monitors the operation of the machine during a wash and uses the quality of 
the water inside the drum to fine-tune the output parameters of the fuzzy system. In this 
way, it acts as an adaptive correcting mechanism for the fixed fuzzy rules. 

7.2 A User-seeking Electric Fan 

The electric fan of Sanyo is designed to face the user as the user moves inside a room 
[23]. To solve this problem accurately a very sophisticated and expensive system is 
required, which is not suitable for a relatively cheap consumer product. The main 
problem is computing the distance of the user from the fan. Sanyo have designed a 
fuzzy system to estimate the distance given readings from an infra-red sensor. A neural 
network is then trained to use this information to compute the required turning angle of 
the fan. This technique has not only produced a f'mancially viable solution but it has 2.5 
times better accuracy compared to statistical regression methods. 

7.3 A Photocopier with a 'Brain' 

The Matsushita Electric photocopier machine controls its operation with a set of  fuzzy 
rules [24]. All photocopier machines operate with a set of fixed parameters which can 
be adjusted manually by an engineer or the user. However, the quality of the copies can 
deteriorate with time or can be dependent upon the type of the original document. A 



206 

fuzzy rule-based system can use the information about the state of the machine, the 
quality and type of the original document to make decisions regarding operating 
parameters of the photocopier. Some of the fuzzy input parameters used by the rules 
are temperature, humidity, toner density, image density and image background. The 
output of the system controls the parameters such as exposure lamp, drum voltage and 
toner density among others. Interestingly, the parameters of the fuzzy system were 
designed automatically by neural networks, i.e. the position and width of the fuzzy 
membership functions were tuned by a gradient method. It is important to note that the 
neural network was used during the development stage and not during the operation. 
The same approach has been used by Matsushita to design vacuum cleaners, rice 
cookers and washing machines. 

7.4 A Rolling Mill with Fuzzy Recognition 

Hitachi have manufactured and run a rolling mill system since 1991 [25] whose aim is 
to produce constant thickness metal rolls. The surface of the plate which is being driven 
through 20 rolls is scanned. The scanned pattern is matched against standard template 
pattems by a neural network. The standard templates are used as the antecedent of the 
fuzzy rules, for example: 

IF pattern is template_l THEN action is output_l 
IF pattern is template_2 THEN action is output_2 
IF pattern is template_3 THEN action is output_3 

The level of matching identified by the neural network is the strength of each fuzzy 
rule. The aggregated final output of the fuzzy system determines the output to the rolls. 
This approach is called neural network-driven fuzzy reasoning. 

7.5 Other Interesting Consumer Products 

Mitsubishi Electric Corp introduced fuzzy inference into their videoconferencing 
system in 1991 [26]. The aim was to improve the data compression coding method 
based on the extent of change in successive frames. The fuzzy rules improved the 
motion tracking ability of their product by 30---50%. A smart TV produced by 
Mitsubishi [26] continuously adjusts the controls on the TV set to produce optimum 
picture quality according to the brightness of the room and the viewer's distance from 
the set. Canon has used fuzzy logic in their camera to improve the auto-focus functions 
[26]. Sanyo have done similar work on their camcorders [26]. Siemens have done 
extensive work on the application of fuzzy reasoning to various aspects of ATM 
networks such as call admission control and usage parameter control [27]. 

There are many more of such applications as documented in many journals and 
books [24]. The wealth of sources of applications show that the soft computing 
technology is reliable, cost effective and applicable to real-world problems. These are 
the factors that make soft computing an attractive technology from an industrial point 
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of view. However, there are many active research areas within the soft computing 
framework that are and will be producing new directions for exploiting this technology 
in other challenging areas of applications. 

7.6 Human/Computer Interaction - -  A New and Challenging Area of 
Application 

This area of research can benefit from soft computing in many different ways because 
of the inherent uncertainty and vagueness in natural language, image recognition, hand- 
writing recognition, speech recognition and gesture understanding. The uncertainty is 
either due to poor sensor technology and data, or lack of processing algorithms and 
background information. There are already products available that use component 
technologies of soft computing to perform many of the above mentioned tasks e.g. 
neural networks have been used extensively for image and speech recognition, fuzzy 
logic has been used in areas such as face recognition [28], hand-writing recognition and 
speech recognition. However, as discussed in section 2, the merger of these technique 
would improve the overall characteristics of the resulting system and therefore it is 
anticipated that this will be an active area of research in the next few years. In the next 
section we will briefly mention future trends in soft computing research. 

8. Future  Research  Direct ions  

The majority (70%) of the publications in this area are concerned with the fusion of 
fuzzy systems and neural networks (FS-NN). About 25% of the publications are in the 
area of combining neural networks and GAs (NN-GA), and the remainder are in the 
area of merging fuzzy systems and GAs (GA-FS). The most promising areas in FS-NN 
are in the automatic design of fuzzy systems using neural networks and in neural 
networks whose structure is based on fuzzy rules (generally similar to that shown in Fig 
10) which has produced results significantly superior compared to conventional neural 
networks. Within NN-GA, GAs have been used for optimisation of synaptic weights in 
ANNs and have produced better results when combined with back-propagation (BP) 
compared to BP on its own. In the GA-FS area the performance of static GA has been 
improved by incorporating a set of fuzzy rules to dynamically change the parameters of 
the GA in order to improve its overall performance. On the other hand GAs have been 
used to optimise the selection of best fuzzy rules as well as optimising the rules 
themselves. In general, improvements are being made in the areas of soft computing 
where individual components seem to have deficiencies. In summary the future 
research directions are as follows: 
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�9 a better understanding of the trade-offs between training time and size of neural 
networks is necessary; 

�9 neural network implementations of  fuzzy systems must be able to learn on-line in 
order to respond to changes in their environment; 

�9 we must be able to extract the knowledge learnt by neural networks; 

�9 GAs must be able to handle qualitative fitness functions as well as quantitative 
ones; 

�9 generic soft computing platforms are essential for further research in these areas. 

These are just some of the challenges faced by the soft computing research 
community. 

9. Conclusions 

This paper has given a definition for soft computing and described its relevance to 
intelligent systems. The principal aim of  soft computing is to achieve robustness, low 
solution cost and high machine IQ, through the exploitation of tolerance for 
imprecision and uncertainty. The individual components of soft computing each 
exhibit certain characteristics beneficial to the aim of increasing MIQ. Fuzzy logic 
provides a model for approximate reasoning, as well as a representation for smooth 
transition from a symbolic paradigm to a numeric one. Neural networks operate on 
numeric data and provide low-level, fast-processing units that can adapt and learn. GAs 
are used for optimisation to evolve better performance. A number of successful 
applications, particularly in the area of consumer products, have shown that synergism 
of these techniques can provide a route to building intelligent systems [29]. 

Acknowledgement 

The authors wish to acknowledge the advice and encouragement provided by Professor 
Lotfi Zadeh in the preparation of this paper. 

References 

1. Zadeh L A: 'The roles of fuzzy logic and soft computing in the conception, design and 
deployment of intelligent systems', BT Technol J, 14, No 4, pp 32--36 (October 1996). 

2. Uhr L and Honavar V: 'Introduction', in: 'Artificial Intelligence and Neural Networks - -  
Steps Toward Principled Integration', Academic Press (1994). 



209 

3. Zadeh L A: 'Fuzzy Logic, Neural Networks and Soft Computing', Comm ofACM, 3._~7, No 
3, pp 77--84 (March 1994). 

4. Mamdani E H: 'Towards Soft Computing', Proc BCS Expert Systems Conference, 
Cambridge (December 1995). 

5. Kosko B: 'Neural Networks and Fuzzy Systems - -  A Dynamical Systems Approach to 
Machine Intelligence', Prentice Hall (1992). 

6. Horstkotte E: http://www.quadralay.com/www/Fuzzy/Fuzzy.html 

7. Munakata T and Jani Y: 'Fuzzy Systems: An Overview', Comm of ACM, 37, No 3, pp 
69--76 (March 1994). 

8. Zadeh L A: 'Soft Computing and Fuzzy Logic', IEEE Software, 1._[, No 6, pp 48--58 
(1994). 

9. Barto A, Sutton R and Anderson C: 'Neuro-like Adaptive Elements that can Solve Difficult 
Control Problems', IEEE Tran on Systems, Man and Cybemetics, No 13 (1983). 

10. DayhoffJ: 'Neural Network Architectures', Van Nostrand Reinhold (1990). 

11. Goldberg D E: 'Genetic and Evolutionary Algorithms Come of Age', Comm ofACM, 3._Z, 
No 3, pp 113--119 (March 1994). 

12. Fukura T: 'Fuzzy-neuro-GA Based Intelligent Robotics', in: 'Computational Intelligence 
Imitating Life', IEEE Press, pp 352--363 (1994). 

13. Fox J: 'Towards a reconciliation of fuzzy logic and standard logic', Int J of Man Machine 
Studies, 1._55, pp 213--220 (1981). 

14. Bezdek J C: 'What is Computational Intelligence', in: 'Computational Intelligence 
Imitating Life', IEEE Press, pp 1--12 (1994). 

15. Carpenter G, Grossberg S, Markuzon N, Reynold H J and Rosen D B: 'Fuzzy ARTMAP: A 
Neural Network Architecture for Incremental Supervised Learning of Analogue Multi- 
dimensional Maps', IEEE Tran on Neural Networks, 3, No 5, pp 698--713 (1992). 

16. Tsao E C K, Bezdek J C and Pal N R: 'Image Segmentation Using Fuzzy Clustering 
Networks', in North American Fuzzy Information Processing, pp 98--107 (1992). 

17. Wang L X: 'Training Fuzzy Logic Systems Using Nearest Neighbourhood Clustering', 
Manuscript (1992). 

18. Asakawa K and Takagi H: 'Neural Networks in Japan', Comm of ACM (March 1994). 

19. Medsker A R: 'Hybrid Intelligent Systems', Kluwer Academic Publishers (1995). 

20. Berenji H R: 'Fuzzy Systems That Can Learn', in: 'Computational Intelligence Imitating 
Life', IEEE Press, pp 23--30 (1994). 

21. NEFCON: http://sol.ibr.cs.tu-bs.de/ibr/projects/nefcon/ 



210 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

Hitachi News Release: 'Neuro and fuzzy logic automatic washing machine and fuzzy logic 
dryer', No. 91-024 (February 1991). 

Sanyo News Release: 'Electric fan series in 1991', (March 1991). 

Takagi H: 'Co-operative system of neural networks and fuzzy logic and its application to 
consumer products', in: 'Industrial Applications of Fuzzy Control and Intelligent Systems', 
IEEE Press (1994). 

Nakajima M, Okada T, Hattori S and Morroka Y: 'Application of pattern recognition and 
control techniques to shape control of the rolling mill', Hitachi Review, 75, No 2 (1993). 

Takagi H: 'Survey of fuzzy logic applications in image processing equipment', in: 
'Industrial Applications of Fuzzy Control and Intelligent Systems', IEEE Press (1995). 

Hellendoom H, Metternich W, Nissel M, Seising R and Thomas C: 'Traffic management 
for broadband networks with fuzzy logic - -  call admission control and usage parameter 
control', Proceedings of EUFIT'96 (September 1996). 

Baldwin J and Martin T: 'Basic concepts of fuzzy logic data browser with applications', in 
Nwana H and Azarmi N (Eds): 'Software Agents and Soft Computing: Towards Enhancing 
Machine Intelligence', Springer Verlag, Berlin (December 1996). 

Zadeh L A: 'Foreword', in Medsker L R: 'Hybrid Intelligent Systems', Kluwer Academic 
Publishers (1995). 


