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Neural Networks I1I:
Models of Mind

Conceptual Outline

The training of a model network that has subdivisions requires a process
that can train synapses within subdivisions and between subdivisions without sub-
jecting either to overload. A natural solution to this problem involves taking the net-
work “off-line,” so that a filtering of memories can occur when the network is disso-
ciated. This is a possible model for the role of sleep in human information-processing
that explains some of the unusual features of sleep and suggests new experiments
that can be performed.

MBI \arious features of human information-processing, including the learning
of associations, pattern recognition, creativity, individuality and consciousness can
be discussed within the context of neural network models.

Efforts to describe and explain the higher information-processing tasks that human
beings are capable of performing have always generated tension and concern. There
has been a tendency to elevate these processes outside of the domain of the physical
world, or to mystify them,through a characterization as infinite and incomprehensi-
ble. This tendency may arise from the desire to maintain a uniqueness of and impor-
tance to our own capabilities. We will adopt the contrary point of view that our ca-
pabilities are fundamentally comprehensible. However, it turns out that this does not
diminish a quality of uniqueness and importance. If anything, it shows us how this
importance arises.

We begin to tackle the task of explaining aspects of human information-processing
in this chapter. However, we will not conclude our discussion until we have described
complexity in the context of human civilization in Chapter 9. We start in Section 3.1 by
considering the training of subdivided networks and the role of sleep in human infor-
mation-processing. This section is an essential sequel to the discussion in the last chap-
ter that introduced subdivision. The problem is to develop a systematic approach to the
training of subdivided networks.

371
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Sleep and Subdivision Training

3.1.1 Training a partially subdivided network

In Chapter 2 we discussed the role of functional subdivision in the brain. We showed
that the storage capacity of a subdivided network was reduced;however, the ability to
recall composite states may confer significant advantages on a properly designed net-
work. The subdivided network presents us with a new set of challenges when we con-
sider its training. The approach used in Chapter 2, where we imprinted a set of dis-
tinct patterns—each precisely what must be learned—is woefully incomplete. For
more realistic modeling of neural networks we should assume that the information
presented to the network is not so well-organized. When the information is presented
in either a random or, even more realistically, a correlated fashion, there arise prob-
lems that relate to the storage capacity of the network and the selection of desired
memories.

To illustrate the problem, we can return to the simplest example—the left-right uni-
verse (Section 2.4.1). In the first discussion it was assumed that there were no correla-
tions between the left and right halves. The two halves were completely independentand
all composite states were equally possible. Now we assume that correlations exist,and
that there are some synapses that connect left and right hemispheres to capture these
correlations. This means that there are many fewer possible states than N, Ng but still
many more than N, or Ng, where N, is the number of possible left halves and Ny is the
number of possible right halves. Moreover, we should expect that the number of possi-
ble imprints of each subnetwork is greater than its storage capacity (N, ,Ng >> aN/2).

Some selection of which states to keep in memory must be made. The point of
introducing the subdivided network was to accommodate more of the possible states
that can arise. However, if we try to imprint all of them, we will exceed both the ca-
pacity of the subnetworks and the capacity of the synapses between the subnetworks.
When we were faced with the problem of overload in a uniformly connected network,
we used a palimpsest memory to retain only the most recently imprinted memories.
However, in a subdivided network this is not the best strategy for keeping memories.
If the imprints are correlated,the most recent ones may all happen to have a particu-
lar right half, and this will end up being the only right half that will be remembered
by the network.

Thus, without control over the number of states that are imprinted and the or-
der in which they are imprinted, we must be concerned about the problem of over-
load failure. If we must stop the imprinting after only a few imprints sufficient to
reach the capacity of the smallest subdivision, we will have limited the training of the
network very severely. How can we overcome this problem?

To design a strategy to overcome the overload problem, we must first identify our
objective in training the network. The objective should be based on achieving the best
utilization of the available capacity: to enable each of the subdivisions of the brain to
store a number of patterns that are commensurate with its capacity. These and no oth-
ers. The stored patterns should be the most important patterns to remember. How do



Sleep and subdivision training 373

we identify the most important patterns? They should be the patterns that appear
most frequently, and the patterns that are most orthogonal—most different. The rea-
son for orthogonality is that it enables more patterns to be stored (Question 3.1.1).
Also, if two patterns are similar, we might be able to substitute one for the other with-
out too much loss. Thus if we cannot store two patterns as distinct,the next best thing
is to store them as one and classify them together. More generally, when there are
highly correlated states, we store one prototype that could be one of the states, or even
a spurious state that has maximal overlap with the correlated states. This best utiliza-
tion strategy enables each subdivision to retain states that are well representative, even
though not necessarily exact reproductions, of the possible states.

The next objective is to train synapses that run between subdivisions to achieve
correlations between the patterns imprinted in each of the subdivisions. We can think
about each subdivision as itselflike a neuron. The difference is that the neuron has only
two states while the subdivision has approximately oN ¢possible states, where N ¢is the
number of neurons in a subdivision. Thus we train the synapses between subdivisions
to utilize the storage capacity for composite patterns, choosing those that are the most
important composite patterns to remember. As before, the most important patterns
are those that appear most frequently and those that are most orthogonal.

If we have a subdivision hierarchy, then at the third level of organization, the
stable patterns of each of the subnetworks consists of various composite states. The
overall objectives that we articulated for the storage of patterns also apply to
the storage of states of the third level of the network. These objectives for training
the synapses between subdivisions continue to remain the same all the way up to the
complete network.

The model of a network of networks suggests a general strategy for its training.
Since the training of inter-subnetwork synapses relies upon a well-defined set of sub-
network states, it seems reasonable to train first the subnetworks and then the synapses
between them. To achieve this we would separate the subnetworks from each other,
train each one,and then attach them and train the synapses between them. In the first
stage of training, the subnetworks would be trained to their optimal capacity. Once
the subnetworks are trained, the storage of patterns using the inter-subnetwork
synapses would have a well-defined significance. Otherwise, if the synapses between
subnetworks were trained before the synapses within asubnetwork were set,then mod-
ifying synapses within the subnetwork would change the significance of the synapses
between subnetworks. Thus it seems that the brain should be trained by first training
the smallest subdivisions, then connecting them into larger groupings and training
the synapses between them. However, while it might appear to be convenient to train
the subdivisions first, this presents us with several practical problems.

We must assume that the training requires many exposures to various environ-
ments and circumstances. We cannot wait until the training of subdivisions is com-
plete before the brain is used. Moreover, the sensory information to which the brain
is exposed does not reach the brain except through the interaction of action and sen-
sation. In order to act,the brain must be functional,at least to some degree,and there-
fore we cannot train a brain when disconnected into its small parts.
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There is an alternative approach that takes into account the need for separation
and training of each subdivision while enabling the functioning of the brain. This
approach adds an additional dynamics to the brain. In addition to the neural dynam-
ics and the synaptic dynamics there is a dynamics of subdivision. The dynamics of
subdivision is incorporated in a two-step procedure:

1. Imprint the complete network. If the number of synapses between subdivisions
is smaller than within subdivisions,this already contains some predisposition to
subdivision. Since the network is connected, it can also function.

2. Separate the network into its subdivisions and selectively reinforce (filter) the
patterns that satisfy our objectives of optimal utilization of each subnetwork.

The cyclical repetition of steps 1 and 2 should enable the training of the subdivi-
sions to proceed as operation continues. However, it requires the system to go “off-
line” periodically for the filtering process.

The purpose of the two-stage process is to train the subdivisions separately from
the training of the inter-subnetwork synapses.However, there isaneed to obtain neural
activity patterns for the training. These states must originate from the imprinting that
occurs when the system is together. How are the imprinted patterns retrieved for the
training of the subdivisions when the system is off-line? By the operation of the net-
work itself. We call the second step reimprinting or relearning. Simulations that build
an understanding of its operation are discussed in Section 3.1.2.

Having arrived at this scenario for training the subdivided network, we ask
whether there is an analog of this in the actual system. The answer may be that sleep
is the time during which the brain performs the subdivision training. This suggests
that we consider the phenomenology of sleep and see if it can be reconciled with the
possibility that the brain is separated into subdivisions and undergoes a filtering pro-
cedure. Because the training of subdivisions is central to their utilization in the brain,
as well as in other complex systems, and the purpose of sleep is one of the great un-
solved mysteries, we will consider their relationship in some detail in Section 3.1.3.

More generally, it is quite natural to suggest that complex systems that have iden-
tifiable function may undergo processes of dissociation and reconnection as part of
their developmental process. This enables the subdivisions to develop autonomous
capabilities which may then be recombined to achieve new stages of development.

uestion 3.1.1 Show that the number of orthogonal states that can be
stored in an attractor network is N. This is larger than the number of
random states N derived in Section 2.2.

Solution 3.1.1 The orthogonality of different states may be written as:

N
o
A EJE =N, (11
=1
Using a signal-to-noise analysis as in Section 2.2.5 we can evaluate the
stability of a particular neuron {5;|s; = E}} when the states £!"are orthogonal.
We arrive directly at Eq. (2.2.21):
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j=2 =2 u=2
The first term is the signal term and,as before,is just (N - 1)/N. The second
term, which was the noise term in the previous analysis, is essentially given
by the overlap of different states, which is zero in this case by Eq. (3.1.1).
However, we must take into consideration that the sum does not include
j = 1. So we have a correction to the signal

1 _M_ig Lpeuet _(N-D (p-1)_(N-p)
&h = N N22§1§1§1§1— N N - N

(3.1.3)

We see that the result vanishes when p reaches N. It is impossible to imprint
more than N orthogonal states because there are no more than N orthogo-
nal states of N variables. However, this analysis also shows that the basins of
attraction vanish in the limitof p=N. O

uestion 3.1.2 Show that after imprinting N orthogonal states, all pos-
sible neural states have the same energy in the energy analog.

Solution 3.1.2 N orthogonal states of dimension N are a complete set of
states. This can be written as:

138
ia E{*&}‘ =0 | (3.1.4)

u=l

Except for the diagonal terms, this is the same as the synapses of the im-
printed neural network. Since all the diagonal terms of the synapses are set
to zero, and the off diagonal terms are zero by Eq. (3.1.4), we must have a
completely null set of synapses. [

3.1.2 Recovery and reimprinting of memories

In this section we demonstrate the use of a neural network to recover memories and
reimprint them. The reimprinting reinforces some memories at the expense of oth-
ers.Effectively, the number of memories stored in the network is reduced so that fur-
ther imprinting does not cause overload. The retrieval process begins from a random
initial state which is evolved to a stable state. Using a random initial state means that
the retrieval emphasizes the memories with the largest basins of attraction. These
memories have been imprinted with the largest weight or are most different (most or-
thogonal) from other states that have been imprinted. In effect,the process is a filter-
ing of memories that retains the “most important” ones and the ones that provide for
best utilization of the storage capacity of the network. There are two advantages of
this selection procedure over palimpsest memories discussed in Section 2.2.7. First,
selection may be done after the original imprinting of the memories instead of dur-
ing the imprinting. Second, the selection does not solely rely upon the specific order
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of imprints, it enables the persistence of particular older memories. However, when
imprinting and selection are repeated many times, it is still true that recent imprints
are more likely to survive the filtering process.

The reimprinting procedure isa particular way of filtering memories so that over-
load in the network is prevented and learning can continue. The continued learning is
assumed to serve both as continued adaptation to a changing environment and as a re-
finement of the storage due to selection of more optimal memories—memories that
are more likely to be recalled because they appear more frequently in the environment.

Reimprinting is well suited to subdivided neural architectures where each subdi-
vision is expected to have well-defined memories that serve as the building blocks for
the complete neural states of the network. In a subdivided network, reimprinting is
implemented during a temporary dissociation of the network, which may correspond
to sleep (Section 3.1.3). Temporary dissociation is achieved by diminishing the synap-
tic weights that connect between subdivisions. During the temporary dissociation,
reimprinting optimizes the storage of patterns within each subdivision without re-
gard to the associations established by inter-subnetwork synapses. When the inter-
subnetwork synapses are reestablished, these associations are also reestablished.

In order to understand how the reimprinting works, we describe simulations that
build the process step by step. The reimprinting of memories occurs on top of the im-
printing that has already been performed. We must first understand the effect of im-
printing states on top of existing memories using a palimpsest approach that weakens
the previous memories before imprinting new ones. We can anticipate the results in
two limits. The limit of no reduction in synapse strength corresponds to the conven-
tional training. On the other hand, if the synapse strengths are sufficiently reduced in
strength,then imprinting new patterns must be equivalent to the case of no prior im-
prints. Intermediate cases enable us to develop an understanding of the extent to
which prior memories affect new imprints, and conversely how new imprints affect
prior memories.

Assuming Hebbian imprinting, the combination of reducing the prior synapse val-
ues and imprinting a new state is described by modifying the synapses according to:

1) =5y t- D+ ﬁsi(t)s,-(o it (3.15)

Instead of diminishing the synapses with each imprint, we consider an episodic ap-
proach. We imprint a prespecified number of states and then reduce the synapses be-
fore continuing. For the simulations we use a network of N = 100 neurons, and im-
print p; = 4 neural states with equal coefficients. Then the synapse strengths are
multiplied by a factor . Then p; more neural states are imprinted and the synapse
values are again multiplied by . This is repeated until a total of p = 16 neural states
are imprinted. The final value of the synapses could be written using the expression:

o= prp-18 vev o P/Pi-2 2 Vv g VeV
Jij =% acsi§ tx agg+.+t agg; (3.1.6)

v=1 v=p;+l v=p-p1tl
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To analyze the effect of the procedure, we calculate the basin of attraction of the
imprinted states. Results averaged over many examples are plotted in Fig. 3.1.1.Each
curve shows the distribution of basins of attraction for the imprinted states. The
curves are labeled by the factor i, which scales the synapses between each set of 4 im-
prints. The results show that for 16 imprints of equal strength ( = 1) the network is
well beyond the optimal number of imprints. Only 10 imprints are stable and the
basins of attraction are very small. When we diminish the synapses between succes-
sive imprints, i < 1, then the basin of attraction of the last four imprints are much
larger. However, this occurs at the expense of reducing dramatically the basins of the
other memories, eventually destabilizing them. Two conclusions from this analysis
are: (1) diminishing the synapses is an effective mechanism for ensuring that succes-
sive imprints are learned effectively, and (2) the older memories are lost.
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Figure 3.1.1 Simulations of an episodic palimpsest memory using a network of N =100 neu-
rons. Each episode consists of reducing the synaptic strengths by a factory then imprinting
four new states. Plotted are the resulting histograms of basins of attraction (B). Curves are
labeled by the value of %. The results illustrated have been averaged over many examples.
Unstable states are included as having basins of attraction of zero. The curves are normalized
to the total number of imprints p = 16. By diminishing the strength of synapses (y < 1) the
more recent imprints are better remembered, at the expense of forgetting the earlier sets of
memories. The total number of stable states as a function of y is shown in the inset on the
upper left. O
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The procedure used to generate Fig. 3.1.1 is:

1. Generate p random neural states {€}}
g'=+1  u={L..phi={l..N} (3.17)

2. Imprint the first p, neural states on the synapses of the neural network (Hebbian
rule)

(3.1.8)

3. Rescale the network synapses by a factor .
Jij = xJjj i,j={1,...N} (3.1.9)

4, Repeat steps (2) and (3) for each successive set of p; neural states until all p neural
states are imprinted.

5. Find the basin of attraction of each of the neural states £!*, where an unstable
neural state is set to have a basin of attraction of zero (see Section 2.2.6).

6. Make a histogram of the basins of attraction for different €}'.

Thus far we have demonstrated the performance of an episodic palimpsest mem-
ory. As mentioned above, we prefer to retain selected older memories. They can be re-
tained if we reinforce them before the imprinting continues. We will consider several
models of reimprinting.

If we know the states that were imprinted, we can select some of the older mem-
ories and reimprint them. This is not a practical approach if the earlier imprints are
not known at the time of reimprinting, as when training a subdivided network.
However, because it can help us understand the optimal effect of reimprinting, this
will be the first case studied below.

If we do not independently know the imprinted states,then we must use the net-
work itself to recover patterns that were imprinted. In this case selective reinforce-
ment of memories may be achieved using the following steps: (1) initialize the
network to a random state, (2) update the network a prespecified number of times,
and (3) imprint the network. The neural update rule we have discussed in the text is
noiseless. Because of the spurious states it is advantageous to add a small amount of
noise. The noise helps the network escape from shallow minima associated with the
spurious states.Glauber dynamics is just such a noisy neural update rule that was in-
troduced in Section 1.6 and discussed in the context of neural networks in Question
2.2.2. Thus we will compare reimprinting in two cases, using a noiseless update rule
and using a noisy update rule.

Itisimportant to perform the reimprinting well before the network reaches over-
load. As we approach overload, the memory becomes ineffective. This is not only a
problem for the network operation, it is also a problem for the filtering process that
uses the network to retrieve patterns for reimprinting. If the network is too near over-
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load, the retrieval process will find more spurious states than imprinted states.
However, we would like to be able to use a significant fraction of the network capac-
ity. In the simulations below, we balance these considerations by using an initial im-
printing with 8 states on a network of 100 neurons. Eight states is below, but a signif-
icant fraction of, the maximal capacity of about twelve states.

Figs.3.1.2 and 3.1.3 compare three different reimprinting procedures. Fig. 3.1.2
shows the distribution of basins of attraction.Fig. 3.1.3 shows the integrated number
of basins of attraction higher than the value along the abscissa. The starting point, be-
fore reimprinting, consists of a network with 8 imprinted neural states. This is shown
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Figure 3.1.2 Plots illustrating tests of reimprinting procedures. Histograms of the basins of
attraction are shown. The objective is to strengthen several memories at the expense of the
others. The starting point is a network of 100 neurons with 8 imprinted neural states. This is
shown as curve (a). Curves (b),(c) and (d) show the results after reimprinting. (b) is the op-
timal case where four of the originally imprinted states are imprinted again. In curve (c) the
4 imprinted states are evolved random states obtained by applying the deterministic neural
update rule to a random initial configuration. Curve (d) is the same as (c) except the neuron
evolution includes noise (p = 3.5) (see Question 2.2.2). In both cases there is an enhance-
ment of some of the basins of attraction. For curve (c) the number of basins enhanced is about
1.5 while for curve (d) it is about 2. Note that the basins of attraction of all of the evolved
random states are not necessarily included in the figure since they are not always desired
memories. The insert on the upper left shows the number of unstable memories out of the
eight originally imprinted states. [
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Figure 3.1.3 Plots illustrating tests of reimprinting procedures. This figure is similar to Fig.
3.1.2, except that the plots show the integrated number of imprinted states with a basin of
attraction grater than a given value B. Flat regions of the curves separate states with large
basins of attraction from states with small basins of attraction. This shows the ability of the
reimprinting to reinforce some memories at the expense of others. O

as curve (a). The objective is to strengthen several memories at the expense of others.
Curves (b), (¢), and (d) show the results after reimprinting. (b) is the idealized case,
where four of the originally imprinted states are imprinted again. This is the same as
imprinting four of the states with twice the strength of the other four. As in Fig. 3.1.1,
the effect is to reduce the basin of attraction of the neural states that are not reim-
printed,and increase the basin of attraction of the ones that are reimprinted. In curve
(c) the four states to be imprinted are obtained by applying the deterministic neural
update rule to a random initial state. We call these “evolved random” states. In curve
(d) the four states to be imprinted are obtained by applying the noisy, or nonzero tem-
perature,neural update rule to a random initial state. The temperature kT = 0.285 or
(3 =3.5 was chosen based on simulations of the recovery of imprinted states at differ-
ent temperatures (Question 2.2.2). Whenever the nonzero temperature update rule is
used, we also evolve the network by the zero temperature rule to bring the neural state
to its local minimum. In both (c) and (d) there is an enhancement of some of the
basins of attraction. For curve (c) the number of memories that are enhanced is about
1.5, while for curve (d) it is about 2. The basins of attraction of memories that were
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reimprinted appear as a peak around the value 40 in Fig. 3.1.2. There is also a small
probability that a memory will be reimprinted twice. Such memories appear in a
small peak near 50.

The results of the simulations demonstrate that the imprinting of evolved ran-
dom states enables selective reinforcement of prior imprints. Curve (d) is an im-
provement over curve (c) because more of the original states are reimprinted. This is
explained by the improved retrieval of imprinted states by the noisy evolution.

The procedure for generating Fig. 3.1.2 and Fig. 3.1.3 is:

1. Generate p =8 random neural states {E}'}

g'==+1 u={1,.,p}i={1,.,N} (3.1.10)
2. Imprint the states on the synapses of the neural network:
i
18 L
i—gE'g it
Jj =i NMa : (3.1.11)
CINEY

3. Execute the branching instruction:
For (a): proceed directly to step 7.

For (b): imprint again the first p; = 4 neural states on the synapses of the neural
network:

Jij = Jj +—g E'g i1 (3.1.12)
u-l
Then proceed to step 7.
For (c) or (d): proceed:
4. Generate p; =4 random neural states {w}}
w; =+l v={1,..p}, i ={1,..,N} (3.1.13)
5. Execute the branching instruction:

For (c): update the neural states {w}} according to the neural update rule 10
times

oY 0
Wi = signca Jiwi = (3.1.19)
g j a9
Proceed to step 6.

For (d): (see Question 2.2.2) update the neural states {w;} according to the
T 1 0 neural update rule 20 times

&9 o]
w; = signp ga Jiwj = (3.1.15)
j %]
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then update the neural states {w} } according to the T = 0 neural update rule 10

times.
G 0
wi = signca Jiwi = (3.1.16)
8 j a
6. Imprint p, = 4 evolved-random neural states {w;} on the synapses of the neural
network:
1 81 V..V . .
Jij = ‘Jij +Na Wi W 1t] 3.1.17)
v=l

7. Find the basin of attraction of each of the originally imprinted neural states ",
where an unstable neural state is set to have a basin of attraction of zero (see
Section 2.2.6).

8. Make a histogram of the basins of attraction for different £*. For Fig. 3.1.3 inte-
grate the histogram from a specified value up to 100.

The previous simulations show the use of imprinting evolved random states to re-
inforce some of the memories. The next simulation takes the procedure one step fur-
ther to demonstrate the effect of subsequent imprinting. The simulations consist of
four main steps. The first step consists of imprinting eight neural states. The second
step consists of selecting four random states, evolving them at a temperature T, then
evolving them at T =0 (to bring them to the local minimum) and imprinting the re-
sult on the network. The third step consists of diminishing the strength of the synapses
by afactor of 2. This ensures that the effective imprinting strength of reimprinted states
(which have been imprinted twice) is comparable with that of new states to be im-
printed. The fourth step consists of imprinting four new states on the network. The
purpose is to demonstrate the ability of the network to continue learning.

The consequences of the full procedure are shown as curve (c) of Fig. 3.1.4 and
Fig. 3.1.5. It is the result of imprinting eight memaories,then imprinting four evolved
random states,then diminishing the strength of the synapses by a factor of 2,and then
imprinting four additional memories. In Fig. 3.1.4 the distribution of basins of at-
traction is shown normalized to 12. Fig. 3.1.5 shows the integrated number of mem-
ories with basins of attraction greater than the value along the abscissa.

Two reference curves are included as curves (2) and (b). Curve (a) is the result of
imprinting 12 memories on the network. The degree of degradation of the basins of
attraction when 12 memories are imprinted is easily seen. This is essentially the max-
imum capacity of the network, the effectiveness of the memory of these patterns is
minimal. Curve (b) is the result of imprinting 8 memories, then diminishing the
strength of the synapses by a factor of 2,and then imprinting four additional memo-
ries. The total number of imprints is still 12. However, as in the simulations of
Fig. 3.1.1, the recent set of 4 imprints have large basins of attraction, while the initial
set of 8 imprints are effectively lost, since their basins of attraction have been com-
pletely degraded.
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Figure 3.1.4 Continuation of the reimprinting test by imprinting some new states. Curves (a)
and (b) are for reference. (a) shows the degree of degradation of the basins of attraction when
12 memories are imprinted all with the same weight. (b) shows the effect of imprinting 8
states, then reducing the strength of the synapses by a factor of 2, then imprinting 4 new
states. As explained in Fig. 3.1.1 this results in effective recall of the recently imprinted
neural states at the expense of the previously imprinted neural states. The difference between
curves (b) and (c) is the insertion of the procedure of evolving four random states with noise,
and imprinting the result. This relearning procedure results in the retention of two of the
eight original memories for a total of six memories. The others are completely forgotten. O

The difference between the simulations leading to curve (b) and curve (c) is only
the inclusion of the reimprinting procedure in curve (c). Curve (c) shows that the
reimprinting was successful in isolating two of the original memories to retain. These
memories survive the imprinting of new states and join them to form a total of ap-
proximately six stable memories. This is easiest to see in Fig. 3.1.5, where the relatively
flat part of the curve extends down to zero and intercepts the axis at 6 states. Even
though curve (b) has more stable states (insert in Fig. 3.1.4), all of these except the
newly imprinted ones have very small basins of attraction.

The procedure used to generate Fig. 3.1.4 and Fig. 3.1.5 is:
1. Generate p, =8 random neural states {€}}

gl =+1 w={1,...p}, i ={L,...N} (3.1.18)

2. Imprint the neural states on the synapses of the neural network
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Figure 3.1.5 Similar to Fig. 3.1.4, except that the plots show the integrated number of im-
printed states with a basin of attraction greater than a given value. Flat regions separate
states with high basins of attraction from states with low basins of attraction. This shows the
ability of the reimprinting to reinforce some memories at the expense of others. 0

b
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Jij = IN = (3.1.19)
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3. Execute the branching instruction:
For (a): proceed directly to step 5.
For (b): proceed directly to step 4.
For (c):
cl. Generate p, =4 random neural states {w; }:
wi==1 v={1,..p}, i ={1,...N} (3.1.20)
c2. Update the neural states {w; } according to the T 1 0 neural update rule 20
times
=) o]
W = signrca Jiwj = (3.1.21)
ga i

¢3. Update the neural states {wj } according to the T =0 neural update rule 5
times.
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c4. Imprint p; = 4 evolved-random neural states {w;'} on the synapses of the
neural network.

: 19 WVWV i1
Jj= Jj+IN il AR (3.1.23)
% 0 i =]
4. Rescale the network synapses by a factor = 1/2.
Jij ij={1,..N} (3.1.24)
5. Generate p, additional random neural states {£}'}
gl=xl  u={p +L..p +pi={L...N} (3.1.25)

6. Imprint the neural states on the synapses of the neural network (Hebbian rule)

Plgpz
Jjo dyt— A &g it (3.1.26)
N _
u=p;+l
7. Find the basin of attraction of each of the p = p; + p, neural states £" (see
Section 2.2.6).

8. Make a histogram of the basins of attraction for different €". For Fig. 3.1.5,in-
tegrate the histogram from a specified value up to 100.

3.1.3 Sleep phenomenology and theory

Sleep is one of the fundamental phenomena in biological organisms. An excellent re-
view of the phenomenology of sleep and speculations about its nature are given in the
book Why We Sleep by Horne. The analysis of subdivisions in complex systems in
Section 3.1.1 offers an interesting but speculative theory for the role of sleep—that
sleep constitutes dissociation with relearning. This theory is consistent with the sug-
gestion advanced in recent years that dreams have a role in “memaory consolidation.”
However, it extends this role to all of sleep. It also provides a constructive framework
in which we can discuss the meaning of memory consolidation. In this section we will
provide a brief overview of the phenomenology of sleep, challenge two traditional
theories for its role and discuss a few modern theories for the role of dreams based
upon neural networks. In Section 3.1.4 we compare the theory of sleep as dissociation
with the phenomenology of sleep and suggest experiments that can directly test it.
While the theory is not directly supported by current experimental evidence, it is con-
sistent with existing results and is an example of a “good theory” because it predicts
definite outcomes for novel experiments and would significantly increase our under-
standing if found to be correct.Finally, in Section 3.1.5, we discuss a new experimen-
tal result which provides some support for the predictions.
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Figure 3.1.6 A sleep “hypnogram” — schematic illustration of the structure of sleep for
young human adults showing the different stages as determined by EEG signals. Stages 3 and
4 are called slow wave or SWS sleep. [

Human beings spend almost one-third of their lifetimes asleep. Human sleep is
known to have several levels identified by quite different brain electrical signals as
measured by electroencephalography (EEG). There are at least five recognized levels,
the two deepest are together called slow wave sleep (SWS), while the shallowest is
rapid eye movement (REM) sleep. Typically, in the first part of sleep, the deepest level
is attained rapidly. Then the level of sleep alternates in a pattern of shallower and
deeper levels with the average level becoming shallower as sleep progresses (see
Fig. 3.1.6). The sleep of animals does not have as many levels. The complexity of sleep
increases with the (conventional) evolutionary complexity of the organism.

There are two conflicting popular views of sleep. One is that sleep is necessary for
health and well-being. The other is that sleep is a waste of time. Modern society often
pays little attention to the significance of sleep. For example, doctors,especially during
training, work very extended shifts. Other professions either work long shifts or ignore
the natural sleep cycle of day and night. Evidence has accumulated that such practices
are counterproductive and cause errors, even fatal errors. There exist efforts to change
the training of doctors, and to avoid excessive sleep disruption of airplane pilots. In ad-
dition,there are many sleep clinics that are designed to help individuals who suffer from
sleep disorders,including various forms of insomnia, an inability to sleep.

Much of our understanding of the role of sleep arises from human sleep-
deprivation studies. These studies reveal that sleep loss results in psychofunctional
degradation. However, the precise nature of the degradation is not well-understood.
Some of the effects of sleep deprivation over several nights include visual illusions or
mild hallucinations, and loss of a proper time sense. There are also particular tasks
that have been shown to be sensitive to the loss of sleep. However, many others do not
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appear to be systematically affected. An example of a test that is quite sensitive to the
loss of sleep is the vigilance test. In this test a person is asked to monitor a sequence
of pictures or sounds for a particular feature that should trigger a response. After sleep
deprivation, individuals frequently do not respond to the special feature when it is
presented.

Modern theories of sleep have suggested either that it serves a physiological
restorative function or that it exists because of genetic adaptation to a survival ad-
vantage in removing primitive man from danger. Extensive experimental measure-
ments directed at unveiling the physiological restorative function have not been suc-
cessful. It appears that after exertion, physical rest rather than sleep is sufficient for
reconstruction of tissue damaged during use.

The second suggestion, that sleep serves to remove primitive man from danger,
does not coincide with a variety of observations about sleep and its role throughout
the animal kingdom. First, sleep consists of a time of reduced awareness of environ-
mental dangers. Even if there were an advantage in inactivity, this lack of activity
could be achieved by physical rest rather than the loss of alertness that occurs in sleep.
Moreover, even animals that are in constant danger sleep. An extreme example is the
case of certain types of dolphins that sleep one half-brain at a time in order to mon-
itor their environment and avoid dangers. Moreover, it is surprising that there are no
animals that do not sleep. Nocturnal animals sleep during the day. Predators, whose
survival does not depend upon safety from other predators, sleep. Why have no
species adapted to the survival advantages of alertness and extra time to find food
without sleep? Finally, sleep-deprivation studies on animals show that extended sleep
deprivation is fatal. For example, rats die on average after 21 days without sleep. The
direct cause of death has not been identified despite substantial efforts.

Neither of the two traditional theories explains the mechanism for psychofunc-
tional degradation after sleep loss. They also do not explain many specific results in
sleep-deprivation studies on either humans or animals.

While there has been only limited discussion of the role of sleep in human psy-
chofunction, dreams have evoked more elaborate speculations. Many believe that
dreams, or more specifically rapid eye mavement (REM) sleep, are the essence of sleep
even though they occupy only about one quarter of sleep. Because of their bizarre
content, dreams have always invoked mystery. Various theories have suggested that
dreams play an important role in human psychology. More recent theories relate
dreams to aspects of human information-processing, usually memory. In particular,
they suggest that dreams play a role in the conversion of short- to long-term mem-
ory—memory consolidation.

There are two specific proposals for the role of dreams that are based upon neural
network models. They are precisely opposite. Crick and Mitchison suggested that
dreams cause selective forgetting of undesirable or parasitic neural network states.One
piece of evidence for this approach is our inability to remember most dreams. More
concrete support for this proposal was gained through simulations of attractor net-
works. Simulations, similar to those in the previous section, were performed by
Hopfield, et al. After imprinting a network,the network was initialized to a random
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configuration and evolved. Instead of imprinting the resulting state, the state was
unimprinted, or imprinted with a small negative coefficient of 0.01. This was found
to improve the retrieval of imprinted states. The improvement arises because the states
with larger basins of attractionare responsible for the instability of the other imprinted
states. Reducing the large basins of attraction by a small amount improves the balance
between different states. In contrast,Geszti and Pazmandi suggested that dreams are
a form of relearning. Their relearning procedure is the one described in the previous
section. Its purpose is to filter the memories to enable continued learning.

Both of these models attributed information-processing tasks to rapid eye move-
ment (REM) sleep, or dream sleep. The other parts of sleep, where dreams are infre-
guent (non-REM sleep), are still generally believed to have a physiological role.
However, as described earlier, total sleep deprivation causes psychofunctional, not
physiological, deterioration in humans. The primary effects occur with loss of non-
REM sleep.

Based on the discussion of subdivision in neural networks and training it is rea-
sonable to propose that the stages of sleep correspond to degrees of interconnection
between subdivisions of the brain. SWS corresponds to the greatest dissociation,
where small neuron groups function independently of each other. At shallower levels
of sleep, larger regions of the brain are connected. Ultimately, the waking state is fully
connected, including sensory and motor neurons. From EEG measurements it is
known that all of the levels of sleep are neurologically active. Consistent with our dis-
cussion in the last section, it may be proposed that the activity is a filtering process
that reinforces some memories at the expense of others to prevent overload and allow
for additional learning. The filtering of memories occurs on all levels of organization.
The ultimate purpose of this filtering process is to establish the memories within sub-
divisions,and the stable composite memories. It also balances the strength of synapses
within subdivisions compared to the strength of synapses between them.

There are general consequences of the filtering that we can infer and use to make
predictions of its effects on memory. It is to be expected that the strength of associa-
tions that are represented by synapses between subdivisions are weakened more
rapidly than associations that are represented by synapses within subdivisions. Thus,
memories are progressively decomposed into their aspects, stored within subdivi-
sions. Implicit in this architecture is the assumption that the most permanent associ-
ations—stable patterns of neural activity—are stored inside the smallest subdivisions.
These associations are the elements that are the building blocks for new imprints on
the network, and thus are the elements for building new memories.

This theory for the role of sleep is based upon a subdivided attractor network,
with no directionality to the synapses, or to the processing as a whole. The presence
of directionality in the processing of sensory information should modify this picture,
but may not change the essential conclusions.One modification that we can expect is
that the triggering of a random neural state will also acquire directionality. The trig-
gering should follow the usual processing path in order to be consistent with the sys-
tem’s natural mechanism for retrieving memories.
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3.1.4 Predictions and experimental tests

A variety of aspects of the general phenomenology of sleep are consistent with the
idea that sleep is a temporary dissociation of the brain into its components. Several of
these are described in the following paragraphs.

Sleep itself consists of a dissociation of the cerebral activity from both sensory
and motor neurons. This separation is accomplished by sleep substances that control
particular interconnecting neurons or synapses. While the dissociation is not com-
plete—we can still respond to sounds and lights during sleep—the degree of correla-
tion between sensory stimuli and the activity of the brain is reduced. Similar controls
could be used to further dissociate various subdivisions of the brain.

As mentioned before,sleep is a time during which there is significant neural ac-
tivity. This is to be contrasted with the lack of explicit memory of this activity. The
patterns of neural activity differ qualitatively between different stages of sleep. These
changes can be measured using EEG signals, which are used to identify stages of sleep.
Systematic differences between patterns of neural activity imply basic changes in ei-
ther the activity of neurons or their synaptic efficiencies. This requires an explanation.
Qualitatively, the greater simplicity of EEG signals in SWS (hence the name slow wave
sleep) is consistent with a loss of complexity in the activity patterns due to a lack of
correlation between different neuron groups.

The internal triggering of patterns of neural activity occurs in all stages of sleep,
but is very apparent during REM sleep, where pulsed neural activity patterns extend
through a significant part of the cerebral cortex.

The greater difficulty of waking during SWS is consistent with a greater degree of
dissociation in deep sleep than in shallower levels of sleep. It may also be difficult to
wake from REM sleep, despite its other characteristics as a shallow stage of sleep.
However, in this case the internal triggering of neural activity appears to mask aware-
ness of actual sensory stimuli.

Systematic studies of dream content indicate that specific higher-level critical
faculties and a “sense of self” are absent. This includes a lack of surprise at the con-
tent of dreams, and an inability to see or perceive one’s self. It has been pointed out
by Hartmann that this is similar to the waking mental functioning of postlobotomy
patients, where connections to the frontal lobes of the brain have been severed.
Specific higher-level critical facilities related to self-awareness are often associated
with these frontal lobes. This suggests that during REM sleep, specific major sections
of the brain are dissociated.

Dissociation during sleep would imply that the neural activity is formed out of
composite states that typically would not occur if the brain subdivisions were con-
nected. In REM sleep, when only major sections of the brain are separated from each
other, the composite states are formed out of only a few elements. The waking brain
with full connections can, at least sometimes, make a kind of sense out of the juxta-
position of elements from the sleep state. This explains the possibility of recalling
sleep states from REM sleep in the form of dreams. It also explains their bizarre
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content. Moreover, it explains why dreams are not always recalled even when experi-
mental subjects are woken during REM sleep. For deeper levels of sleep, with smaller
subdivisions, the waking brain can generally make no coherent picture of the sleep-
ing mental state. This explains the absence of recalled dreams from deep sleep despite
the ongoing neural activity.

To make further progress in our understanding of sleep and the dissociation
model, we will discuss the psychofunctional effects of sleep deprivation.Our discus-
sion will provide some understanding of the deterioration that can result from sleep
deprivation. It will also explain why experimental efforts have found it difficult to
identify specific psychofunctional tasks that are affected. The central point is recog-
nizing that the deterioration of capabilities is directly linked to activities that are per-
formed during waking. Thus the question, How does sleep deprivation affect the ca-
pabilities of an individual? is meaningless without a specification of the activities
performed by the individual during the period in which he or she is awake.

The model of sleep as dissociation implies that it is basic to the functioning of the
subdivided architecture of the brain. However, the manifestation of sleep deprivation
would not be the complete disruption of this architecture. The shorter-term effects of
sleep deprivation are related to overload failure. Overload occurs because imprinting
is continued during waking hours without a periodic filtering process. Under normal
circumstances, there must be a substantial buffer before overload is reached. The
buffer exists because of the need to stop imprinting well before the overload thresh-
old. However, if the buffer were very large,then the full capacity of the network would
not be utilized. This explains the need for a regular sleep schedule with a consistent
structure to the levels of sleep. It also explains why there are dramatic effects of only
a few nights of sleep deprivation, which become catastrophic if further extended. We
note that no model of the role of sleep based solely on a concept of memory consoli-
dation would account for psychofunctional failure due to sleep deprivation.

The implications of overload failure in a fully connected network were discussed
in Section 2.2.7. When overload is reached, various spurious states replace memories
as the stable states of the network,and a complete loss of memory results. In order to
adapt this picture to describe the effect of sleep deprivation, we must include both the
correlated nature of the information that is presented to the brain over any particu-
lar period of time, and the subdivided architecture. Their implications may be un-
derstood simply. First, the correlated information implies that overload does not af-
fect all imprinted states equally. If newly imprinted states are confined to a particular
subspace of all possible neural states,then all states that are not correlated with them
will not be affected. The existence of subdivisions leads to similar conclusions by em-
phasizing that overload should occur in particular subdivisions first, rather than uni-
formly throughout the network. The conclusion is that the effect of sleep deprivation
is primarily confined to activities that are exercised during the waking period. This ex-
plains much of the difficulties that have arisen in the efforts to determine specific ac-
tivities that are strongly affected by sleep deprivation. Many tests evaluate the degra-
dation in an activity, such as intelligence tests, tests of ability to maintain balance, etc.
However, even when significant correlations are reported between sleep loss and a
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particular test in one experiment, these are found not to exist under other experi-
mental conditions. In contrast to the generally ambiguous results on specific abilities,
it has been reliably shown that a degradation of ability is found for repeated or simi-
lar tests, essentially independent of the nature of the task.

Unlike other activities, the vigilance test is a self-contained test of the ability to
persist in a particular activity. The vigilance test requires paying attention to a series
of varying sensory images, and responding only to a particular variant. We can un-
derstand why a sleep-deprived individual finds this difficult. Imprinting various sim-
ilar states up to overload would cause, in effect,the basins of attraction of the lack of
action to overtake the only slightly different circumstances that require action. The in-
ability to respond differently to a slightly different stimulus may very well be the cause
of accidents that occur in early-morning hours. Consider the train conductor who is
required to brake the train upon seeing a particular set of lights,after viewing many
different panoramas with various sets of lights. Consider the doctor, who after seeing
many patients with similar ailments is required to change the treatment based on one
of many pieces of information.

The relevance of repeated tasks to the need for sleep does not require sleep-
deprivation studies. It is sufficient to note the sleepiness that arises from boredom due
to monotonous or repetitive activity. It is also interesting that schools (at all levels) do
not schedule classes around learning a particular topic for a whole day. Instead, activ-
ities and classes vary through the day. Each subject is taught only for a limited period
of time.

Sleep-deprivation studies are generally performed in a monotonous environ-
ment without many stimulating or novel activities. Stress, which is likely to increase
imprinting (see Section 3.2.4),is also absent. This suggests that aside from the gener-
ally necessary activities, clinical sleep-deprivation studies do not capture the psycho-
functional degradation from typical daily activities. The most commonly observed
difficulties in sleep deprivation arise from visual illusions. This may be understood
both from the necessity of vision even under laboratory conditions,the popularity of
reading or watching TV during an experiment,as well as the monotonous laboratory
environment that implies significant correlations between visual stimuli.

Modeling sleep deprivation by overload failure implies that novel, stimulating,
stressful, or boring circumstances lead to an increased effect of sleep deprivation. As
will be discussed in Section 3.2.4,all of these, except for boring circumstances,can be
related to an increase in imprinting strength and a more rapid approach to overload.
Boring circumstances, by virtue of repetition, achieve this result rapidly not because
of the strength of imprinting but because of the overlap of different imprints that
cause overload in a more limited domain of patterns in the network. Consistent with
experience, sleepiness that results from repetitive activity can often be overcome by
changing the activity.

If we wish to understand the implications of sustained sleep deprivation, we must
look for individuals that inherently possess a particular form of sleep deprivation. The
simplest to understand would be a loss of deep sleep, where the basic elements of
neural functioning in the smallest neural networks are established. A loss of SWS
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would be associated with a breakdown in psychofunction well beyond a severe case of
sleep deprivation. Experimentally, it has been found that there is a complete lack of
SWS in about 50% of individuals diagnosed with schizophrenia. Schizophrenia in-
cludes a broad class of severe psychofunctional disorders.

We now turn to discuss new experiments using several distinct methodologies
that could directly evaluate the possible role of subdivision during sleep. These tests
include clinical studies, imaging and physiological experiments.

The most direct clinical tests would measure the retention of memory of associ-
ations at higher levels of the hierarchy. According to the model of temporary dissoci-
ation,associations between disparate kinds of information stored in different regions
of the brain are preferentially lost during sleep. An experimental test would expose
subjects to information that is composed of two or more different aspects. The sub-
jects would be split into two groups, one would sleep and the other would not. The
retention of the information would then be tested. Various experiments of this kind
have been done but without specific emphasis on correlations of different aspects of
information. For example,a visual image and a sound could be presented at the same
time. A test would measure the ability to recognize which image-sound pairs were
presented. Other combinations of information could also be tested by selecting from
known subdivisions in the brain: vision,audition,somatosensory, language,and mo-
tor control. Within each category further tests could be performed. For example, tests
in vision could measure the ability to retain particular combinations of shape and
color. Pictures of people, each with particular color clothes, could be changed by re-
assigning colors. Tests would determine the ability to recall the association of color
with shape.

The development of positron emission tomography (PET) and magnetic reso-
nance imaging (MRI) has enabled more detailed mapping of brain activity in recent
years. The ability to map brain activity can also enable mapping of correlations be-
tween activity in different parts of the brain. This becomes increasingly feasible as the
temporal resolution of imaging is improved. Statistical studies of the correlations in
neural firing could directly measure the strength of influence between different parts
of the brain while a subject is awake, and during various stages of sleep.

Neurophysiological studies of animals characteristically measure the activity of a
neuron under particular stimulus. Using more than one probe at a time,the correla-
tions between neural activities in different parts of the brain could be compared in
waking and in various sleep states. Such experiments can also stimulate some neu-
rons,and measure the difference in signal transmission between neurons in different
parts of the brain in animals that are awake and asleep.

The dissociation model would require a chemical mechanism for preferential in-
hibition of the synapses or neurons that interconnect various regions of the brain.
The ability to chemically separate different regions of the brain can be directly tested
by investigating the impact of sleep substances on neurons and synapses. Synapses or
neurons that interconnect different regions of the brain would be expected to have a
characteristically distinct sensitivity when compared to neurons and synapses within
a particular region of the brain. In order to enable a difference between REM sleep
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and SWS it would also be necessary for there to be differences in the connections be-
tween smaller regions and larger regions. The possibility of sleep substances that pref-
erentially isolate a particular level of the brain structure may become apparent from
such tests.

3.1.5 Recent experimental results

In one of the first multiprobe experiments, Wilson et al. recently investigated correla-
tions between neural activities in the hippocampus. The hippocampus is an area of
the brain that is responsible for representation of information about the organism’s
spatial position,in particular its location with respect to large objects or boundaries.
They found that new correlations in neural activity due to changes in the environ-
ment were subsequently repeated during sleep.

This experiment supports a number of aspects of neural network models of brain
function. Of principal significance, it supports the attractor network model that
memories are stored and can be recovered as a pattern of neural activity. It also sup-
ports the discussion in this chapter, that they are recovered during sleep. The idea that
waking experiences are reflected in dreams is known. However, this is the first indica-
tion of the nature of their representation. Moreover, it is interesting (and consistent
with the above discussion) that the recovery of patterns of neural activity was not par-
ticularly associated with REM sleep, but rather occurred in SWS.

Brain Function and Models of Mind

3.2.1 The fundamental questions

We use phenomena that are associated with neural networks to understand some of
the aspects of brain function by our own recognition of their similarities. In the pre-
vious chapter, we briefly mentioned the associative memory function of the attractor
network that is reminiscent of human association capabilities. We will expand upon
this discussion in the following sections to cover a variety of information-processing
tasks. As we do so, we will find that we have to expand our model to include additional
features. We start with both the attractor network formed of symmetric synapses,and
the feedforward network with unidirectional synapses. We use subdivision to clarify
some of the basic issues and expand into the realm of higher information-processing
tasks.

As our description of information-processing functions progresses, we must al-
low ourselves to expand the conventional terminology. We use our model neural net-
work as a model of the brain. The functioning of this network is a model of the mind.
We can use terminology such as the subconscious mind to describe the part of the
neural network/brain whose function we identify with what is commonly understood
to be the subconscious. A sentence that contains such terminology can still possess
precise mathematical meaning in the context of the neural network architecture. This
is similar to the use of words like “energy”and “work,” which have different meanings
in scientific and popular contexts.
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3.2.2 Association

In the attractor neural network model of the human mind,the basic learning process
is an imprinting of information. The information may, for example, be a visual im-
age. This information is represented as a state of the neural network (pattern of neural
activity),and the synapses between neurons are modified so as to store—remember—
this information. The mechanism for retrieval is through imposing only part of the
same image. The synapses force the rest of the neurons to recreate the stored pattern
of activity, and thus their representation of the stored image.

In order to illustrate how this process manifests itself in behavior, we have to con-
sider the nervous system “output” leading to action as also part of the state of the
mind. Part of the pattern of neural activity specifies (controls) the muscles,and there-
fore behavior. Using the pattern of activity that represents both sensory information
and motor control we can,in a simple way, understand how reactions to the environ-
ment are learned.

We can consider the example of a child who learns to say the name “Ma” when-
ever she sees her mother. Let us say that somehow (by smiling, for example) we are able
to trigger imprinting. At some time, by pure coincidence, at the sight of her mother the
child says something which sounds like Ma (or even quite different at first, subject to
later refinement) and we encourage an imprint by smiling. Thereafter the child will say
Ma whenever she sees her mother. The pattern of neural activity that arises when the
mother is in the visual field has been associated with the pattern of neural activity rep-
resenting motor control that manifests itself in the word “Ma.” Of course this process
could be enhanced by all kinds of additions, but this is one essential process for human
learning and human functioning that this neural network captures.

We note that the training of a feedforward network discussed in Section 2.3 re-
quires a comparison between the desired output and the output generated by the net-
work. Because both the desired output and the output generated by the network must
be represented at the same time,the feedforward network does not by itself provide a
model of how responses can be learned.A solution to this problem will appear when
we discuss consciousness in Section 3.2.12,

3.2.3 Objects, pattern recognition and classification

When we look at a room we do not interpret the image in the form of a mapping of
the visual field as a point by point (pixel by pixel) entity. Our interpretation is based
on the existence of objects and object relationships that exist in the visual field. The
same is true of auditory information, where sounds,notes or auditory representations
of words are the entities we differentiate. Similarly, our associations are driven not by
direct overlap of sensory information but rather by objects, aspects or relationships.
Why is this useful, and how is it possible to identify objects in sensory fields?

The reason objects are used rather than the visual field itself is easy to understand
within the neural network model. Consider a particular visual image which is mapped
pixel by pixel onto a neural network and imprinted. An attractor network relies upon
the Hamming distance of a new image with the imprinted image for recall and there-



Brain function and models of mind 395

fore for association. Any new image mapped onto the network is characterized by the
overlap (similarity measured by direct counting of the number of equivalent pixels)
of the image with imprinted images.

This means, for example,that if we want the child of the last section to say “Ma”
no matter how her mother appears in the visual field, then all possible ways the
mother can appear in the visual field must be imprinted independently. “All possible”
means essentially independent ways,ways for which the overlap of one with the other
is small. This overlap is strictly a Hamming distance overlap—a count of the number
of equal pixels. Since there are many ways that the mother can appear in the visual
field with only a small overlap between them, this would require a large part of the
neural memory. Saying that we identify objects is the same as saying that the child
identifies as similar many of the possible realizations of the visual field that contain
her mother. We must then ask how this is possible when the visual fields compared
pixel by pixel are different.

Underlying the use of objects in describing the visual field is the assumption that
objects possess attributes that are unchanged by their different possible presentations
in the visual field. The existence of attributes,as discussed in Section 2.4,can be used
by a subdivided network to identify the objects. We identify the attributes of a partic-
ular object as the states of each of the subnetworks when we are presented with the
object. For example,in the separation of visual information into shape, color and mo-
tion,the attribute RED would be represented by a particular pattern of neural activity
in the subnetwork representing color information. Extracting different aspects of the
information and storing them in particular subdivisions of the network enables the
object to be identified by a particular set of subnetwork states—by the pattern of
common attributes. The suggestion that attributes can provide a mechanism for the
identification of objects is not a complete answer to the problem of object identifica-
tion. It is still necessary to examine how the characteristic attributes of objects are
found in the visual field.

In recent years the field of computational vision has been dominated in large part
by discussion of computational problems associated, for example, with extracting
boundaries of objects. This is important because the extraction of edges provides an
important clue as to the existence and nature of objects. This research has been viewed
as opposed to the use of attributes for object identification. It may be better under-
stood as providing the computational approach to extracting these attributes. Thus,
the extraction of edges provides one (or several) attributes of the visual field that can
be used to identify objects; other attributes can be used as well. Rather than relying
upon a single algorithm to identify objects,the use of multiple attributes enables sev-
eral algorithms to act together through associative links, as suggested by Fig. 2.4.4.

Once we have understood the identification of objects through their attributes,
we can likewise understand pattern recognition or classification as a process of iden-
tifying common attributes. Specifically, elements of a category may be identified by
the common state of a particular subnetwork or set of subnetworks. Pattern recogni-
tion, viewed in an abstract form, is equivalent to the problem of classification.
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The existence of objects is often considered one of the most concrete aspects of
reality. We see that the identification of objects is actually an abstraction. It is a basic
abstraction central to our ability to interpret sensory information. Moreover, the
same methodology of abstraction is also the key to understanding abstract concepts.
Abstract concepts,like concrete objects, may be stored in the brain by combinations
of aspects or attributes. The attributes are represented by patterns of neural activities
of brain subdivisions. This method of representation is also related to other aspects of
higher information-processing—generalization,creativity and innovation, to be dis-
cussed below.

In summary, because of the many different possible visual fields, it is impossible
for the brain to be imprinted with all of the appropriate ones,and associate them with
the appropriate response. Instead, the visual fields are reinterpreted as composed of
combinations of attributes that reflect the existence of objects and their relationships.

3.2.4 Emotions and imprinting

One of the central properties of the neural network that we have not investigated in
any detail is the strength of imprinting. Our numerical modeling of the imprinting
process generally assumed that each imprint has the same coefficient. However, it is
quite reasonable to include the possibility of stronger and weaker imprints, where the
strength of imprinting can be controlled in various ways.Stronger imprints result in
larger basins of attraction.Larger basins of attraction imply that recall is easier—trig-
gered by a smaller set of common attributes. Even in our discussion of association in
Section 3.2.2 it was necessary to invoke a mechanism for triggering stronger imprint-
ing in order to describe the learning of a response.

There are various ways to control the strength of imprinting at a particular
synapse.Our concern here is not with an individual synapse, but rather with the over-
all strength of a particular imprint. In the Hebbian imprinting model,this strength is
controlled by the parameter cin Eq.(2.2.6). The control of the strength of imprinting
must occur at every synapse in the brain. Chemicals that can be distributed through-
out the brain to affect the imprinting would be most easily distributed through the
bloodstream. The most natural assumption is that the relevant chemicals are associ-
ated with emotions.Emotions affect the general response by the body to external cir-
cumstances. At least some of these circumstances imply that imprinting and memory
should be enhanced. One indication of this is that new circumstances, or circum-
stances that are important due to the existence of a threat, or circumstances that are
painful, give rise to the release of such chemicals. It would make sense that the emo-
tional reaction governs not only the immediate reaction (the traditional fight or flight
response to stress) but also the recollection of such circumstances in the future.
Without discussing the process in detail we may conclude that imprinting strength
under these circumstances—the coefficient c—is increased by adrenaline (epineph-
rine/norepinephrine) and affected by other endocrine-system chemicals associated
with various emotional states.

A second way to strengthen the imprinting is to repeat the same imprint more
than once. In the simplest model of a constant imprinting strength,the total strength
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of imprinting grows linearly with the number of imprints. We will modify this as-
sumption in the next section, because such continued imprinting is not advisable.

If we assume that selective retention and forgetting of memories is necessary, as
discussed in Section 3.1,then the relative strength of the original imprinting will also
affect which memories persist. We can expect that memories that persist are those as-
sociated with the greatest stress or strongest emotions, or with the largest number of
repetitions.A classic example is the persistent memory of traumatic events. In a sub-
divided network,the persistent memories may be aspects of situations rather than the
situations themselves.

We have discussed,thus far, the effect of emotional response on the chemistry of
the blood and its consequent effect on imprinting. The source of emotional response
must also originate in the nervous system, because the sensory stimuli that describes
the environmental circumstances leading to the emotional response are received by
the nervous system. We must therefore assume that neural activity affects the adrenal
gland and other glands responsible for chemicals that affect the physiological re-
sponse. The circle of influences between bloodstream chemicals and brain function is
an important feedback loop. Part of the brain initiates the emotional state by con-
trolling the bloodstream chemicals, which then affect the functioning and the im-
printing of the brain. Physiologically, it is the diencephalon and particularly the hy-
pothalamus, a hybrid nervous-system component and endocrine gland, that bridges
between the nervous system and the endocrine system.

3.2.5 Fixation, compulsion and obsession

Any model of how the brain works contains within it a model for how the brain may
fail. Since there are also many real occurrences of failure, we can compare and try to
evaluate whether the model is properly predicting the failure. The storage of various
information in the brain with different imprinting strengths enables the possibility
that a single imprint will become dominant. The meaning of a single dominant im-
print was discussed early in Chapter 2 when the case of a single imprint was described.
Under these circumstances any initial state will evolve in time to the attractor that is
the dominant imprint. This description is very reminiscent of the behavior of a per-
son who suffers from fixation, compulsion or obsession. Such individuals repeat ac-
tions or thoughts regardless of the external circumstances and regardless of the recent
history.

Examples of dysfunction include a compulsive repetitive action such as hand
washing, fixation on a person or object, and obsession with an idea. In each case the
persistent return to the behavior pattern or thought pattern can lead to a severe
breakdown in human function.Strong imprinting of a particular thought or behav-
ior itself arises from repetition, so that this is a self-consistent failure of the architec-
ture. Self-consistency arises because repetition strengthens imprinting, and when im-
printing is strengthened the tendency to repetition is increased. As discussed in the
last section, the existence of strong emotions contributes to imprinting, and indeed
strong emotions, passion or anxiety, are often associated with the development of
these disorders.
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When there is a natural mode of failure, one must expect that the system has
built-in safeguards against it. When the failure occurs anyway, it is because of a
breakdown in the safeguards. Safeguards against the creation of a dominant imprint
may consist of a reduction in strength of repeated imprinting. One approach to re-
ducing the strength of repeated imprints uses an internal feedback mechanism that
changes the imprint strength depending on whether the neural activity pattern is al-
ready stable. This can be done locally at each neuron—when a neuron activity is
consistent with the local field h;, its own synapses need not be imprinted. Some such
modification of the prescription of Hebbian imprinting is likely to exist in the brain
to avoid excessive imprinting of existing memories. A second safeguard would re-
quire a behavior that avoids exposure to repetitions. Boredom as an emotional state
may have a purpose of causing behavior that avoids continued repetition. In order
for this safeguard to work,there must be an internal mechanism for recognizing rep-
etition—for recognizing the stability of a state. The problem of recognition is dis-
cussed in Section 3.2.6.

While such safeguards may serve to help prevent this mechanism for failure, it
should also be understood that the strengthening of imprinting with repetition, and
the use of emotions, must not be completely curtailed by the safeguards. Otherwise,
the primary function of the brain would be degraded. This limits the implementation
of safeguards to an extent that enables function, but also enables failure.

Medical classification of mental disorders distinguishes between neurotic and
psychotic conditions. The former are less severe than the latter. Various neurotic com-
pulsions,fixations and obsessions may persist for years without treatment. Psychotic
conditions can require severe intervention using drugs or electroshock therapy. The
action of these treatments is not well-understood. However, we can speculate about
electroshock therapy as a means of shaking, in an uncontrolled way, the energy land-
scape of the space of states of the brain as we have represented it in the neural network
model. This may explain why, despite the grave concerns about its side effects, the
treatment continues to be used. Interpreted simply this also suggests that for these dis-
orders the forms of traditional psychotherapy that dwell upon the problem may ac-
tually promote it. Therapeutic strategies that emphasize other important (strongly
imprinted) areas of a person’s life, and change as much as possible of the circum-
stances of a person’s life, would be expected to be more effective.

The distinction between different kinds of repetitive processes—fixation associ-
ated with the senses, obsession with abstract thoughts, and compulsion with simple
actions—suggests that an overly strong imprint may be localized in different regions
of the brain. However, because of the coupling between different parts of the brain
these distinctions may not always be maintained.

3.2.6 Recognition

One of the standard tests of memory is the recognition test. In this test, for example,
a person is shawn a number of pictures and asked to recognize them later. The human
brain is capable of successfully recognizing at least ten thousand pictures. This would
seem to be a natural application of our neural network memory that imprints the im-
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ages and then recalls them. But is it? The process here is different. The subject is re-
quired to identify whether or not he has seen the image before. This is different from
reconstructing the image itself. In our model of the associative or content-addressable
memory, the task is to provide the missing pieces. In the recognition experiment,the
subject says “yes” or if he has, or “no” if he has not, recognized the image. Saying “yes”
reflects a particular pattern of neural activity exercising vocal control. The recogni-
tion task requires that these neurons have the same firing pattern for all stored images,
and a different firing pattern for any image that has not previously been stored.Our
model does not contain asingle association with all of the images that have been stored.
Everything that is recovered in the attractor network is part of the original image.

One way to solve this problem is to suggest that there is a part of the brain that
stores the word “yes” along with every image we see. Then we can use this part of the
brain to perform the recognition task. We will not adopt this approach here. Instead
we will require that the network have some way of identifying whether or not it has
imprinted the picture from the behavior of the network itself.

When we impose upon the network a previously imprinted pattern of neural ac-
tivity, the state of the network is a fixed point of the neural evolution—a stable state.
We must find a way for the brain to know—i.e., represent the information—that it is
in a fixed point,so that it can say “yes” and then when it is not in a fixed point,it can
say “no”. In order to act differently if the network is in a fixed point or not we need to
have a particular neuron, or set of neurons, that are oN in one case and oFr in the
other. Our problemis to construct a set of synapses and neurons that achieves this ob-
jective. This problem may appear superficial, but it is not. Let us try to do it in a nat-
ural way.

To distinguish between the case of a stable state and an unstable state, it is rea-
sonable to think about comparing the value of a neuron before and after a neural up-
date. We can do this using a synapse that includes a time delay. Biologically, the time
delay would be achieved through the axon rather than the synapse, but this is irrele-
vant to our argument. Using the time delay in the transmission of the signal from one
neuron to the next, we can arrange to have the second neuron (the recognition neu-
ron) receive information about the time evolution of the first neuron,in the form of
the neuron value at one moment and its value at a time corresponding to one update
later. We might think that this is enough to enable the recognition neuron to deter-
mine whether the neuron is changing or not. Surprisingly, this is not the case.

The reason that there is still a difficulty can be explained by considering the four
pictures at the bottom of Fig. 3.2.1. On the left of each picture are illustrated the two
states of the first neuron, before and after the update. The four pictures are the four
possibilities.On the right in each picture is shown the value that we want the recog-
nition neuron to take. The essential point is that we would like the recognition neu-
ron to have the same value when the two states of the original neuron are the same,
and the opposite value when they are different. This function is equivalent to the log-
ical operation exclusive or, xor, which gives TRUE (oN) if either input but not both is
TRUE (ON) and raLse (oFF) otherwise. What is illustrated in Fig. 3.2.1 is the opposite
or negation of xor if we follow the usual pictorial interpretation of up as TRUE. We
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Figure 3.2.1 The problem of recognition requires the network to be able to respond the same
to all patterns that have been imprinted, and differently to all patterns that have not. This
requires detection of a stable state, which can be found from the time dependence of neural
activity. To detect the stability of a particular pattern we use (top) two synapses, one of which
is delayed by a time Dt. Both synapses run to a particular other neuron that is supposed to
fire only when the two signals it receives are the same. The four possible cases of neuron fir-
ings are shown (center) where the left neuron is shown at two different times. Considering
the right neuron as a function of two variables, we find (bottom) that it must represent the
negation of the logical function exclusive or (xor). This function cannot be represented by an
attractor network. It can be represented by a feedforward network. O
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can invert the definition or the picture to make the two agree. However, the problem
is that the xor logical operation cannot be built out of symmetric synapses between
pairs of neurons. This is apparent when we remember the energy analog of the neural
network (Section 2.2.3). Switching the activities of all neurons does not affect the en-
ergy, so the inverse of any low-energy conformation is a low-energy conformation.
Inverting the xoRr operation results in the opposite logical operation, not the same
one.Pictorially in Fig. 3.2.1, we see that if the upper left is a minimum energy state,
flipping all of the neurons would not lead to the lower left but instead would cause the
recognition neuron to be inverted, giving the wrong information.

To overcome the problem of representation of the xor operation and enable
recognition requires the introduction of a new kind of synapse. There are many pos-
sible ways to do this. One is to use interactions between three neurons s;s;s,. This
breaks the inversion symmetry and enables the minimum energy states of the three
neurons to correspond to the xor operation. However, using a symmetric three-way
synapse would still lead to some difficulties.A symmetric synapse, where the neurons
influence each other reciprocally, does not really make sense when there is a time de-
lay. Moreover, if a symmetric synapse is used,the recognition neuron could affect the
other neurons rather than representing their state. This would not be helpful. A di-
rected synapse such as the ones used in a feedforward network would be simpler.

There is a way to introduce an XoRr operation using a feedforward network. This
is discussed in Question 3.2.1. However, the feedforward network requires two stages
for this operation,and it is not particularly convenient. Fortunately, we can probably
do just as well with an AND logical operation. The AND operation would detect when
a neuron stays oN. Ignoring the neurons that stay orr, this would be enough to tell us
when the state of a neuron is stable. The AND operation can be represented by a feed-
forward network using one stage (Question 3.2.2). Experimental studies of the biol-
ogy of neurons also show the existence of individual directional synapses that couple
three neurons. In some of these, two neurons must fire in order for the third to fire,
thus directly implementing the AND operation. This solves the problem of enabling
the recognition task to be performed. The recognition task is fundamental not only
for the external recognition test that we have been describing but also for internal
processes that lead to other capabilities. For our purposes in continuing to build mod-
els of brain function it is sufficient to note the necessity and biological plausibility for
such logical operations.

uestion 3.2.1 We have shown that an attractor network by itself can-

not perform the xor operation to perform a recognition task. Find a
feedforward network with two layers of synapses that can perform the xor
operation. You may supplement the two neurons that you are comparing by
aneuron that is always oN. Discuss the biological implementation of this
feedforward network.

Solution 3.2.1 The xoRr operation requires a comparison of two different
binary variables. However, the feedforward network uses neurons repre-
sented by real numbers. According to the model we developed in Section 2.3,
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for two neurons s,s¢in the first layer, we can write the value of any second-
layer neuron as:

s, =tanh(Js + J ¢+ h) (3.2.1)
We can think of the constant term h as arising from a first-layer neuron that
is always oN. The two independent linear combinations of the neuron activ-

ities that we have are s +s¢and s - s¢ Either can be thought of as a compara-
tor. If we construct a table from different values of s and s¢we have:

s s¢ s+s¢ s-s¢ XOR(S, s

1 1 2 0 -1

1 -1 0 2 1 (322)
-1 1 0 -2 1
-1 -1 -2 0 -1

Comparing thes +s¢and s - s¢columns with the xor column we see that the
XOR operation requires us to treat a positive sum and a negative sum the
same, or a positive difference and a negative difference the same. We must
therefore take an absolute value, or square the linear combinations. Two
ways to write the xor operation in terms of floating point operations are:

-sign(|s +s¢ - 1) =-sign((s +s§* - 1) (3.2.3)
The tanh function can provide us with the square of s + s¢by setting up a sit-
uation where we make use of its second-order expansion:

s, =tanh(h +J(s +s §) » tanh(h)+ J tanh ¢h)6 +s 9 +%J Ztanh@(h) (s +59° +...

sg=tanh(h - J(s +s 9) »tanh(h)- Jtanh¢h)E +s¢+§J2tanh@(h)(s+s¢2 +...

(3.2.4)

The expansion is valid if we use a small enough value of J. Setting up two
second-layer neurons with these values, we can take their sum to eliminate
the first-order term and keep the second-order term that we need. We use
J=0.1,and h = 0.5 to obtain the following table:

s s¢ s,=tanh(h+J(sts9) sg=tanh(h- J(s+s¢) s,+s¢ tanh(J&s,+s,)- 0.939

11 0.604 0.291 0.896 -1.000
1 -1 0.462 0.462 0.924 1.000
-1 1 0.462 0.462 0.924 1.000
-1 -1 0.291 0.604 0.896 -1.000
(3.2.5)

The final column is the value of the neuron in the third layer (after two lay-
ers of synapses) that gives the xor operation on the first layer of neuronss,s¢
J¢=1000 is a large number that makes the tanh function into a sign function
as required to obtain £1. The value 0.9 that appears in the final formula is
chosen to lie between the two possible values of s, + s¢shown in the previ-
ous column.
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There are two difficulties with this representation of the xor operation
that are related to robustness and reliability in a biological context. The first
is that it makes use of matched values of h and J on different synapses to en-
sure thats, and s¢have consistent values,and a matched value of J¢ The sen-
sitivity to different values can be seen, for example, by trying to use J = 0.11
only for sgin the above table. The second is that this operation uses a second-
order property of the synapse (the second derivative) that may be more vari-
able than first-order properties. [

uestion 3.2.2 Construct a logical AND using a feedforward network.
You may supplement the neurons that you are comparing by a reference
neuron that is always oN.

Solution 3.2.2 The second-layer neuron must fire if and only if both neu-
rons of the first layer fire. If we add the activity of the two first-layer neurons,
and require the result to be greater than a number greater than zero in order
for the second-layer neuron to fire, then we will have the AND operation.
This can be achieved in Eq.(3.2.1), for example, by setting J and J¢to a large
positive number, and h to its negative. Using a large number converts the
tanh function into a sign function.

The existence of logical operations such as AND and xoRr in the available
functions of a neural network is interesting from a computer science point
of view. For example,using just AND and negation (NOT), we can construct
all possible logical operators (Section 1.8). This might suggest we could con-
struct mathematical or logical operations of the neural network along the
same lines as computers.One difficulty with this approach lies in the prob-
lem of representation. It is unlikely that the brain represents numbers in a
conventional binary fashion. Instead,the word and number “one” are some-
how represented as a state of the network involving many neurons. Thus the
use of conventional logical operations on individual neurons by synapses is
not likely to be the source of the brain’s ability to perform addition. At the
same time, we should not hesitate to make use of the logical operators at the
level of individual neurons to justify the brain’s ability to recognize images
that have been imprinted. [

3.2.7 Generalization

One of the important properties of neural networks in pattern recognition or artifi-
cial intelligence tasks is their ability to generalize from a few training examples to a
large number of cases.Generalization in a fully connected attractor network is simple
to understand. The training creates a local minimum in the space of possible network
states. The basin of attraction of this state becomes its generalization.

Partially subdivided networks provide an additional layer of generalization
(Section 2.4). In addition to trained states, various combinations of substates (com-
posite states) that may appear in the environment are recognized by the network.
Since the network has been trained on far fewer states than it recognizes,it may be said
to have generalized from the training set to the set of recognized states. This is an
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advantage ifthe architecture of subdivision of the network is in direct correspondence
to the information to be presented. However, it can be a disadvantage if the new com-
binations are “errors”—states that do not appear in the environment. The advantage
of using subdivision for language acquisition through grammatical decomposition of
sentences was discussed in Section 2.4.5.

In Section 2.5.3, the simulation of a network with four subdivisions illustrated
generalization in a subdivided network. The strength of the inter-subnetwork
synapses determines the number and kind of composite states that appear as memo-
ries. Moreover, the combinations that are recalled are preferentially those that share
some substate combinations with the originally imprinted states. For example, even
though the network is divided into four parts,a state that is composed equally of two
of the imprinted states is more likely to be stable than other possible combinations.
This is not the same, however, as a network with two subdivisions. When there are
four subdivisions, the combinations of two imprinted states can occur in three dis-
tinct ways. If we consider the substate imprints to correspond to attributes (features)
of the information, this implies that novel combinations of features may be recog-
nized if the combinations are not completely different from the imprinted states.

This description of our ability to generalize raises basic questions about the ob-
jective of brain function. We should not consider neural network models solely as a
model of memory. Traditional evaluations of an individual’s ability, such as in exams,
relied upon direct tests of memory. However, the central purpose of the brain is not
to remember experiences, but rather to obtain from them knowledge that will serve
in future circumstances. The memory of prior experience can serve in future circum-
stances when there are correlations between them. The purpose of the subdivided net-
work is to abstract the essential aspects of an experience and the relationships between
them, enabling this information to be used in future circumstances. In order to do so
it is essential both to remember relevant information and to forget information spe-
cific to the particular circumstance. As discussed in Section 3.1, a significant role of
sleep may be filtering memories, keeping the more persistent associations and forget-
ting associations that are specific to a particular circumstance. In this model the brain
architecture is constructed so that the information to be forgotten largely consists of
the associations between information stored in different subnetworks.

3.2.8 Internal dialogue

Through most of the twentieth century, behaviorism greatly influenced the field of
psychology. Behaviorism attempted to describe all of human behavior in terms of re-
actions to a set of stimuli. However, it has become more generally accepted in recent
years that descriptions of human behavior without invoking complex internal
processes (cognition) cannot provide an understanding of more than a limited num-
ber of behavioral patterns. We can contrast the behaviorist approach with the concept
of an internal dialogue that describes the ongoing language-based processes that oc-
cur in the brain without specific sensory stimulation or speech. One reason for mod-
ifying the behaviorist approach is the recent ability to measure neurological activity
by means other than behavior. Tools for measuring this activity include positron
emission tomography (PET) and magnetic resonance imaging (MRI). Even before
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these techniques, the behaviorist approach was not universally adopted. However,
such imaging techniques provide a scientific basis and tools for investigating the in-
ternal processes. More fundamentally, adopting a model that includes an internal
process, rather than a phenomenological behaviorist approach, is justified when it is
easier to describe behavior using the internal process.

In this section we discuss some features of a neural network that are necessary for
the existence of processes that are,at least in part,independent of the immediate sen-
sory information. Such independence is not found in a feedforward network, where
the input is progressively transmitted through stages to the output. It is also not real-
ized in an attractor network, where the initial state of the whole network is fixed by
input and the internal dynamics evolves the state to an attractor. These models are
thus incomplete, because thought,and the internal functioning of the brain,is often
largely independent of the immediate sensory input. People are able to think about a
problem without regard to circumstances unless the circumstances become demand-
ing upon their attention. We rely upon this when exams are given to students, since
we do not generally consider most sensory information in the room as relevant to a
student’s performance,unless there are significant distractions. How is this indepen-
dence realized in a neural network model?

A natural solution to the problem of introducing an internal dynamics is to as-
sume that there are internal loops whose input is their own output. These loops in-
teract with sensory input,and with motor output, but are not dictated by them. The
flow of neural influence is illustrated in Fig. 3.2.2. We can associate the internal
processes, for example, with internal dialogue. The existence of such loops leads to
several concerns. The first would be that the system becomes stuck in a self-consistent
loop. This is the dynamical analog of the excessively strong attractor that was dis-
cussed in the context of fixation. To avoid this problem requires some protections
against repetition. For example, a neuronal refractory period that is longer than the

Interna processes

Sensory information Motor control
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Figure 3.2.2 Internal processes such as internal dialogue can continue lamgely independent
of sensory information. This requires internal dynamical loops that receive input both from
the senses as well as from their own recursive structures. The figure illustrates a simple feed-
forward system with a recursive internal loop. O
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cycle time could protect against single-cycle repetition. However, it would not protect
against double-cycle repetition. While persistent loops are to be avoided,it is also pos-
sible for an internal cycle to preserve information over time. This may provide a form
of short-term memory. Among other capabilities,a short-term memory enables jux-
taposing, at one time in the neural state, events that are separated in time.

A second major area of concern in a discussion of internal loops is the balance
that is established between the influence of the senses on the internal processes and
their independence. There are dangers associated both with excessive coupling or de-
coupling of the internal processes from the senses. The stereotype of the absent-
minded professor may be a manifestation of a particular balance between connection
and independence that might be realized in this model. This balance of connection
and independence is realized through the strength of particular sets of synapses. As
discussed in Section 3.1, such balances may be maintained through the processes that
occur during different stages of sleep.

A related question raised by the model of Fig. 3.2.2 is the relative capacity of the
information paths from the senses,as compared to the information paths cycling in-
ternally. Specifically, what fraction of the information present in the brain at any one
time is a direct consequence of the sensory input? This should play an important role
in our understanding of the qualitative behavior of the brain. Is it largely driven by
the outside or is it largely internal? When a system is completely determined by the
immediate sensory information, we would identify it as a reactive system. When the
sensory information determines only a part of the internal state, we can talk about the
external and internal worlds as they are manifest in the state of the network. The prob-
lem then becomes to identify the relative complexity and interactions between the ex-
ternal and internal worlds. We will discuss the quantitative characterization of com-
plexity in Chapter 8.

3.2.9 Imagination, creativity and error

There are two forms of creativity that are often discussed separately. The first is the
general human ability to create new sentences, or to respond to circumstances that
have not been experienced before. The second form of creativity is considered to be
rare and is associated with particularly “creative” individuals. In this section we dis-
cuss the first more general creativity. The second is related to the first, but also requires
an understanding of individual differences, and therefore it will be discussed in the
next section.

The term “create” implies an act after which something exists that was not pre-
sent before. However, acts of creation involve bringing together elements that were
previously in existence, but juxtaposed in new ways. The elements may be objects,at-
tributes or relationships. In order to create there must be an external manifestation—
the act of creation. However, a precursor to the act of creation is imagination. The
ability to imagine is the ability to represent internally a combination of elements that
was not previously experienced. Creativity thus involves both imagination and im-
plementation. Imagination requires a partial independence of internal representa-
tions from the external world. Otherwise, the internal state of the brain would only
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reflect the external reality and there would be no imagining or creativity. The previ-
ous section on internal dialogue described how such independence can be imple-
mented. Here we focus on the problem of generating internal representations that dif-
fer from imprinted information.

The ability to imagine novel combinations of elements is implicit in the subdi-
vided network we have been investigating. The network can generate a set of stable
composite states that are,in effect,untrue memaories. Assuming that the internal neural
dynamics described in Section 3.2.8 explores various possible states of the network,
these composite states appear from time to time as “imagined” possible combinations
of partial states that were not imprinted. For example,having seen a bird in flight and
a walking human, one might imagine a composite consisting of a flying human.

The extent to which composite patterns appear is controlled by the relative
strength of inter-subnetwork synapses and intra-subnetwork synapses (the parame-
ter g) discussed in Chapter 2. The progressive decomposition of memories during
sleep, discussed in Section 3.1, suggests that sleep is also intimately related to the
emergence of composite patterns. Composite patterns would appear first during sleep
in the form of dreams, most of which would not be remembered. The partially sub-
divided network reflects both the concepts of divergent and convergent thinking.
Divergent thinking is the ability to imagine new combinations. Convergent thinking
is reflected in the inter-subnetwork synapses that limit them.

One question that might be asked is: How does the network distinguish be-
tween imagined states and real memories? A possible answer may be found in the
relative strength of their basins of attraction. It can be shown that the basin of at-
traction of composite states is smaller than that of imprinted states. This may enable
the network to distinguish them using a strategy similar to that described in the sec-
tion on recognition. However, it is also apparent that some degree of confusion may
arise. Isolated occurrences would result in false memories. In extreme cases, this
confusion may give rise to functional disorders. This is consistent with the existence
of avariety of psychological disorders involving hallucination. Thus the possibility
of hallucination is rooted in the basic nature of the network architecture that en-
ables imagination to occur.

Another consequence of the model of imagination is a trade-off between mem-
ory and creativity. In order for new composite states to be formed,the strength of as-
sociations between subdivisions must be reduced. The relationship between the ele-
ments that were originally imprinted tends to be lost. The trade-off between storage
of more composite states and more imprinted states discussed in Section 2.4 appears
here as a trade-off between memory and imagination, or even memory and creativ-
ity. Thus, for example, the ability to combine words into new sentences also requires
a forgetting of sentences that were heard or spoken before. Memory requires main-
taining the associations, while creativity requires loss of associations so that novel
combinations can be imagined.

We should also make a connection between creativity and error. Even the most
basic form of creativity—the application of prior experience to new circumstances—
requires the possibility of error. More generally, in any act of creation there must be a
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possibility for error. An error can be defined as a creation that is not consistent with
the external world.

The possibility of error implies the importance of limiting creativity. To manifest
all possible combinations of elements, while in some sense creative, would not be ef-
fective. Creativity is only effective when the many possible combinations are limited
to those that are more likely to be correct.A partially subdivided network appears to
be an effective approach. It limits the number and type of composite states.Limiting
creativity in this way reduces the probability of errors; however, it does not eliminate
them.

The interdependence of creativity and error, two characteristics of human activ-
ity, should not be considered a limitation of our neural network model;it appears in-
stead as a fundamental relationship. This relationship should persist despite im-
provements in the modeling and understanding of brain function.

Using the picture we have developed for creativity and error, we are able to begin
to describe individual differences. The degree to which subdivisions of the network
are isolated—the parameter g—can describe a one-parameter variability between in-
dividuals. Individuals who have a smaller value of g will be more forgetful,more cre-
ative and more prone to error. Individuals with a larger value of g will retain more
memories, be less creative and less prone to error. This prediction could be tested by
psychofunctional tests of a group of individuals. Here we can consider allegorical ev-
idence from conventional stereotypes of various professions. The conventional
stereotype of the most creative profession—artists—as also the least practical,can be
contrasted with professions requiring few errors, such as accounting. Since the con-
sequences of error are diminished,the arts would be expected to attract more creative
individuals (lower g), with weaker memories and higher susceptibility to error. On the
other hand,individuals with lower levels of creativity (higher g) and greater memory
retention would be expected to be more successful in professions where consequences
for error are higher.

The preceding paragraph beginsto identify distinctions between individuals;how-
ever, this is only a small step toward understanding individuality or, more specifically,
the second form of creativity that is attributed to specific individuals. The artistic cre-
ativity of Picasso is typically considered to be acompletely different phenomenon from
the commonplace ability to form new sentences. Nevertheless,it is possible to suggest
theyare quite similar. To do so,however, requires us to go further into an understanding
of the subdivided network architecture and the source of individuality.

uestion 3.2.3 Why didn’'t we consider spurious states introduced in
Section 2.2.7 as a source of imagination/creativity?

Solution 3.2.3 Spurious states, like composite states, are formed from
combinations of imprinted states.Spurious states,however, do not generally
retain identifiable aspects of the original states. This is because they are
formed by combining individual neuron activities from each of the im-
printed patterns, rather than neurons associated with a particular attribute.
The only structure imposed upon spurious patterns is by virtue of their
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overlap with imprinted states.Spurious states may be stable states of the net-
work, and therefore may be imagined. However, unlike composite states, in
general they will not have a coherent interpretation. [

3.2.10 Individuality

The design of modern computers relies upon a set of models that perform all compu-
tational tasks (Section 1.9). Despite various architectural differences,there is a unifor-
mity of function.Often the objective of new models of computation,including neural
network models, is to demonstrate that they have sufficient capability to be classified
with computers—they are capable of universal computation. \We have argued already
in Section 1.3 that one of the essential characteristics of complex systems is the dis-
tinction between different realizations of the same architecture. Consistent with this,
the subdivided neural network suggests an entirely different approach to computation
based on a nonuniversal computation strategy. This nonuniversal strategy is the sub-
ject of this section and forms a basis for understanding human individuality.

Before proceeding, we mention that different computers, or a computer at dif-
ferent times operating on different information, behaves in different ways. We might
suppose that this would allow us to use the universal computation approach to ac-
count for individual differences. However, one aspect of the concept of universal
computation is that the basic capabilities are universal even though the particular data
and the particular hardware are not. For example, certain problems that are inherently
difficult for one computer running one computer program will also be inherently dif-
ficult for any other computer running any other program. There are various assump-
tions inherent in this stattment,and it would be more correct to formulate it in terms
of computational complexity classes. However, in the case of the human architecture,
it appears that the capabilities are fundamental ly different between different realiza-
tions of the architecture.

The reason for nonuniversality is rooted in the original motivation for subdivi-
sion—correlations and independence in information. Our environment manifests
correlations that are nonuniversal. Tree leaves could be any color, or could be colored
at random. Objects need not retain their shape over time. Subdivision exists because
of the correlations in the information that is presented to the individual by the exter-
nal world. By structuring the information internally in a way that is compatible with
the structure of the external information, the subdivided architecture is designed to
accommodate to it, or take advantage of it. However, from a computation theory point
of view, there is no reason for the information to be structured in a particular way.

Once again our simplest example,the left-right universe (Section 2.4),is helpful.
We contrasted the capabilities of a network divided right from left and the network
divided top from bottom. These networks had radically different capabilities in the
left-right universe. This demonstrates in a simple way how the capabilities of distinct
individual realizations of the same architecture may vary drastically.

The inherent nonuniversality of the architecture of subdivision is modified by the
effect of selection due to fitness,which can lead to commonality between individuals.
Thus, for organisms in the left-right universe we would expect to find only left-right
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subdivided networks and no top-bottom subdivided networks. Similar commonali-
ties should also be expected among people. Thus the variability in brain architecture
and the resulting variation in capabilities is limited to the degree that selection im-
poses the architecture as a result of evolutionary processes (Chapter 6). Thus we have
argued that there can be an environmental/evolutionary pressure toward commonal-
ity in brain architecture because of a commonality in the environment of different in-
dividuals. However, this commonality is limited to the actual impact of selective forces.

The nonuniversality of the subdivided network becomes clearer when we think
about the hierarchical structure motivated by the 7+2 rule and the large variety of
possible mappings of sensory and motor information onto this structure. Consider
the many different filters of information that might be useful under different cir-
cumstances. It is possible for a single individual to have many of them and to selec-
tively use them. In the extreme case we can ask: If there are many possible filters of in-
formation that might be useful, why doesn’t each individual make use of all of them?
The first answer to this is that the number of such mappings grows exponentially with
the amount of information,so it would be impossible to contain them in a single re-
alization of the architecture.

We also recall that much of the usefulness of subdivision is lost when the num-
ber of subdivisions becomes greater than seven. In a hierarchy, we can use more than
seven distinct filters; however, choosing how to arrange them matters. The strongest
associations are maintained between information that is connected at the lowest level
of the hierarchy. Progressively weaker associations exist between subdivisions that are
connected at higher levels of the hierarchy. Depending on how the filtered informa-
tion is mapped onto the subdivisions, an individual will retain distinct associations
leading to a wide variety of possible individual differences.

Using the individualized hierarchically subdivided architecture as a model of the
brain we can return to a consideration of imagination, creativity and memory. The
functional hierarchy corresponds to a nonunique selection of attributes distributed in
a tree of stronger and weaker interconnection. This nonuniqueness suggests that dif-
ferent individuals will remember different associations and also be creative in differ-
ent ways. For example,some individuals will find it easy to remember the association
of names and faces while others will not. Those who remember these associations
have these attributes strongly connected to each other. In this model, generic capabil-
ities of an individual are directly related to the organization of information within the
architecture of the brain.

Our conclusion is that unlike modern computation theory, the subdivided ar-
chitecture of the human brain is a nonuniversal architecture whose individual real-
izations have widely different task-dependent capabilities. We also surmise that a uni-
versal strategy may not be effective at many human information-processing tasks. The
nonuniversal architecture is consistent with the uniqueness of individuals.

3.2.11 Nature versus nurture

A central controversy in modern science revolves around the relative importance of
the genetic code as compared to environmental influence in determining human be-
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havior and various aspects of brain function and human information-processing.
This is often called the nature versus nurture controversy. The model of the brain
formed from a hierarchy of functional subdivision also provides us with a model for
the relative influence of nature and nurture.

To extend the model for individuality to a first model of the influence of nature
and nurture we need only suggest that the subdivided architecture itself is genetically
controlled. On the other hand, the information that is imprinted upon it is a direct
result of the environment. Thus,the aspects of information that are retained by a par-
ticular individual are guided by genetics. Genetics controls the type of associations
that are strongly retained,and those that are readily forgotten. The environmental in-
fluence is contained in the actual associations and information that is present. This
model exhibits a complementary influence of genetics and environment on an indi-
vidual. It shows explicitly how genetics influences potential qualities of an individual,
and how the environment influences the actual qualities.

It is important to emphasize that while this picture is appealing in its simplic-
ity, it must be considered only as a first approximation. Aspects of the subdivided
architecture are susceptible to environmental influence. For example, even the de-
velopment of basic interconnections of the visual system are influenced by expo-
sure to light. A limited amount of specific information may also be built in due to
genetic programming. These include instinctive behaviors that are more prevalent
in animals.

3.2.12 Consciousness and self-awareness

Of all the traits associated with human beings,the ability to be self-aware,and the re-
lated concept of consciousness present some of the most difficult philosophical
dilemmas. The practical implications of these dilemmas are related to the concepts of
free will and determinism and the related responsibility of an individual for action.
We separate consciousness from the problem of selective awareness (“I am conscious
of ...”) which is described in the following section. In this section, after discussing
some conceptual obstacles, we will construct a neural network model of conscious-
ness. We then discuss practical reasons for its existence,a test of the model’s ability to
recognize self, and modes of failure of the model which can be compared with psy-
chofunctional failure.

Conceptually, a paradox in considering the problem of consciousness arises from
the problem of recursive signal processing. Consider, for a moment, the problem of
consciousness as that of being aware of sensory input, and consider the neural net-
work as a form of information processor. An example is the sensory processing that is
performed by the neurons that receive and process visual information. There is no in-
dication that this provides any awareness. It is simply a mapping of sensory informa-
tion into another form. This information is transferred to the input of another neural
system. The second system is now handed the job of providing the awareness.
However, no process that transforms the sensory information further would do any-
thing qualitatively different. Thus we are perpetually left to the problem of deferring
the consciousness to later, more internal stages, without resolution. Some have argued
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that the ultimate recursion must lead to something that is unphysical and therefore
outside the domain of scientific inquiry.

The problem with this model of the process of consciousness is that is places the
consciousness in the wrong place—as the primary recipient and interpreter of sen-
sory information. It also uses only a limited view of the function of a neural network.
We will address both from a different perspective.

We begin by considering a model that differentiates in an essential way between
the conscious and subconscious mind. There is generally no disagreement that such
a differentiation should be made,since casual introspection shows that the conscious
mind is not aware of—does not contain—all of the internal processes taking place in
the brain. Indeed,it is aware of very limited aspects of these processes. Thus we begin
by constructing a subconscious part of the brain. The responsibility of the subcon-
scious region of the brain is to receive sensory input and to act upon it. This may seem
strange at first sight; isn’t the conscious mind necessary? The answer is, largely, no.
Habitual acts and most of the details of daily activity are performed directly without
apparent input from the conscious part of the brain. The easiest way for us to repre-
sent the subconscious brain is as a conventional feedforward network that takes the
sensory input and determines motor control based on this sensory input. Thus far we
have done nothing at all unusual except to claim that this model does not possess con-
sciousness, which we knew from the outset.

Now we would like to construct consciousness. We do this from a pragmatic
point of view by asking, What is the information that the conscious mind possesses?
Introspection suggests that the conscious mind possesses sensory information. It also
possesses knowledge of motor activity. However, it does not possess information
about the internal processes that lead from sensory to motor activity. This suggests
that we construct a new part of the network model that represents both the sensory
information and motor activity information, but not the intermediate stages. The
next question to ask is, What does the conscious mind control? The first answer is that
it has no primary control function. By this we mean that control is not continuous in
the same way that it is for the feedforward network. We can see this from the termi-
nology—the awareness or consciousness do not convey the meaning of action. They
are rather passive terms describing the possession of information. No action is re-
quired on the basis of this information.

There is, however, a secondary control function. The awareness is capable of ex-
ercising control over the motor activity. However, this control is circumscribed. It acts
as a corrective process rather than a control over moment-by-moment action. Thus
the direct control over action is performed by the subconscious network, while the
conscious network acts by redirecting the subconscious feedforward network.

How does the conscious network decide to exercise control over actions of the
subconscious network? We answer by considering the conscious mind as an attractor
network (Fig. 3.2.3). The pattern of neural activity in the attractor network represents
both sensory and motor activity. It’s task is to recognize their “compatibility.” As dis-
cussed in Section 3.2.6, recognition can be performed by measuring the dynamics of
the attractor network. If the juxtaposition of the sensory and motor activity is recog-
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Figure 3.2.3 A model that captures some of the essential features of self-awareness and con-
sciousness can be constructed out of two parts. The first part, representing the subconscious
mind, is a feedforward network that is a sensory motor control system. The input is sensory
information and the output is motor control. The second part, representing the conscious
mind, is an attractor network whose state is composed of input both from the sensory infor-
mation and from the motor control. It has no direct control function. However, when the sen-
sory and motor information is not recognized as an imprinted state the network exercises con-
trol over the actions through recognition synapses similar to those discussed in Section 3.2.6
and Fig. 3.2.1. In effect, the imprinted states in the conscious network represent a model of
the self. When the actions are not consistent with the model it intervenes to change the be-
havior. The network function is illustrated schematically in Fig. 3.2.4. O

nized,then the conscious mind does not interfere. However, when the state of the sen-
sory and motor activities are not recognized,then the conscious mind acts by causing
the feedforward network to modify its actions. This occurs over a longer time scale
than direct action by the subconscious network.

An interesting way to summarize the recognition process that the attractor net-
work performs is as a question. The question, in this case, is: Is this me? Or specifi-
cally: Is the current situation and my actions within it consistent with my self-image?
The self-image is the set of stable states of the attractor network. Summarized in this
way, we see how the notion of self-awareness and consciousness are related and are
represented by this model.

An additional concept that can be described is the concept of a will. It is easiest
to identify the will by noting the use of the modifiers that describe an individual as
having a strong or weak will. The will represents the ability of the conscious part of
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the mind to control the subconscious. In this model this is represented by the strength
of the synapses that originate in the conscious attractor network and act to modify the
state of activity of the subconscious feedforward network.

The architecture we have constructed,shown in Fig. 3.2.3,is a comparatively sim-
ple model that captures some of the features that we attribute to the function of the
conscious and subconscious parts of the mind as well as the interactions between
them. The interactions are described pictorially in Fig. 3.2.4. Given the conflicts that
have arisen out of the concept of consciousness, the possibility of discussing a con-
crete model provides some new opportunities for progress in our understanding.

The practicality of consciousness can be considered by realizing that the combi-
nation of feedforward and attractor networks provides a solution to the limitations of
each of these network architectures. As discussed in Sections 2.3 and 3.2.2,the train-
ing of a feedforward network requires storage of the desired input-output pairs. In
our model of consciousness, this storage is performed using the attractor network.
Moreover, the training of the feedforward network must be done incrementally, while
that of the attractor network may be achieved by a single imprint.On the other hand,
the attractor network is not capable of complex processing and will suffer overload if
too many patterns are stored in it. In this model, complex processing can be left to the
feedforward network, and once it is trained,the size of the basin of attraction of the
attractor network pattern can decrease. Significantly, it is not necessary for the at-
tractor network by itself to be able to generate the pattern representing a response, it
must only verify and provide corrections to this response.

Consciousness is characterized by the recognition of oneself. Experimentally it is
manifest in the ability to recognize oneself in a mirror. This ability is not present for
animals other than apes and man. Even monkeys appear unable to recognize them-
selves. The neural network model indicates how self-recognition can occur. By virtue
of juxtaposing sensory and motor information in an associative memory (attractor
network), it enables correlations between them to be imprinted. When moving and
seeing this motion in a mirror, the imprinted information is recognized by the con-
scious network, and thus the answer to the question, Is this me? is yes.

The physiological location of the conscious and subconscious networks can be
tentatively identified. The frontal lobes that are much more developed in apes and
man than in other animals have generally been identified with consciousness and
planning. They also have a topographic map of the body that serves as an area of mo-
tor control. However, the motor control due to the frontal lobes has been associated
with voluntary rather than habitual motion. Involuntary movement and the coordi-
nation of voluntary and involuntary movement are both centered in the cerebellum,

Figure 3.2.4 Schematic illustration of the model of consciousness described in the text. This
model assumes two components of the mind—the conscious mind and the subconscious mind.
The activity and interactions of the two components are illustrated in the figure as a time
sequence. The subconscious mind is directly responsible for receiving sensory input and act-
ing upon it. The conscious network corrects the subconscious based on an internal represen-
tation of the self, and triggers retraining of the subconscious network. [
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to which there are many projections from the motor areas of the frontal lobes. These
observations are consistent with the neural network model.

While most animals do not recognize themselves in a mirror, they do have a sense
of self associated with location/territory or smell. The part of the brain associated
with representing information about spatial location is the hippocampus. This part
of the brain may serve as the associative network that enables an identification of self
related to location, as in:“l am here” or “This is my place.” Recent experiments dis-
cussed in Section 3.1.5 identify the hippocampus as a network that stores information
in correlated patterns of neural activity—an associative network. This also suggests
that consciousness is not a monolithic entity; it may have various aspects related to
different parts of the brain.

As with other aspects of the models we have discussed, the model of conscious-
ness provides an understanding of some of the failure mechanisms of the network.
One failure mechanism is found by considering the strength of the control by the con-
scious over the subconscious—the will. We see that the subconscious mind is essen-
tially reactive. When the will is weak, the behavior would be characterized as impul-
sive. On the other hand, if the will is too strong, then the attractor network, which
does not have the ability to process information through several layers of synapses,
takes over the reactive function. This implies that actions are based upon relatively
simple conscious processing. When all actions are based upon simple conscious pro-
cessing, behavior is characterized as fanatic.

We can take the discussion one step further by discussing changes in the will.
Similar to other synapses, the will is likely to be changed by imprinting. Thus it is
strengthened by action and weakened by inaction. Since the exercise of the will is un-
der conscious control,it may be strengthened by consciously exercising control even
when the control is unnecessary, or it may be weakened by passivity when the control
would otherwise be exercised.

In this section we have emphasized the limited control that the conscious mind
exercises over action. However, the conscious mind appears to exercise direct control
over what we are paying attention to, as discussed in the following section.

3.2.13 Attention

One of the phenomena associated with both internal dialogue and response to sen-
sory stimuli is that of attention. \We are able to be aware of various aspects of sensory
information, or focus on a particular thought. How would we design a system that can
achieve this? One approach is used by computers, where a central processing unit re-
ceives information from different parts of the memory according to its instructions.
The central processing unit must label the information according to where it is taken
from in the memory. This requires an addressing/labeling that distinguishes one part
of the brain from another. We will discuss an alternate strategy that leaves the infor-
mation in place but acts as a kind of spotlight. This approach is better suited to the
neural network models we have been describing, because the nature of information is
established by its location in the brain rather than by retrieval and labeling. We con-
tinue to avoid an explicit labeling scheme in this manner.
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Until now we have been comfortable with the model that neurons are firing or
not firing with roughly equal probability, and the pattern of activity or inactivity rep-
resents the information that is present in the mind at a particular time. We now need
an additional intrinsic label that will enable us to identify which region of the brain
has our attention.One way to achieve this is to give up the symmetry between activ-
ity and inactivity and assume that significantly more of the neurons are inactive; it is
then the neurons with significant activity that are representing the information. This
helps because we can then control the overall activity level in a particular region of the
brain. If we raise the overall activity we are drawing attention to it, and if we reduce
the level of activity we are reducing our attention to it. It is indeed well established
that the neurons in the brain are active less than half of the time. Moreover, imaging
experiments that are assumed to measure which parts of the brain are utilized at a
particular time measure their average neural activity, which is higher than in other re-
gions of the brain.

How does this change affect all of our previous analyses of the storage of patterns
in attractor networks? The answer is that qualitatively very little changes. A pattern
that is to be imprinted consists of a pattern of neural activity where the fraction of ac-
tive (s;(t) = 1) neurons is less than one-half. The imprinting rule may be modified
slightly to prevent the bias itself from being imprinted. If the average activity of the
neurons is consistently m, then the Hebbian imprinting (Eq. (2.2.6)) may be modi-
fied to read:

Ji(®) =5t 1) +esi(t-1) - my@t-1)-m) it (3.2.6)

This means that imprinting results from deviations from the average activity. The net-
work capacity as measured by the number of patterns that can be imprinted and re-
trieved actually goes up slightly, because, in effect, the patterns do not interfere with
each other as much since they involve different sets of firing neurons. However, the
overall amount of information that can be stored is diminished because each pattern
does not contain as much information. For our purposes, these are minor adjust-
ments to the results that we have already found in Chapter 2.

In order to make use of the bias in neural activity for the purpose of attention,
there must be a mechanism by which the overall activity within a particular region of
the brain is controlled. We will describe a mechanism for such control. The mecha-
nism must be independent of the neural activity and synaptic transmission that we
have been describing. Throughout the brain there are found cells whose function is
not understood. These cells,called glial cells,may have some function in maintaining
the structural integrity of the neural system. We will invest these cells with a model for
how the attention system might work, recognizing that there are other possible em-
bodiments. The essential property that we are using is that these cells are not part of
the neural representation themselves. This role could also be taken by a separate set of
neurons. The reason it appears natural that the cells involved would not actually be
neurons is that they do not require specificity of interaction with a particular neuron.
Instead they should interact more generally with a whole region of neurons. There
are, however, some classes of neurons that do this as well.
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In order to fulfill their function,the glial cells would need two capabilities: to con-
trol the overall activity of the cells and to measure their overall activity. Control over
the activity might be achieved by control over the local blood flow supplying nutri-
ents to a region of cells, or by control over the chemical contents of the blood.
Alternatively, chemicals in the intercellular fluid might be involved. The purpose of
these chemicals would be similar to that of neurotransmitters in that they inhibit or
excite neuron activity; however, they are likely to be quite different in detail,since they
have an effect on the overall level of activity rather than serving as one of many sig-
nals to a cell. Measuring the overall activity of a region of neurons may be achieved by
sensing various by-products of their electrochemical activity. This measurement
would take longer than the transmission of an individual pulse along an axon; how-
ever, the activity itself is an average over many transmission pulses.

The behavior of the glial cell then becomes similar to the behavior of a neuron,
in the sense that it has either an oN or an ofF state. In the on state it promotes the ac-
tivity of the neuronal assembly it is in contact with;in the oFF state it suppresses it. It
acts as a metaneuron that is related to the average neuronal activity. Control over the
glial cell may then be exercised in several ways. For example, a self-consistent atten-
tion mechanism could be formed by glial cells attempting to activate the assembly of
neurons they are in contact with whenever the cells are significantly active. The glial
cell measures the activity present with respect to the expected activity. If the glial cell
is OFF, the neurons would be generally inactive. If the cells become significantly more
active than expected,the glial cell turns on and promotes the activity of the region of
cells. If the glial cell is on and the activity falls below that expected, then the glial cell
turns ofF. Interactions between glial cells that suppress one glial cell when another is
active would lead to an exclusive attention mechanism.

An important part of the phenomenon of attention is that it is coupled to con-
sciousness. We can implement this coupling by assuming that the conscious part of
the brain, discussed in the previous section, controls the glial cells and thus the re-
gional neural activity. We emphasize again that the term “glial cell”as used here might
be substituted by another biological analog without changing the essence of this dis-
cussion. Moreover, it should be clear that the mechanism we have described for at-
tention is not the only approach. It is one of the ways that are consistent with the spirit
of the neural network models we have been developing.

One of the interesting outcomes of this model of attention is that it provides a
mechanism for a new level of dynamics that would be related to a sequential activa-
tion of glial cells causing a sequential activation of particular regions of neurons. This
can provide a missing piece in our discussion of language in the subdivided architec-
ture. In Chapter 2 we suggested that different subdivisions of the brain are responsi-
ble for storage of distinct parts of speech. We can now suggest that a sequential firing
of glial cells results in sequential activation of different parts of speech that trigger ver-
balized speech,are triggered by hearing speech, or represent internal dialogue in the
form of organized strings of words—sentences.



Brain function and models of mind 419

3.2.14 Summary of brain function

We have devoted this chapter to building a relationship between our neural network
models and several of the basic phenomena of brain and mind. The relationships have
not only described some of the interesting phenomena, but also created a framework
in which poorly understood concepts can at least be discussed. These include such di-
verse concepts as sleep, creativity and consciousness. To incorporate these into our
model, we expanded the basic neural network to include various additional features.
The comparison of many of these with the actual brain has yet to be performed.
However, it is helpful to have theories that can be tested both experimentally and
through simulations.



