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TAKING A PAGE FROM DARWIN'S ON THE ORIGIN OF THE 
SPECIfS, COMPUTER SCIENTISTS HAVE FOUND WAYS TO 
EVOLVE SOLUTIONS TO COMPLEX PROBLEMS 

What is evolutionary 
computation? 

D AV I D B .  F 0 G E L 

~~t~ I 
THE PRINCIPLE OF EVOLUTION is the primary unifying concept of biol- 

ogy, linking every organism together in a historical chain of events. Every 

creature in the chain is the product of a series of "accidents" that have been 

sorted out thoroughly under selective pressure from the environment. Over 
many generations, random variation and natural selection shape the behav- 

iors of individuals and species to fit the demands of their surroundings. 
This fit can be quite extraordinary and compelling [Fig. 11, a clear indication 

that evolution is creative. While evolution has no intrinsic purpose-it is merely 
the effect of physical laws acting on and within populations and species-it 
is capable of engineering solutions to the problems of sutvival that are unique 
to each individual's circumstance and, by any measure, quite ingenious. 

Select ion Inc. 

Imagine what harnessing the evolutionary process within a computer might 
do. It could provide a means for addressing complex engineering problems- 
ones involving chaotic disturbances, randomness, and  complex nonlinear 

dynamics-that our traditional algorithms have been unable to conquer. 

Indeed, the field of evolutionary computation is one of the fastest growing 

areas of computer science and engineering for just this reason; it is address- 
ing many problems that were previously beyond reach, such as rapid design 
of medicines, flexible solutions to supply-chain management problems, and 
rapid analysis of battlefield tactics for defense. Potentially, the field may 
fulfill the dream of artificial intelligence: a computer that can learn on its own 
and become an expert in any chosen area. 
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In the most general terms, evolution 
can b e  described as a two-step iterative 
process, consisting of random variation 
followed by selection. T h e  link between 
this description of evolution and the opti- 
mizing algorithms that are the hallmark 
of evolutionary computation is concep- 
tually simple. 

Just as natural evolution starts from a n  

[rl Evolution copes with pro- 
blems in ways that might 
never occur to people, who 
tend to thinklinearly Witness 
the leafy sea dragon. whose 
limbs and back take on t h e  
form of the surrounding vege- 
tation, concealing it from 
predators. 

(Source: A Natural Selection: 
Marvels and Oddities of the 
Natural World, R. Morecroft. 
Simon and Schuster. 1993) 

initial population of creatures, the algo- 
rithmic approach begins by selectingan ini- 
tial set of contending solutions for a par- 
ticular problem. The set may be chosen 
by generating solutions randomly or by uti- 
lizing any available knowledge about the 
problem. 

These "parent" solutions then generate 
"offsprinc by a preselected means of ran- 

[21 An evolutionary algorithm begins by initializing a population of candidate solutions to  
a problem. New solutions are then created by randomly varying those of the initial popu- 
lation. All solutions are measured with respect to  how well they address the task. Finally, 
a selection criterion is applied to  weed out those that are below par. The process is iter- 
ated using the  selected ret of solutions until a specific criterion is met. 

2 8  

dom variation. The resultant solutions are 
evaluated for their effectiveness-their "fit- 
ness'-and undergo selection. Just as nature 
imposes the rule of "sumival of the fittest," 
those solutions that are the least fit are 
removed from further consideration, and 
the process is repeated over successive gen- 
erations [Fig. 21 

THE ASSUMPTION PROBLEM 
To be useful, traditional algorithms for 

discovering the most appropriate solu- 
tions-optimization algorithms-require 
that their users make many assumptions 
about how to evaluate the fitness of a solu- 
tion. (These traditional means of evaluation 
go by many names: the fitness or cost func- 
tion, the response surface, or, in engineer- 
ing, the performance index.) For example, 
the so-called linear programming algorithms 
demand that the cost functions also be lin- 
ear--a sum of weighted individual cost 
terms. Another traditional approach-gra- 
dient-based search, in which the point of 
zero gradient, hopefully, the maxima o r  
minima, is sought-requires a smooth, dif- 
ferentiable cost function; it is unable to deal 
with sudden, discontinuous change. 

But evolutionary algorithms require no 
such assumptions. Fundamentally, the per- 
formance index need only be able to rank 
two competing solutions; that is, it must 
determine that one solution is, in some way, 
better than another. This makes a broad 
range of problems that are outside the range 
of conventional engineering amenable to  
the evolutionary approach. In short, evo- 
lutionary algorithms can often resolve prob- 
lems that do not yield to common numer- 
ical techniques. 

In the real world, an evolutionary ap- 
proach to solving engineering problems 
offers considerable advantages. One  such 
advantage is adaptability to changing sit- 
uations. For instance, suppose a manager 
must find the best schedule for operating 
a factory Doubtless, there will be many 
constraints: availability of personnel, the 
number of machines, the time required to 
change machine settings, and so forth. Even 
i f  the manager could find an optimum 
schedule that would be most profitable, he 
or she would still need to  consider that 
machines may break down and personnel 
may not arrive at work on time, In daily life, 
the problem facedat any moment may have 
diverged significantly from the problem 
anticipated originally. 

Unfortunately, in many traditional opti- 
mization procedures, the calculation must 
be restarted from the beginning if any vari- 
able in the problem changes. This is com- 
putationally expensive. With an evolution- 
ary algorithm, on the other hand, the 
current population selves as a memoir of 
stored knowledge that can be applied on 
the fly to  a dynamic environment. Re- 
starting from scratch is not necessary. 
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Another advantage of an evolutionary 
approach to problem solving comes in being 
able to generate good enough solutions 
quickly enough for them to be of use. This 
ability is perhaps best illustrated by the clas- 
sic traveling salesman problem, to  wit, 
"Suppose a salesman must visit clients in dif- 
ferent cities, and then return home. What 
is the shortest tour through those cities, vis- 
iting each one once and only once?" 

This problem is simple to state,. .but dif- 
ficult to  solve. It belongs to  the class of 
problems referred to as NP-hard, where NP 
stands for nondeterministic polynomial. For 
such problems, no known algorithms are 
able to  generate the best answer in an 
amount of time that grows only as a poly- 
nomial function of the number of elements 
in the problem. 

In fact, the number of possible tours in 
any traveling salesman problem increases as 
a factorial function of the number of cities. 
So for 100 cities, there are over 10'55 dif- 
ferent possible paths through all the cities 
one could try. Considering that there are 
only an estimated 10'8 seconds in the his- 
tory of the universe, simply applying brute 
force to  search all possible solutions to a 
traveling salesman problem of even modest 
size is doomed to fail. 

Instead, consider an evolutionary ap- 
proach to  discovering a useful solution to 
such a problem. The approach has four pre- 
requisite steps: 

Choosing the solution representation. 
Devising a random variation operator. 
Determining a rule for solution sumival. 
Initializing the population. 

Once these are taken, the evolutionary algo- 
rithm will start to  generate solutions, and 
will continue to generate better ones as time 

[ 1 6 4 2 3 5 1  

passes. Each of these steps is explained in 
greater detail in the following paragraphs. 

EVOLUTIONARY STEPS 
To represent any possible solution within 

the confines of a computer, a sttucture must 
be defined for the data that will encode 
evely possible solution that it might be 
desirable to evaluate. Here, there is no sin- 
gle best choice for the representation (this 
is provable mathematically) so a little inge- 
nuity is called for. 

One potential data representation for the 
traveling salesman problem is to identify 
each different possibility in a permutation. 
To simplify, if there were six cities (includ- 
ing the salesman's home base), then one pos- 
sible solution might he [ I  2 3 4 5 61. which 
would indicate an order of progression. 
(Note that, as this problem requires a round 
trip-that is, a closed loop-the first ele- 
ment in the series is also the last. Also note 
that, since this is a loop, it does not matter 
which city the salesman actually starts 
from.) Any permutation of these cities 
would be another more or less desirable 
solution to  the problem. 

Suppose that this representation is cho- 
sen. Then the cost function, that is, the 
means to evaluate any candidate solution, 
must also be determined. Here the task is 
straightforward: travel as short a distance as 
possible. So the "cost" of any solution can 
he made equal to the distance of the tour, 
with shorter tours being favored over longer 
ones. Of course, things could be made more 
complicated, incorporating additional as- 
pects of real-world problems such as mini- 
mizing the traveling required during peak- 
traffic hours or requiring that certain 
customers be visited, say, in the afternoon 

-[ 1 2  3 4 3  5 1  

Parent tour Offspring tour 131 The traveling sales- 
man problem is: find 
the sho~test mute for 
visiting all the cities 
selected. With six cities 
[l 2 3 4 5 61, a single- 
parent operator could 
create an offspring 
solution by inverting 
the visiting order 
between two random- 
ly chosen points [top]. 

With a two.parent 
operator. two tour5 
could be split at some 
random point and the 
pieces joined to create 
an offspring [bottom]. 
The tour here, though, 
is incomplete and addi- 
tional ruler are needed 
to repair it or to pre- 
vent it from occuring. 

3r only after other customers are visited. If 
io, evaluating candidate solutions might 
become much more complex. Complexity 
only makes the application of an evolu- 
tionaly algorithm more pertinent, because 
it rapidly removes the problem from the 
domain of most traditional optimization 
techniques. For the sake of this example, let 
the simple total distance of the tour be the 
measure of the quality of a solution. 

The  second step is to  devise a random 
variation operator (or operators) that can 
be used to generate offspring solutions from 
parent solutions. Many options exist. In 
nature, there are two general forms of re pro^ 
duction: sexual and asexual. In sexual repro- 
duction, two parents within a species ex- 
change genetic material that is recombined 
to form an offspring. Asexual reproduction 
is essentially cloning, but mutations of var- 
ious forms can creep into the genetic in for^ 
mation passed along from parent to  off- 
spring. These operators are worth modeling 
in an evolutionaly algorithm. 

Thinking even more broadly, why not 
devise other variation schemes not found in 
nature? Examples include recombining gen- 
etic material from three or more parents and 
allowing a democratic vote between the par- 
ents involved in reproduction. There is vir- 
tually no limit to the types of variation oper- 
ators that can be devised, nor any reason to 
be constrained by nature far inspiration. 

The ultimate success of an evolutionaly 
algorithm depends strongly on how well the 
variation operator(s), the representation, 
and the evaluation function are matched. 
Different operators will vary in usefulness 
with the situation. Just as with the repre- 
sentation, there is no single best variation 
operator for all problems (and this, too, is 
provable mathematically). 

Consider two possibilities for the travel- 
ing salesman problem represented using  per^ 
mutations. One choice is to use a single par- 
ent and generate an offspring by randomly 
choosing two positions along the parent and 
inverting the list of cities in that segment 
[Fig. 31. Another is to use two parents, 
choose a random point along the permu- 
tation, then take the first segment of cities 
from the first parent and the subsequent seg- 
ment of cities from the second parent. 

The first operator looks a bit like asexual 
reproduction, while the second looks some- 
thing like sexual reproduction. But whereas 
the first variation will always generate a legal 
tour (each city visited once and only once), 
the second variation might generate ille- 
gal tours, because some offspring may con- 
tain more than one copy of some cities and 
no copies of others. That does not Nk out 
using semal reproduction, it merely dictates 
the inclusion of additional operations to 
"repaii'such Solutions so that they can be 
fixed before they are evaluated. The  rem- 
edy might be to  locate any city that is rep- 
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[41 A simple iterative evolutionary algorithm war used to solve a 
lmitytravelingsalesman pmblem.Atthestart,the reseanherselected 
100 possible solutions, each of which was used to generate one off- 
spring by means of inversion [Fig. 31, yielding a total of 200 solutions. 

The best 100 (in terms of shortest mute) were selected, with the tap 
solution from this f i m  generation shown at far 1eft.The best solutions 
after 500,lOW. and 4000 iterations indicate the progress made as the 
process was repeated. 

resented more than once in one solution, 
then replace that city with one not repre- 
sented at all. Once this is done for each 
duplicated city, the offspring will have been 
repaired and become a viable contending 
solution. Many variation operaton could be 
considered for the traveling salesman prob- 
lem but, for illustration, the inversion oper- 
ator described above will be used here. 

The third step is determining a rule for 

chosen completely at  random from the 
space of all possible solutions. In the case of 
the traveling salesman problem here, that 
would mean randomly generating a number 
of permutations of integers, each permuta- 
tion representing one possible solution. 

Alternatively, there may he some hints at 
good solutions available-perhaps because 
some other algorithm or prior knowledge 
can be used to generate some reasonable 

Granted, there are now many betteralgo- 
rithms for solving the traveling salesman 
problem than the above evolutionary pro- 
cedure, since mathematicians have already 
spent much time and effort trying to solve 
it. But all these other techniques rely on 
some specific knowledge about the prob- 
lem to improve their performance. They 
sacrifice generality in order to gain perfor- 
mance. Just like Deep Blue, the worldcham- 

selecting which solutions will survive to 
become parents of the next generation. As 
with variation, many forms of selection can 
be considered. One  simple rule is survival 
of the fittest: only the handful of very best 
solutions in the population is retained while 
all the othen are killed off, so to speak. An 
alternative is to use a sort of tournament 
amroach. where randomly oaired solutions 

head start-which can be incorporated in 
the initial population. If those solutions 
prove worthwhile, they will survive and  pro^ 
duce new variants; if  they are false leads, 
then they will perish along with other, 
weaker solutions. For the example here, sup- 
pose the initial population is chosen com- 
pletely at random. 

A tvoical run of an  evolutionarv alzo- 

pion chess program, they shine in their nar- 
row domain of application, but do poorly 
outside that domain. Imagine Deep Blue 
playing a game of checkers it couldn't make 
even the first move. 

The key point is that, while it is possible 
to incorporate any problem~specific knowl- 
edge available and thereby take advantage 
of it when using evolutionam algorithms. it 

times win because they get a lucky draw in 
the tournament, weaker solutions in a  pop^ 
dation sometimes survive a few generations 
under this format. This can he a plus in com- 
plex problems, where it may he easier to 
find new improved solutions by making 
variations of weaker ones than to do SO by 
relying only on the very best. The  possi- 
bilities abound, but any rule that generally 
favon better solutions over weaker solutions 
for suwival is reasonable. For simplicity, only 
the most basic approach-survival of the 
fittest-will be considered here. 

GENESIS 

uted at random but in a uniform manner, has 
the results shown in Fig. 4. The improve- 
ment at successive stages in the evolution 
of the tours is evident (The program for 
this example, written in Matlab, is avail- 
able at wwwmatural-selection.com under 
the publications section.) 

The evolutionary algorithm has searched 
the space of possible toun and has discov- 
eredavery goodone. While it is probably 
not the perfect answer, it is of high qual- 
ity. In all, only 400 000-or one out of 
every IO'So-possible solutions were 
examined, an infinitesimally small frac- 
tion of the whole. This is in line with the 

tionary algorithms can tackle an enormously 
broad range of problems. 

IN THE FIELD 
Evolutionary algorithms are already 

being used to solve a wide variety of real- 
world problems that pose significant chal- 
lenges. One  such problem involves the dis- 
covery of new drugs. In the case of docking 
a small molecule of a potential drug (called 
a 1ija.d. meaning"something that has to be 
bound") into a target protein's binding site, 
the result depends in large part on the three- 
dimensional shapes of both elements. It is 
analogous to a lock and kev iust as onlv the _ ,  

The final step is selecting the initial pop- 
dation. I f  nothing is known about how to 
solve the problem, then solutions can be 

30 

operating credo of evolutionary practition- 
en :  "Solutions should be good enough and 
generated fast enough to he useful." 

right-shaped key will open a particularlock, 
so only an appropriately shaped ligand will 
he able to bind to the target protein. 
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Finding that ligand is extremely difficult. 
Not only are there tens of thousands of can- 
didates, hut each one has many bonds that 
can be rotated into many different positions. 
Essentially, every ligand has infinitely many 
shapes. It is certainly m e  that many of these 
possible conformations are extremely un- 
likely owing to the physical and chemical 
properties of the molecules. Nevertheless, 
the number of possible profiles that each 
ligand can present is often enormous. This 
makes predicting the best conformation of 
a ligand as it binds to  a target protein quite 
challenging. 

In a study published in Cbanirtry &Biology, 
researchers at Agouron Pharmaceuticals Inc. 
indicated how an evolutionary algorithm 
could he used for predicting the manner in 
which a ligand would dock into HIV- I pro- 
tease as a potential drug against AIDS. The 
task was to find the most energetically favor- 
able conformation for the ligand when it 
attached to the binding site of the protein. 
Several factors were believed to be imDor- 
tant, including: 

The steric (three-dimensional) fit of the 
ligand, bared on how well it complements 
the surface structure of the binding site on 
the protein. 

Electrostatic interactions between atoms. 
Van der Waal's forces, which dictate essen~ 

tially that two atoms cannot he in one and 
the same place. 
In light of these criteria, any potential con- 
formation of a ligand can he scored in terms 
of how well it hinds to the target protein. 

An evolutionary algorithm was devised 
to operate on a population of over 1000 dif- 
ferent potential conformations of a candi- 
date ligand, with variation randomly alter- 
ing the rotation angles of the ligand, and 
selection sorting out which shapes appeared 
to be more energetically favorable than o t h ~  
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ers. Figure 5 shows a successful evolution of 
the ligand, named A G  1343, docking into 
HIV-1 protease after completion of the evo- 
lutionaly algorithm and after post-process- 
ing by a gradient minimization on each 
rotation angle, Comparing it to the experi- 
mentally determined crystal structure ind i~  
cates that there is very little discrepancy 
between the prcdicted conformation de- 
rived from the evolutionary algorithm and 
the actual ohsewation gleaned from nature. 
In summary, the experiments give indepen- 
dent verification that the evolutionary algo- 
rithm did indeed find the correct answer. 

This application is importani because it 

[51 To test i l l  applicability to drug 
design, an evolutionary algorithm 
war wed to select candidate mol- 
ecules,or ligands, thatwoulddlxk 
tothereceptorsiteofanHIV-1 p m  
tease protein [shown, far left top, 
asa biochemist's ribbon diagram]. 
The best 150 out of 1000 possible 
solutions in the 2nd generation 
lookmessy[nearleft,topl. Butthe 
algorithm maker progress in the 
70th [far left, middle]. 92nd [near 
left, middle]. and 149th [far left, 
bottom1 generations. 

The best structure obtained 
[green, near left, bottom 1 closely 
matches one found experimentally 
[white]. indicating the usefulness 
of evolutionary techniques. 

(Images from "Molecular recog- 
nition of the inhibitor AG-1343 
by HIV-1 protease: Conformation- 
ally flexible docking by evolu- 
tionary programming." by Daniel 
K. Gehlhaar e t  al., Chemistry & 
Biology, vol. 2, 1995.) 

saves time and labor, both of which are typ- 
ically in short supply. When a pharmaceu- 
tical company targets a protein, there are 
many more potential ligands to  consider 
than could be examined enumeratively. Each 
possible ligand may have several rotatable 
bonds, offering a multidimensional opti- 
mization problem of finding the hest over- 
a11 conformation. Rathcr than trying to look 
at each rotation individually, an evolution- 
ary algorithm can quickly discover which 
ligands best fit the target protein's binding 
site and therefore have potential as candi- 
date drugs. Chemists can then focus their 
attention on these candidates. The  result 
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161 In a recent game of 
checkers played on-line, 
DavidllOl'r mover were 
rewetly determined by an 
evolved neural network. 
whereas Deceplicon12345 
was a human competitor 
with an expen rating. 

At the point in the 
game shown. the neural 
network. playing white, 
has just earneda king and 
the human expert has 
acknowledged the move 
by typing "gm," meaning 

is an improved, more cost-effective proce- 
dure for screening drug leads. 

Other real applications of evolutionary 
algorithms are being made in scheduling, 
supply-chain management, and medical 
diagnosis. They may even be used as the 
basis for combat simulations to train mili- 

and I are poor players). Aher 100 genera- 
tions, the best-evolved network played 
against people a t  the Microsoft Network 
Gaming Zone Web site (ww.zone.cam) 
and, based on the number of games played 
and the network's performance, earned a 
"Class A" ratinz-ne level below the des- 

tary personnel; an evolutionary algorithm 
can serve as an interactive adversary that 
learns and adapts its tactics as the strategic 
situation changes. Moreover, evolution i s  
being used as a principle for creating new 
hardware designs, in terms of both physical 
devices and electronic circuits. 

In the longer run, evolutionary algo- 
rithms may play a pivotal role in devising 
truly intelligent machines--computers that 
can learn on their own. The real challenge 
i s  not so much to make a computer that can 
compete with people; in many narrowly 
focused applications, such as games, this is  
easily accomolished bv translating human 

ignation of "expert" following the United 
States Chess Federation rating system. Of 
course, opponents were not told that they 
were playing against a program, nor did any 
of them guess that their rival was a program. 
In fact, some people praised the apparent 
ingenuity of their competitor [Fig. 61. 

The crucial achievement of this work is  
that the neural networks did not assess their 
position by using human expertise-piece 
mobility, control of the center of the board, 
having a path that can earn a king, or any 
other sophisticated technique a human 
checkers player would use. Instead, they 
used only the actual Dositions of the Dieces 

ers Experiments are continuing in an effort 
to achieve an  expert-level rating, which 
would place the evolved strategy in the top 
1 percent of al l  players who have registered 
a t  the Internet gaming site. 

The ability for a computer to gain pro- 
ficiency at a game of skill such as checkers 
simply by teaching itself opens up a far 
greater possibility: having computers learn 
about other facets of the real world without 
relying on people to program in al l  the req- 
uisite knowledge. As the cost of computing 
keeps declining, the amenability of evolu- 
tionary algorithms to solving real-world 
problems wil l soar. This i s  particularly so 
because of'the parallel nature of evolution- 

ary approaches. With natural evolution, 
individuals are always being evaluated in 
parallel by their environment. So by rely- 
ing on a cluster of computers (a so-called 
"pile of PCS"), a practitioner can take less 
time to solve difficult problems; evaluate 
individual solutions in parallel rather than 
in series; and have them migrate from com- 
puter to computer. The v e y  large popula- 
tions this protocol allows yield better solu- 
tions faster than do small ones. 

The products that will emerge from these 
massively parallel designs remain a matter 
of speculation. Some even foresee the use 
of evolutionay algorithms to design surro- 
gate artificial brains that wi l l  supplant 
human cognition, as did Ray Kurzweil in 
Thr&r ajSpintual Computing (Viking, 1999). 
Whether or not this conjecture becomes 
reality, there i s  no doubt that evolutionaly 
algorithms will become a mainstay of prob- 
lem solving in the coming yean. e 

TO PROBE FURTHER 
An introduction to the ar t  of designing and 
applying evolutionary algorithms to real- 
world problems is provided in How to Solve 
it: Modern Heuristics byzbigniew Michalewicz 
and David B. Fogel (Springer, 2000). The book 
also details Classic optimization techniques. 

Recent advances in evolutionary computation 
are found in many conferences and symposia 
internationally. including the annual Congress 
on Evolutionary Computation, co-sponsored by 
the IEEE Neural Networks Council. the IEE, and 
the Evolutionary Programming Society. Infor- 
mation on the upcoming conference can be 
found a t  ha~Jlpcgipseca.cee.hw.ac.u~~e~O~l 

"Evolution, neural networks, games, and intel- 
ligence" are discussed in the paper of that title 
by Kumar Chellapilla and David 8. Fogel in the 
Proceedings of the IEEE, Vol. 87. no. 9, 
pp. 1471-96, September, 1999. 

The relationship between evolutionary algo- 
rithmrand machine intelligence is explored in 
Evolutionary Computation: Toward a New 
Philosophy of Machine intelligence by D.B. 
Fogel (2nd edition, IEEE Press, Piscataway, N.J., 
2000). Many of the foundational papers in the 
field. as far back as 1956. are reprinted In 
Evolutionary Computation: The Fossil Record 
(D.B. Fogel, editor, IEEE Press, 1998). 
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