
L
QI >
0
U

TAKING A PAGE FROM DARWIN'S ON THE ORIGIN OF THE
SPECIfS, COMPUTER SCIENTISTS HAVE FOUND WAYS TO
EVOLVE SOLUTIONS TO COMPLEX PROBLEMS

What is evolutionary
computation?

D AV I D B . F 0 G E L

~~t~ I
THE PRINCIPLE OF EVOLUTION is the primary unifying concept of biol-

ogy, linking every organism together in a historical chain of events. Every

creature in the chain is the product of a series of "accidents" that have been

sorted out thoroughly under selective pressure from the environment. Over
many generations, random variation and natural selection shape the behav-

iors of individuals and species to fit the demands of their surroundings.
This fit can be quite extraordinary and compelling [Fig. 11, a clear indication

that evolution is creative. While evolution has no intrinsic purpose-it is merely
the effect of physical laws acting on and within populations and species-it
is capable of engineering solutions to the problems of sutvival that are unique
to each individual's circumstance and, by any measure, quite ingenious.

Select ion Inc.

Imagine what harnessing the evolutionary process within a computer might
do. It could provide a means for addressing complex engineering problems-
ones involving chaotic disturbances, randomness, and complex nonlinear

dynamics-that our traditional algorithms have been unable to conquer.

Indeed, the field of evolutionary computation is one of the fastest growing

areas of computer science and engineering for just this reason; it is address-
ing many problems that were previously beyond reach, such as rapid design
of medicines, flexible solutions to supply-chain management problems, and
rapid analysis of battlefield tactics for defense. Potentially, the field may
fulfill the dream of artificial intelligence: a computer that can learn on its own
and become an expert in any chosen area.

0018~92351001'110.0002000 IEEE IEEESPECTRUM FEBRUARY 2000 26

In the most general terms, evolution
can b e described as a two-step iterative
process, consisting of random variation
followed by selection. T h e link between
this description of evolution and the opti-
mizing algorithms that are the hallmark
of evolutionary computation is concep-
tually simple.

Just as natural evolution starts from a n

[rl Evolution copes with pro-
blems in ways that might
never occur to people, who
tend to thinklinearly Witness
the leafy sea dragon. whose
limbs and back take on t h e
form of the surrounding vege-
tation, concealing it from
predators.

(Source: A Natural Selection:
Marvels and Oddities of the
Natural World, R. Morecroft.
Simon and Schuster. 1993)

initial population of creatures, the algo-
rithmic approach begins by selectingan ini-
tial set of contending solutions for a par-
ticular problem. The set may be chosen
by generating solutions randomly or by uti-
lizing any available knowledge about the
problem.

These "parent" solutions then generate
"offsprinc by a preselected means of ran-

[21 An evolutionary algorithm begins by initializing a population of candidate solutions to
a problem. New solutions are then created by randomly varying those of the initial popu-
lation. All solutions are measured with respect to how well they address the task. Finally,
a selection criterion is applied to weed out those that are below par. The process is iter-
ated using the selected ret of solutions until a specific criterion is met.

2 8

dom variation. The resultant solutions are
evaluated for their effectiveness-their "fit-
ness'-and undergo selection. Just as nature
imposes the rule of "sumival of the fittest,"
those solutions that are the least fit are
removed from further consideration, and
the process is repeated over successive gen-
erations [Fig. 21

THE ASSUMPTION PROBLEM
To be useful, traditional algorithms for

discovering the most appropriate solu-
tions-optimization algorithms-require
that their users make many assumptions
about how to evaluate the fitness of a solu-
tion. (These traditional means of evaluation
go by many names: the fitness or cost func-
tion, the response surface, or, in engineer-
ing, the performance index.) For example,
the so-called linear programming algorithms
demand that the cost functions also be lin-
ear--a sum of weighted individual cost
terms. Another traditional approach-gra-
dient-based search, in which the point of
zero gradient, hopefully, the maxima o r
minima, is sought-requires a smooth, dif-
ferentiable cost function; it is unable to deal
with sudden, discontinuous change.

But evolutionary algorithms require no
such assumptions. Fundamentally, the per-
formance index need only be able to rank
two competing solutions; that is, it must
determine that one solution is, in some way,
better than another. This makes a broad
range of problems that are outside the range
of conventional engineering amenable to
the evolutionary approach. In short, evo-
lutionary algorithms can often resolve prob-
lems that do not yield to common numer-
ical techniques.

In the real world, an evolutionary ap-
proach to solving engineering problems
offers considerable advantages. One such
advantage is adaptability to changing sit-
uations. For instance, suppose a manager
must find the best schedule for operating
a factory Doubtless, there will be many
constraints: availability of personnel, the
number of machines, the time required to
change machine settings, and so forth. Even
i f the manager could find an optimum
schedule that would be most profitable, he
or she would still need to consider that
machines may break down and personnel
may not arrive at work on time, In daily life,
the problem facedat any moment may have
diverged significantly from the problem
anticipated originally.

Unfortunately, in many traditional opti-
mization procedures, the calculation must
be restarted from the beginning if any vari-
able in the problem changes. This is com-
putationally expensive. With an evolution-
ary algorithm, on the other hand, the
current population selves as a memoir of
stored knowledge that can be applied on
the fly to a dynamic environment. Re-
starting from scratch is not necessary.

IEEE SPECTRUM FEBRUARY 2000

Another advantage of an evolutionary
approach to problem solving comes in being
able to generate good enough solutions
quickly enough for them to be of use. This
ability is perhaps best illustrated by the clas-
sic traveling salesman problem, to wit,
"Suppose a salesman must visit clients in dif-
ferent cities, and then return home. What
is the shortest tour through those cities, vis-
iting each one once and only once?"

This problem is simple to state,. .but dif-
ficult to solve. It belongs to the class of
problems referred to as NP-hard, where NP
stands for nondeterministic polynomial. For
such problems, no known algorithms are
able to generate the best answer in an
amount of time that grows only as a poly-
nomial function of the number of elements
in the problem.

In fact, the number of possible tours in
any traveling salesman problem increases as
a factorial function of the number of cities.
So for 100 cities, there are over 10'55 dif-
ferent possible paths through all the cities
one could try. Considering that there are
only an estimated 10'8 seconds in the his-
tory of the universe, simply applying brute
force to search all possible solutions to a
traveling salesman problem of even modest
size is doomed to fail.

Instead, consider an evolutionary ap-
proach to discovering a useful solution to
such a problem. The approach has four pre-
requisite steps:

Choosing the solution representation.
Devising a random variation operator.
Determining a rule for solution sumival.
Initializing the population.

Once these are taken, the evolutionary algo-
rithm will start to generate solutions, and
will continue to generate better ones as time

[1 6 4 2 3 5 1

passes. Each of these steps is explained in
greater detail in the following paragraphs.

EVOLUTIONARY STEPS
To represent any possible solution within

the confines of a computer, a sttucture must
be defined for the data that will encode
evely possible solution that it might be
desirable to evaluate. Here, there is no sin-
gle best choice for the representation (this
is provable mathematically) so a little inge-
nuity is called for.

One potential data representation for the
traveling salesman problem is to identify
each different possibility in a permutation.
To simplify, if there were six cities (includ-
ing the salesman's home base), then one pos-
sible solution might he [I 2 3 4 5 61. which
would indicate an order of progression.
(Note that, as this problem requires a round
trip-that is, a closed loop-the first ele-
ment in the series is also the last. Also note
that, since this is a loop, it does not matter
which city the salesman actually starts
from.) Any permutation of these cities
would be another more or less desirable
solution to the problem.

Suppose that this representation is cho-
sen. Then the cost function, that is, the
means to evaluate any candidate solution,
must also be determined. Here the task is
straightforward: travel as short a distance as
possible. So the "cost" of any solution can
he made equal to the distance of the tour,
with shorter tours being favored over longer
ones. Of course, things could be made more
complicated, incorporating additional as-
pects of real-world problems such as mini-
mizing the traveling required during peak-
traffic hours or requiring that certain
customers be visited, say, in the afternoon

-[1 2 3 4 3 5 1

Parent tour Offspring tour 131 The traveling sales-
man problem is: find
the sho~test mute for
visiting all the cities
selected. With six cities
[l 2 3 4 5 61, a single-
parent operator could
create an offspring
solution by inverting
the visiting order
between two random-
ly chosen points [top].

With a two.parent
operator. two tour5
could be split at some
random point and the
pieces joined to create
an offspring [bottom].
The tour here, though,
is incomplete and addi-
tional ruler are needed
to repair it or to pre-
vent it from occuring.

3r only after other customers are visited. If
io, evaluating candidate solutions might
become much more complex. Complexity
only makes the application of an evolu-
tionaly algorithm more pertinent, because
it rapidly removes the problem from the
domain of most traditional optimization
techniques. For the sake of this example, let
the simple total distance of the tour be the
measure of the quality of a solution.

The second step is to devise a random
variation operator (or operators) that can
be used to generate offspring solutions from
parent solutions. Many options exist. In
nature, there are two general forms of re pro^
duction: sexual and asexual. In sexual repro-
duction, two parents within a species ex-
change genetic material that is recombined
to form an offspring. Asexual reproduction
is essentially cloning, but mutations of var-
ious forms can creep into the genetic in for^
mation passed along from parent to off-
spring. These operators are worth modeling
in an evolutionaly algorithm.

Thinking even more broadly, why not
devise other variation schemes not found in
nature? Examples include recombining gen-
etic material from three or more parents and
allowing a democratic vote between the par-
ents involved in reproduction. There is vir-
tually no limit to the types of variation oper-
ators that can be devised, nor any reason to
be constrained by nature far inspiration.

The ultimate success of an evolutionaly
algorithm depends strongly on how well the
variation operator(s), the representation,
and the evaluation function are matched.
Different operators will vary in usefulness
with the situation. Just as with the repre-
sentation, there is no single best variation
operator for all problems (and this, too, is
provable mathematically).

Consider two possibilities for the travel-
ing salesman problem represented using per^
mutations. One choice is to use a single par-
ent and generate an offspring by randomly
choosing two positions along the parent and
inverting the list of cities in that segment
[Fig. 31. Another is to use two parents,
choose a random point along the permu-
tation, then take the first segment of cities
from the first parent and the subsequent seg-
ment of cities from the second parent.

The first operator looks a bit like asexual
reproduction, while the second looks some-
thing like sexual reproduction. But whereas
the first variation will always generate a legal
tour (each city visited once and only once),
the second variation might generate ille-
gal tours, because some offspring may con-
tain more than one copy of some cities and
no copies of others. That does not Nk out
using semal reproduction, it merely dictates
the inclusion of additional operations to
"repaii'such Solutions so that they can be
fixed before they are evaluated. The rem-
edy might be to locate any city that is rep-

29 FOGEL I WHAT IS EVOLUTIONARY COMPUTATION?

Generation 1
I '

0 20 40 60 80 100
Unit distance, x

Generatio 500

0 20 40 60 80 100
Unit distance, x

[41 A simple iterative evolutionary algorithm war used to solve a
lmitytravelingsalesman pmblem.Atthestart,the reseanherselected
100 possible solutions, each of which was used to generate one off-
spring by means of inversion [Fig. 31, yielding a total of 200 solutions.

The best 100 (in terms of shortest mute) were selected, with the tap
solution from this f i m generation shown at far 1eft.The best solutions
after 500,lOW. and 4000 iterations indicate the progress made as the
process was repeated.

resented more than once in one solution,
then replace that city with one not repre-
sented at all. Once this is done for each
duplicated city, the offspring will have been
repaired and become a viable contending
solution. Many variation operaton could be
considered for the traveling salesman prob-
lem but, for illustration, the inversion oper-
ator described above will be used here.

The third step is determining a rule for

chosen completely at random from the
space of all possible solutions. In the case of
the traveling salesman problem here, that
would mean randomly generating a number
of permutations of integers, each permuta-
tion representing one possible solution.

Alternatively, there may he some hints at
good solutions available-perhaps because
some other algorithm or prior knowledge
can be used to generate some reasonable

Granted, there are now many betteralgo-
rithms for solving the traveling salesman
problem than the above evolutionary pro-
cedure, since mathematicians have already
spent much time and effort trying to solve
it. But all these other techniques rely on
some specific knowledge about the prob-
lem to improve their performance. They
sacrifice generality in order to gain perfor-
mance. Just like Deep Blue, the worldcham-

selecting which solutions will survive to
become parents of the next generation. As
with variation, many forms of selection can
be considered. One simple rule is survival
of the fittest: only the handful of very best
solutions in the population is retained while
all the othen are killed off, so to speak. An
alternative is to use a sort of tournament
amroach. where randomly oaired solutions

head start-which can be incorporated in
the initial population. If those solutions
prove worthwhile, they will survive and pro^
duce new variants; if they are false leads,
then they will perish along with other,
weaker solutions. For the example here, sup-
pose the initial population is chosen com-
pletely at random.

A tvoical run of an evolutionarv alzo-

pion chess program, they shine in their nar-
row domain of application, but do poorly
outside that domain. Imagine Deep Blue
playing a game of checkers it couldn't make
even the first move.

The key point is that, while it is possible
to incorporate any problem~specific knowl-
edge available and thereby take advantage
of it when using evolutionam algorithms. it

times win because they get a lucky draw in
the tournament, weaker solutions in a pop^
dation sometimes survive a few generations
under this format. This can he a plus in com-
plex problems, where it may he easier to
find new improved solutions by making
variations of weaker ones than to do SO by
relying only on the very best. The possi-
bilities abound, but any rule that generally
favon better solutions over weaker solutions
for suwival is reasonable. For simplicity, only
the most basic approach-survival of the
fittest-will be considered here.

GENESIS

uted at random but in a uniform manner, has
the results shown in Fig. 4. The improve-
ment at successive stages in the evolution
of the tours is evident (The program for
this example, written in Matlab, is avail-
able at wwwmatural-selection.com under
the publications section.)

The evolutionary algorithm has searched
the space of possible toun and has discov-
eredavery goodone. While it is probably
not the perfect answer, it is of high qual-
ity. In all, only 400 000-or one out of
every IO'So-possible solutions were
examined, an infinitesimally small frac-
tion of the whole. This is in line with the

tionary algorithms can tackle an enormously
broad range of problems.

IN THE FIELD
Evolutionary algorithms are already

being used to solve a wide variety of real-
world problems that pose significant chal-
lenges. One such problem involves the dis-
covery of new drugs. In the case of docking
a small molecule of a potential drug (called
a 1ija.d. meaning"something that has to be
bound") into a target protein's binding site,
the result depends in large part on the three-
dimensional shapes of both elements. It is
analogous to a lock and kev iust as onlv the _ ,

The final step is selecting the initial pop-
dation. I f nothing is known about how to
solve the problem, then solutions can be

30

operating credo of evolutionary practition-
en : "Solutions should be good enough and
generated fast enough to he useful."

right-shaped key will open a particularlock,
so only an appropriately shaped ligand will
he able to bind to the target protein.

IEEE SPECTRUM FEBRUARY 2000

http://wwwmatural-selection.com

Generation 4000 Generation 1WO

0 20 40 60 80 100 0 20 40 60 80 100
Unit distance, x Unit distance, x

Finding that ligand is extremely difficult.
Not only are there tens of thousands of can-
didates, hut each one has many bonds that
can be rotated into many different positions.
Essentially, every ligand has infinitely many
shapes. It is certainly m e that many of these
possible conformations are extremely un-
likely owing to the physical and chemical
properties of the molecules. Nevertheless,
the number of possible profiles that each
ligand can present is often enormous. This
makes predicting the best conformation of
a ligand as it binds to a target protein quite
challenging.

In a study published in Cbanirtry &Biology,
researchers at Agouron Pharmaceuticals Inc.
indicated how an evolutionary algorithm
could he used for predicting the manner in
which a ligand would dock into HIV- I pro-
tease as a potential drug against AIDS. The
task was to find the most energetically favor-
able conformation for the ligand when it
attached to the binding site of the protein.
Several factors were believed to be imDor-
tant, including:

The steric (three-dimensional) fit of the
ligand, bared on how well it complements
the surface structure of the binding site on
the protein.

Electrostatic interactions between atoms.
Van der Waal's forces, which dictate essen~

tially that two atoms cannot he in one and
the same place.
In light of these criteria, any potential con-
formation of a ligand can he scored in terms
of how well it hinds to the target protein.

An evolutionary algorithm was devised
to operate on a population of over 1000 dif-
ferent potential conformations of a candi-
date ligand, with variation randomly alter-
ing the rotation angles of the ligand, and
selection sorting out which shapes appeared
to be more energetically favorable than o t h ~

FOGEL I WHAT IS EVOLUTIONARY COMPUTATION?

ers. Figure 5 shows a successful evolution of
the ligand, named A G 1343, docking into
HIV-1 protease after completion of the evo-
lutionaly algorithm and after post-process-
ing by a gradient minimization on each
rotation angle, Comparing it to the experi-
mentally determined crystal structure ind i~
cates that there is very little discrepancy
between the prcdicted conformation de-
rived from the evolutionary algorithm and
the actual ohsewation gleaned from nature.
In summary, the experiments give indepen-
dent verification that the evolutionary algo-
rithm did indeed find the correct answer.

This application is importani because it

[51 To test i l l applicability to drug
design, an evolutionary algorithm
war wed to select candidate mol-
ecules,or ligands, thatwoulddlxk
tothereceptorsiteofanHIV-1 p m
tease protein [shown, far left top,
asa biochemist's ribbon diagram].
The best 150 out of 1000 possible
solutions in the 2nd generation
lookmessy[nearleft,topl. Butthe
algorithm maker progress in the
70th [far left, middle]. 92nd [near
left, middle]. and 149th [far left,
bottom1 generations.

The best structure obtained
[green, near left, bottom 1 closely
matches one found experimentally
[white]. indicating the usefulness
of evolutionary techniques.

(Images from "Molecular recog-
nition of the inhibitor AG-1343
by HIV-1 protease: Conformation-
ally flexible docking by evolu-
tionary programming." by Daniel
K. Gehlhaar e t al., Chemistry &
Biology, vol. 2, 1995.)

saves time and labor, both of which are typ-
ically in short supply. When a pharmaceu-
tical company targets a protein, there are
many more potential ligands to consider
than could be examined enumeratively. Each
possible ligand may have several rotatable
bonds, offering a multidimensional opti-
mization problem of finding the hest over-
a11 conformation. Rathcr than trying to look
at each rotation individually, an evolution-
ary algorithm can quickly discover which
ligands best fit the target protein's binding
site and therefore have potential as candi-
date drugs. Chemists can then focus their
attention on these candidates. The result

31

161 In a recent game of
checkers played on-line,
DavidllOl'r mover were
rewetly determined by an
evolved neural network.
whereas Deceplicon12345
was a human competitor
with an expen rating.

At the point in the
game shown. the neural
network. playing white,
has just earneda king and
the human expert has
acknowledged the move
by typing "gm," meaning

is an improved, more cost-effective proce-
dure for screening drug leads.

Other real applications of evolutionary
algorithms are being made in scheduling,
supply-chain management, and medical
diagnosis. They may even be used as the
basis for combat simulations to train mili-

and I are poor players). Aher 100 genera-
tions, the best-evolved network played
against people a t the Microsoft Network
Gaming Zone Web site (ww.zone.cam)
and, based on the number of games played
and the network's performance, earned a
"Class A" ratinz-ne level below the des-

tary personnel; an evolutionary algorithm
can serve as an interactive adversary that
learns and adapts its tactics as the strategic
situation changes. Moreover, evolution i s
being used as a principle for creating new
hardware designs, in terms of both physical
devices and electronic circuits.

In the longer run, evolutionary algo-
rithms may play a pivotal role in devising
truly intelligent machines--computers that
can learn on their own. The real challenge
i s not so much to make a computer that can
compete with people; in many narrowly
focused applications, such as games, this is
easily accomolished bv translating human

ignation of "expert" following the United
States Chess Federation rating system. Of
course, opponents were not told that they
were playing against a program, nor did any
of them guess that their rival was a program.
In fact, some people praised the apparent
ingenuity of their competitor [Fig. 61.

The crucial achievement of this work is
that the neural networks did not assess their
position by using human expertise-piece
mobility, control of the center of the board,
having a path that can earn a king, or any
other sophisticated technique a human
checkers player would use. Instead, they
used only the actual Dositions of the Dieces

ers Experiments are continuing in an effort
to achieve an expert-level rating, which
would place the evolved strategy in the top
1 percent of al l players who have registered
a t the Internet gaming site.

The ability for a computer to gain pro-
ficiency at a game of skill such as checkers
simply by teaching itself opens up a far
greater possibility: having computers learn
about other facets of the real world without
relying on people to program in al l the req-
uisite knowledge. As the cost of computing
keeps declining, the amenability of evolu-
tionary algorithms to solving real-world
problems wil l soar. This i s particularly so
because of'the parallel nature of evolution-

ary approaches. With natural evolution,
individuals are always being evaluated in
parallel by their environment. So by rely-
ing on a cluster of computers (a so-called
"pile of PCS"), a practitioner can take less
time to solve difficult problems; evaluate
individual solutions in parallel rather than
in series; and have them migrate from com-
puter to computer. The v e y large popula-
tions this protocol allows yield better solu-
tions faster than do small ones.

The products that will emerge from these
massively parallel designs remain a matter
of speculation. Some even foresee the use
of evolutionay algorithms to design surro-
gate artificial brains that wi l l supplant
human cognition, as did Ray Kurzweil in
Thr&r ajSpintual Computing (Viking, 1999).
Whether or not this conjecture becomes
reality, there i s no doubt that evolutionaly
algorithms will become a mainstay of prob-
lem solving in the coming yean. e

TO PROBE FURTHER
An introduction to the ar t of designing and
applying evolutionary algorithms to real-
world problems is provided in How to Solve
it: Modern Heuristics byzbigniew Michalewicz
and David B. Fogel (Springer, 2000). The book
also details Classic optimization techniques.

Recent advances in evolutionary computation
are found in many conferences and symposia
internationally. including the annual Congress
on Evolutionary Computation, co-sponsored by
the IEEE Neural Networks Council. the IEE, and
the Evolutionary Programming Society. Infor-
mation on the upcoming conference can be
found a t ha~Jlpcgipseca.cee.hw.ac.u~~e~O~l

"Evolution, neural networks, games, and intel-
ligence" are discussed in the paper of that title
by Kumar Chellapilla and David 8. Fogel in the
Proceedings of the IEEE, Vol. 87. no. 9,
pp. 1471-96, September, 1999.

The relationship between evolutionary algo-
rithmrand machine intelligence is explored in
Evolutionary Computation: Toward a New
Philosophy of Machine intelligence by D.B.
Fogel (2nd edition, IEEE Press, Piscataway, N.J.,
2000). Many of the foundational papers in the
field. as far back as 1956. are reprinted In
Evolutionary Computation: The Fossil Record
(D.B. Fogel, editor, IEEE Press, 1998).

ABOUT THE AUTHOR
David B. Fogel is executive vice president and
chief scientist of Natural Selection Inc., located
in La Joila, Calif. He i s the founding editor-
in-chief of the IEEE Transactions on EYO~U-
tlanary Computation and the author of more
than 180 publications In the field, including
four books. He was elected a Fellow of the
IEEE in 1999.

Spectrum editor: Richard Camerford

IEEE SPECTRUM FEBRUARY 2000

