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Abstract We investigate genetic algorithms where more than two parents are involved in the 
recombination operation. We introduce two multi-parent recombination mechanisms: gene 
scanning and diagonal crossover that generalize uniform, respecively n-point crossovers. In this 
paper we concentrate on the gene scanning mechanism and we perform extensive tests to 
observe the effect of different numbers of parents on the performance of the GA. We consider 
different problem types, such as numerical optimization, constrained optimization (TSP) and 
constraint satisfaction (graph coloring). The experiments show that 2-parent recombination is 
inferior on the classical DeJong functions. For the other problems the results are not conclusive, 
in some cases 2 parents are optimal, while in some others more parents are better. 

1 Introduction 

In nature, new individuals are always created through either asexual (one parent) or 
sexual (two parents) reproduction. People hardly ever wonder why the number of  
parents is restricted to one or two. For a mathematician or computer  scientist, 
however, this restriction should not be self-evident. Still, almost no GA publications 
report on recombination mechanisms based on more than two parents, we are aware 
of  only two, namely [Mtih89, Ser92], and in the context of  Evolution Strategies that 
of  [B~ic93]. Here we examine whether multi-parent recombination should be avoided 
for practical reasons or it offers advantages and is just overlooked. 

Aside from this motivation we have another argument for investigating multi- 
parent recombination. Namely, one would expect that by biasing the recombination 
operator the performance of  the GA would improve. A problem indepedent way to 
incorporate a bias into the recombination operator can be based on selecting n parents 
and applying some limited statistical analysis on the allele distribution within the 
parents. A very slight bias is introduced when choosing an allele from the parents 
uniform randomly. Looking at the number of  occurrences of  a certain allele at a 
position and choosing the most common allele introduces a stronger bias. Inheriting 
the number of  alleles proportional to the fitness-value of  the parents is a more 
sophisticated, but still problem-independent mechanism. In the next section we give 
detailed descriptions of  a number of  multi-parent recombination operators. In section 
3 we present test results on 6 different problems. An evaluation of  the test results is 
presented in section 4. Open issues and future work are discussed in section 5. 

2 Multi-parent genetic operators 

A multi-parent operator uses two or more parents to generate children. In this section 
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we define two multi-parent recombination mechanisms: gene scanning and diagonal 
crossover that generalize uniform, respecively n-point crossovers. In this paper we 
concentrate on the gene scanning mechanism, we describe and investigate five 
versions of scanning that differ in the type of bias applied when creating children. 

2.1 Gene scanning techniques 

Gene scanning, as introduced in [Eib91], is a general mechanism that produces one 
child from n > 1 parents in the following way. First, a number of markers are 
assigned, one for each of the parents and one for the child. The child-marker traverses 
all the positions in the child from left to right, one at a time. For each position, the 
markers for the parents are updated so that when choosing a value for the gene 
currently marked in the child, the parent markers indicate the choices. This algorithm 
is shown in pseudo-code in figure 2.1. 

Initialize parent markers 

FOR child ~arker = 1 TO CHROMOSOME LENGTH DO 
updat~ parent markers 

child.allele[childmarker] 

END_FOR 

= choose from values indicated by 
the parent markers 

Figure 2.1. The general gene scanning mechanism 

The two characterizing features of all gene scanning procedures are the (parent) 
marker update mechanism (line 4) and the mechanism that chooses the value to be 
inherited by the child (line 6). By changing this latter mechanism we have defined 
three specific scanning techniques, namely: uniform, occurrence-based and fitness- 
based scanning. The marker update mechanism is discussed at the end of this section. 

Uniform scanning The classical uniform crossover traverses two parents and the two 
children from left to right, and for each position in child 1 chooses randomly whether 
to inherit from parent 1 or parent 2 (the second child is created by reversing the 
decisions). U-Scan uses a mechanism with is basically the same, the difference is that 
only one child is created and instead of only 2 parents any number of parents can be 
used. Each parent has an equal chance of contributing an allele to be inherited by the 
child, which means that the probability to inherit an allele from parent i, P(i), and the 
expected number of genes to inherit from parent i, E(i), are defined as follows: 

1 
P(i) :=  , E(i) :-- P(i) x CHROMOSOME_ LENGTH 

number of  parents 

Occurrence-based scanning Occurrence-based scanning (OB-Scan) is based on the 
premise that the value which occurs most often in a particular position in the parents 
(which are selected based on their fitness) is probably the best possible value to 
choose. Choosing one of the marked values is thus done by applying a majority 
function. If no value occurs more than any other one (the majority function is 
undecided), then the value which is encountered first is chosen in our implementation 
Another way of doing this would be to break ties randomly, proportionally to the 
number of occurrences. Note, that the distrubution used should not be uniform, since 
it that case this randomized occurrence-based scanning would yield uniform scanning. 
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Fitness-based scanning Fitness-based scanning (FB-Scan) uses roulette wheel 
selection when deciding from which parent an allele will be inherited. This means that 
if parent i has a fitness value of f(i) the probability that a value for a position in the 
child is inherited from this parent is: 

f ( i )  P(i)  : -  X~, 
f ( i )  

Using this mechanism the child will inherit more alleles from fitter parents, since the 
number of alleles inherited from parent i is E(i) = P(i) • CHROMOSOME_LENGTH. 

Adapting scanning to different representation types It is possible to define 
scanning procedures for different representation types by changing the marker update 
mechanism. For representations where all positions are independent (no epistasis), the 
marker update mechanism is simple, the parent markers are all initialized to the first 
position in each of the parents, and each step the markers are all increased by one 
(thus traversing the parents from left to right). Problems where epistasis occurs may 
need a more sophisticated marker update mechanism. In particular, for other order- 
based representation one needs a marker update mechanism which ensures that no 
value is added to the child twice. This can be obtained by increasing the marker in 
each parent until it marks a value which has not been added to the child yet. An 
example of how this marker update mechanism works is shown in figure 2.2. 

Parent 1 
Parent 2 
Parent 3 3 8 5 ~  
Parent4 3 2 7 ~  

Child 1 2 - -  

1211117161318141 
1211815161417111 
1131217151418161 
1213~--------------:----~ 

H - H ~ H H ~ H  
~ H H ~ N H H  
HNsmmHHm 

H[]~iiiiiiiiiiiiiiii~iiiiiiii~iiiii~ 

N H ~ H N ~  

~ N ~ N m ~ W H  
zNmmN~m~ 

Parent 11317121411 116151 
Parent 2 
Parent 3 
Parent 4 

Child 

1317121418116151 
1211117161318141 
1213181161417111 
113121715141816 I 
12131714181]1~a 

1317121418111151 
1211117161318141 
1213181161417111 
1113121711418161 
121317141811151m 

rrr-ffrrrm    
  ]-frrllZrrm 
111312171514181m 
12131714181115161 

Figure 2.2. OB-Scan on order-based representation 

2.2 Adjacency-based crossover 

The adjacency-based crossover (ABC) is a special case of scanning, designed for 
order-based representations where relative positioning of values is important, e.g. the 
TSP. The main differences between the scanning procedures described above and 
ABC are the way in which the first value is selected and the marker update 
mechanism. The first gene value in the child is always inherited from the first gene 
value in the first parent. The marker update mechanism is as follows: for each parent 
its marker is set to the first successor of the previously selected value which does not 
occur in the child yet. (For this mechanism each individual is seen as a cycle), 

A crossover similar to ABC was proposed in [Whi91 ]. Whitley's crossover differs 
from ABC in the number of parents applied (Whitley uses 2 parents) and the choice 
of a value to inherit when all the immediate successors to a city have already been 
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inherited by the child. For example, suppose that the successors to city D are cities A, 
E, F and H (in parents 1, 2, 3 and 4 respectively), and furthermore that these four 
cities have already been incorporated into the child. Whitley's crossover would 
randomly choose a city not already included in the child. ABC will check the 
successors of city A in parent 1, city E in parent 2, city F in parent 3 and city H in 
parent 4 (and if any of these have already been included in the child, their successors), 
the city to be added to the child will be chosen from among these successors. 
We define two types of ABC, namely occurrence-based (OB-ABC) and fitness-based 
(FB-ABC) similarily to occurrence-based and fitness-based scanning. The difference 
is the marker update mechanism. OB-ABC is shown in figure 2.3. 

Parent lira71214181116151 ~ 1317121418116151 
Parent 212151117161318141 ~ 121511171613181~1 
Parent312131815161417111 ~ 121318BI61417ll1 
P a r e n t 4 ~  ~ 11131217151418111 

113n~ Child ~ 

Parentll31712EISIll6151 ~ 131712181116151 1317121418111m51 
P a r e n t 2 [ " ~  121511i61318141 12151117m318141 121511171B318141 
P a r e n t 3 [ ' ~  23 5 ~  121318151m417111 23 8 ~  
Parent4111312ll51418161 ~ 1113121715ml8161 

C h i l d ~  ~ 131811121517141m 13181112151714161 

Figure 2.3. OB-ABC 

2.3 Diagonal multi-parent crossover 

Diagonal crossover is a generalization of n-point crossover, which creates 2 children 
from 2 parents. Diagonal crossover uses n z 1 crossover points and creates n+l 
children from n+l parents as the following figure illustrates. 

Parent 1 - Child 1 ~iiiiii!ii~i!i~iiiiiiiiiiiiiiiiiiiiiii~iiiiiiiiiii~ii~iiiiiiiiii] I 
Parent 2 [)!i!!~ii~!ii~i~iiii~ii!~i~ii~i~i~ii~}~ii|i~i~ii~i~i~iii~i~iiiiiiiiiii;ii~ii!i!~iiiiii~i~1ii~Iiii}!i~}i~i~i!!~i~!i~i!!~i~ ! Child 2 [iiiiliiiiiiili:.iiiiiiiiiiii~i~iiiiii~ili~iiiiiiiiiiiill 
Parent3 I [ [ I Child3 [ [l[~E~j~!!}ii!!ili~i!i!~iiiii[iiiii[!iiiiii!i I 

I I 

Figure 2A: The diagonal crossover operator for 3 parents. 

As mentioned before, in this paper we concentrate on scanning. We will report on the 
effect of the number of parents for diagonal crossover in forthcoming publications 

3 The experiments 

We decided to study multi-parent recombination within the framework of scanning by 
testing and comparing the three basic versions of scanning (uniform, occurrence- 
based and fitness-based) together with the scanning-like ABC which is tailored to 
routing problems. We were mainly interested in the following issues: 
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�9 Is scanning better than classical crossover? 
�9 Which version of scanning is the best? 
�9 What is the optimal number of parents? 
�9 Does a relation exist between the type of the problem and 

�9 the optimal version of scanning (as a refinement of the second question), 
�9 the optimal number of parents (as a refinement of the third question)? 

We have tested five numerical functions to be optimized and two 'real '  problems. For 
numerical optimization we have chosen four well-known DeJong functions (the 
formulas were taken from [Go189]) and a function from [Mic92] because these 
functions provide a test-bench with variously shaped functions. The first ' real '  
problem is the TSP because it is well known constrained optimization problem in the 
GA community and is important in practice. We use an instance concerning 30 cities 
from [Oli87] to keep running times down. For the second 'real '  problem we have 
chosen graph 3-coloring: the nodes of a graph must be colored using three colors so 
that no neighboring nodes have the same color. This is known to be a very tough 
constraint satisfaction problem. (Note that this problem is different from the graph 
coloring problem discussed in [DavL91].) We considered 'difficult, but solvable' 
graphs: graphs which can be colored with 3 colors, but for which solutions are 
difficult to construct [Che91]. In other papers we report on heuristic GAs that 
outperformed the applicable classical deterministic search methods, [Eib94a, Eib94b]. 

For the DeJong functions and the function from [Mic92] we applied the standard 
binary representation. For the TSP and graph coloring we used order-based 
representation, furthermore we tested graph coloring with a representation based on a 
ternary alphabet. As for the number of parents we tested every multi-parent version of 
our crossovers for any number of parents from 2 to 10. The results shown here were 
obtained by running the GA 100 or 200 times and calculating performance averages 
for each number of parents. We used the generational GA model with 100% crossover 
rate and 50% mutation rate (per individual, not per position). The maximum number 
of generations was set to 500 (with earlier termination if the optimum was reached). 

3.1 The test results 

We tested the performance of uniform, occurrence-based and fitness-based scanning 
on the DeJong functions F1, F2, F3 and F4 (all minimization problems). In section 4 
we compare the results with classical 1-point crossover. (The legend is the same for 
each graph.) 

] OB-Scan . . . . . .  FB-Scan ~ U - S c a n  ] 

14 

2 3 4 5 6 7 8 9 10 
Figure 3.1. The average nr. of generations 
needed to find the optimum for OB/FB/U- 

Scanning on F1 (chrom. length = 30) 

2 3 4 5 6 7 8. 9 10 
Figure 3.2. The best f-value after 500 

generations for OB/FB/U-Scanning on F2 
(chrom. length = 22) 
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~il~|~:ii!~'~ii!iiit 35 32.5128.5 I 27 2 6 1 3 2 . 5  30 I 27 [ 

Figure 3.7. Percentage of cases when a solution was found for graph coloring with 30 nodes 
(ternary alphabet, chrom, length = 30, population size = 100) 

When testing the TSP we found that the best 'traditional' order-based crossover was 
orderl, which we used to compare our results against. For TSP only occurrence-based 
scanning and ABC had an optimal number of parents higher than two, the other 
scanning techniques performed best with two parents, and only FB-ABC was able to 
outperform the orderl crossover. The results are summarized in the following figure 
showing the effectivity of the GA. 

I/iiii!iiii~~i!iiliiii . I . I . . . . .  I �9 liiiiii~i~!~i:!ii~i~iiii0i~iiit , 
iiiii~iiiilI!lii!~i~::iil~i;~iiJ 493.4 493.7 497.3 499.9 499.0 I 497.3 [ 500.7 I 
~!~d!l!!!l~litliiiliiii~!iii~ii 492.2 1500.3 494.5 493.4 497.7 498.3 ]495.1 ]500.7 I 
iiiiiiiii Ililt5o91i 486.6 ]484.8 477.4 475.6 478 474.9 i~i~i~iS~i~i1476.6 I 
iiiliiii~iiiiiiiiiiiili~ii~ii~i~ 458.7 [ 457.9 459.5 461.7 457.3 462.8 ] 463.6 ] 461.6 [ 
iii!!i}iii#iiii~ii}iiiiiiiiiiiiii~ii~i] 461.6 

Figure 3.8. The length of the best route after 500 generations 
(order based representation, chrom, length = 30, population size =100). 

4 Evaluation of the tests 

In this part we review the test results grouped around three main questions: 
advantages of scanning with respect to classical recombination mechanisms, different 
types of bias in scanning and the effect of different numbers of parents. 

4.1 Scanning and classical recombination 

Considering the five numerical optimization problems we have tested, we observed 
that in 4 out of the 5 cases (fitness-based) scanning outperformed 1-point crossover. 
On the DeJong functions it outperformed 1-point crossover by respectively, 42%, 
19%, 40% and 59%. On the function from [Mic92] fitness-based scanning was 1.3% 
worse than 1-point crossover. Let us remark that on the function F20B-Scan proved 
to be better than FB-Scan and outperformed 1-point crossover by as much as 70%. 

For the TSP we first tested the classical order based crossovers orderl,  order2, 
position, cycle, PMX and uox (provided by our test environment LibGA, [Cor93]) 
and observed that orderl outperformed the rest. Then we ran tests to compare 
different versions of scanning with orderl. Here, the fitness-based version of ABC (a 
multi-parent operator designed specifically for the TSP) turned out to be the best 
scanning mechanism, and was slightly (1.8%) better than orderl. 
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4.2 Different types of bias in scanning 

On 4 out of the 5 numerical optimization problems fitness-based scanning was 
superior to the uniform and occurrence-based versions. The exception was F2, where 
OB-Scan was better, even though on the other 4 functions it was the worst of the 
three. In section 5 we give a possible explanation for this. For graph coloring we 
found that choosing genes uniform randomly proved to be better than choosing 
fitness- or occurrence-based. On the TSP, performance for the uniform and fitness- 
based scanning was approximately the same, OB-Scan was inferior to both. As for the 
adjacency-based crossover operators, FB-ABC clearly outperformed OB-ABC. 

4.3 The effect of different number of parents 

The results on the DeJong functions show that the performance increases as the 
number of parents is raised above 2. The tests, however, provide no real insight into 
the optimal number of parents. For instance, the optimal number of  parents for 
fitness-based scanning was respectively, 9, 4, 6-10, 10 for F1, F2, F3 and F4. We also 
observed that the different versions of scanning show different behaviour, i.e. reach 
optimal performance at different numbers of parents. Nevertheless, on all of the 
DeJong functions we tested the optimal number was higher than 2. For the function 
from [Mic92] 2 parents proved to be optimal, although the difference in performance 
between different numbers of parents remained below 1%. This suggests that for this 
function the number of parents does not really matter. 

The TSP shows a somewhat similar picture. We have tested 5 multi-parent 
recombination mechanisms and each of them has shown little variance in 
performance for different numbers of parents. For three of them the results became 
worse (by at most 2.3%) when the number of parents was raised above 2; for the two 
occurrence-based recombination mechanisms the optimal number of parents was 10, 
respectively 9, but the gain with respect to 2 parents did not exceed 7.2%. For graph 
coloring the data clearly shows that 2 parents are superior. 

When increasing the number of parents extra costs are introduced. These costs 
occur due to the extra time needed to select additional parents and the time needed to 
identify the gene to be inherited. Gene inheritance costs are almost negligible on 
binary strings. In the worst case (e.g. order-based representation), the increase can be 
quadratic, for instance for OB-Scan. However, even in this case, the decrease in the 
number of generations may compensate the time increase per generation. 

5 Open  quest ions  and future  w o r k  

In spite of the 23.000 runs in total, we are aware of the limitations of the present 
investigation. Thus, instead of general conclusions we discuss some questions that 
can only be answered reliably if more knowledge is collected on the phenomenon of 
multi-parent reproduction. 

5.1 When is the optimal number of parents larger than 2? 

Using a greater number of parents, the child creation is biased based on a larger 
sample from the search space. If  a function has many (almost) optimal points 
separated by 'gaps '  of poor points then sampling might not help. The different good 
elements in a population may very well belong to the "gravity field' of different 
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solutions. Hence, the larger number of parents does not provide information about the 
s a m e  solution, and the generated child will most likely be somewhere in-between the 
(different) gravity fields of the parents, instead of getting closer to one of them. 
Hence, one might not expect improvement by increasing the number of parents for 
'hedgehog-like' functions. This was justified for FB-Scan and U-Scan on the function 
taken from [Mic92], and we expect similar results for the F5 DeJong function. 

If  there are relatively few (optimal) solutions, OB-Scan is expected to be the most 
effective (as was shown for F2), since in this case the fit parents close to different 
solutions differ on many bits, and the occurrence-based inheritance of genes is likely 
to produce children close to that solution which is close to many of the parents. 

Obviously, the number of parents which can be used in the recombination 
mechanism is limited by the number of individuals in the pool. The question is 
whether increasing the number of parents always improves the performance of the 
GA. Our experiments support two kinds of conclusions. In some cases, increasing the 
number of parents improves the performance, though the degree of improvement 
becomes smaller and smaller. This was observed for FB-Scan and U-Scan for F3, and 
roughly for all multi-parent crossovers for F1 and F4. In other cases, the performance 
improves up to a certain number of parents and decreases, or oscillates afterwards. 
This was observed for the OB-Scan for F2 and F3. 

The largest improvement when increasing the number of parents was achieved in 
the case of OB-Scan, independently from the problem. This is not surprising, as a 
larger sample provides more reliable information on strong gene patterns, and the 
two-parent OB-Scan in our implementation always reproduced the first parent. 

In most of the cases we experienced a much larger improvement when the number 
of parents was changed from 2 to 3 than in the successive steps. We do not have a 
sound explanation for this phenomenon, though from the practical point of view it 
would be very useful to know that it is not worth while to go beyond 3-4 parents. 

Another interesting question is whether the type of (the bias in) a crossover is the 
decisive factor with respect to the performance. In other words, if a 2-parent 
crossover is better than another crossover, does the same apply for the n-parent 
version for any n > 2 as well? (For the optimization problems we tested this was 
approximately true, with the exception of F2.) 

5.2 Other issues 

In our first experiments, we were interested whether the increase in the number of 
parents results in better performance. The optimal number of parents obviously 
depends on the length of the individuals and on the alphabet, or in general, on the size 
of the search space (in addition to its topology). A further investigation could aim at 
deciding the optimal number of parents in different stages of the GA, especially, in 
the case of premature convergence. By introducing incest prevention the performance 
of the multi-parent crossovers may improve. 

Another aspect which needs to be investigated is the number of children generated 
from a given number of parents. So far, we have only studied n-parents-l-child 
versions of scanning-like crossovers, whereas more children can be created easily. 

Looking at the performance as we have done here is the most common way in 
which to compare different genetic operators or genetic algorithms. Nevertheless, to 
get a better understanding of this novel phenomenon of multi-parent recombination 
we need a 'higher resolution' picture of the behaviour of our GAs. This can be 
obtained by a theoretical schema survival analysis, or monitoring extra features along 
the evolution, such as: 
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�9 uniformity within the population measured by the average Hamming distance of 
randomly chosen pairs of individuals; 

�9 power of sexual reproduction measured by the child fitness - parent fitness ratio. 
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