
Genetic algorithms with multi-parent recombination

A.E. Eiben, P-E. Rau6, Zs. Ruttkay

Artificial Intelligence Group
Dept. of Mathematics and Computer Science

Vrije Universiteit Amsterdam
De Boelelaan 1081a
1081HV Amsterdam

e-mail: {gusz, peraue, zsofi} @ cs.vu.nl

Abstract We investigate genetic algorithms where more than two parents are involved in the
recombination operation. We introduce two multi-parent recombination mechanisms: gene
scanning and diagonal crossover that generalize uniform, respecively n-point crossovers. In this
paper we concentrate on the gene scanning mechanism and we perform extensive tests to
observe the effect of different numbers of parents on the performance of the GA. We consider
different problem types, such as numerical optimization, constrained optimization (TSP) and
constraint satisfaction (graph coloring). The experiments show that 2-parent recombination is
inferior on the classical DeJong functions. For the other problems the results are not conclusive,
in some cases 2 parents are optimal, while in some others more parents are better.

1 Introduction

In nature, new individuals are always created through either asexual (one parent) or
sexual (two parents) reproduction. People hardly ever wonder why the number of
parents is restricted to one or two. For a mathematician or computer scientist,
however, this restriction should not be self-evident. Still, almost no GA publications
report on recombination mechanisms based on more than two parents, we are aware
of only two, namely [Mtih89, Ser92], and in the context of Evolution Strategies that
of [B~ic93]. Here we examine whether multi-parent recombination should be avoided
for practical reasons or it offers advantages and is just overlooked.

Aside from this motivation we have another argument for investigating multi-
parent recombination. Namely, one would expect that by biasing the recombination
operator the performance of the GA would improve. A problem indepedent way to
incorporate a bias into the recombination operator can be based on selecting n parents
and applying some limited statistical analysis on the allele distribution within the
parents. A very slight bias is introduced when choosing an allele from the parents
uniform randomly. Looking at the number of occurrences of a certain allele at a
position and choosing the most common allele introduces a stronger bias. Inheriting
the number of alleles proportional to the fitness-value of the parents is a more
sophisticated, but still problem-independent mechanism. In the next section we give
detailed descriptions of a number of multi-parent recombination operators. In section
3 we present test results on 6 different problems. An evaluation of the test results is
presented in section 4. Open issues and future work are discussed in section 5.

2 Multi-parent genetic operators

A multi-parent operator uses two or more parents to generate children. In this section

79

we define two multi-parent recombination mechanisms: gene scanning and diagonal
crossover that generalize uniform, respecively n-point crossovers. In this paper we
concentrate on the gene scanning mechanism, we describe and investigate five
versions of scanning that differ in the type of bias applied when creating children.

2.1 Gene scanning techniques

Gene scanning, as introduced in [Eib91], is a general mechanism that produces one
child from n > 1 parents in the following way. First, a number of markers are
assigned, one for each of the parents and one for the child. The child-marker traverses
all the positions in the child from left to right, one at a time. For each position, the
markers for the parents are updated so that when choosing a value for the gene
currently marked in the child, the parent markers indicate the choices. This algorithm
is shown in pseudo-code in figure 2.1.

Initialize parent markers

FOR child ~arker = 1 TO CHROMOSOME LENGTH DO
updat~ parent markers

child.allele[childmarker]

END_FOR

= choose from values indicated by
the parent markers

Figure 2.1. The general gene scanning mechanism

The two characterizing features of all gene scanning procedures are the (parent)
marker update mechanism (line 4) and the mechanism that chooses the value to be
inherited by the child (line 6). By changing this latter mechanism we have defined
three specific scanning techniques, namely: uniform, occurrence-based and fitness-
based scanning. The marker update mechanism is discussed at the end of this section.

Uniform scanning The classical uniform crossover traverses two parents and the two
children from left to right, and for each position in child 1 chooses randomly whether
to inherit from parent 1 or parent 2 (the second child is created by reversing the
decisions). U-Scan uses a mechanism with is basically the same, the difference is that
only one child is created and instead of only 2 parents any number of parents can be
used. Each parent has an equal chance of contributing an allele to be inherited by the
child, which means that the probability to inherit an allele from parent i, P(i), and the
expected number of genes to inherit from parent i, E(i), are defined as follows:

1
P(i) := , E(i) :-- P(i) x CHROMOSOME_ LENGTH

number of parents

Occurrence-based scanning Occurrence-based scanning (OB-Scan) is based on the
premise that the value which occurs most often in a particular position in the parents
(which are selected based on their fitness) is probably the best possible value to
choose. Choosing one of the marked values is thus done by applying a majority
function. If no value occurs more than any other one (the majority function is
undecided), then the value which is encountered first is chosen in our implementation
Another way of doing this would be to break ties randomly, proportionally to the
number of occurrences. Note, that the distrubution used should not be uniform, since
it that case this randomized occurrence-based scanning would yield uniform scanning.

80

Fitness-based scanning Fitness-based scanning (FB-Scan) uses roulette wheel
selection when deciding from which parent an allele will be inherited. This means that
if parent i has a fitness value of f(i) the probability that a value for a position in the
child is inherited from this parent is:

f (i) P(i) : - X~,
f (i)

Using this mechanism the child will inherit more alleles from fitter parents, since the
number of alleles inherited from parent i is E(i) = P(i) • CHROMOSOME_LENGTH.

Adapting scanning to different representation types It is possible to define
scanning procedures for different representation types by changing the marker update
mechanism. For representations where all positions are independent (no epistasis), the
marker update mechanism is simple, the parent markers are all initialized to the first
position in each of the parents, and each step the markers are all increased by one
(thus traversing the parents from left to right). Problems where epistasis occurs may
need a more sophisticated marker update mechanism. In particular, for other order-
based representation one needs a marker update mechanism which ensures that no
value is added to the child twice. This can be obtained by increasing the marker in
each parent until it marks a value which has not been added to the child yet. An
example of how this marker update mechanism works is shown in figure 2.2.

Parent 1
Parent 2
Parent 3 3 8 5 ~
Parent4 3 2 7 ~

Child 1 2 - -

1211117161318141
1211815161417111
1131217151418161
1213~--------------:----~

H - H ~ H H ~ H
~ H H ~ N H H
HNsmmHHm

H[]~iiiiiiiiiiiiiiii~iiiiiiii~iiiii~

N H ~ H N ~

~ N ~ N m ~ W H
zNmmN~m~

Parent 11317121411 116151
Parent 2
Parent 3
Parent 4

Child

1317121418116151
1211117161318141
1213181161417111
113121715141816 I
12131714181]1~a

1317121418111151
1211117161318141
1213181161417111
1113121711418161
121317141811151m

rrr-ffrrrm
]-frrllZrrm
111312171514181m
12131714181115161

Figure 2.2. OB-Scan on order-based representation

2.2 Adjacency-based crossover

The adjacency-based crossover (ABC) is a special case of scanning, designed for
order-based representations where relative positioning of values is important, e.g. the
TSP. The main differences between the scanning procedures described above and
ABC are the way in which the first value is selected and the marker update
mechanism. The first gene value in the child is always inherited from the first gene
value in the first parent. The marker update mechanism is as follows: for each parent
its marker is set to the first successor of the previously selected value which does not
occur in the child yet. (For this mechanism each individual is seen as a cycle),

A crossover similar to ABC was proposed in [Whi91]. Whitley's crossover differs
from ABC in the number of parents applied (Whitley uses 2 parents) and the choice
of a value to inherit when all the immediate successors to a city have already been

81

inherited by the child. For example, suppose that the successors to city D are cities A,
E, F and H (in parents 1, 2, 3 and 4 respectively), and furthermore that these four
cities have already been incorporated into the child. Whitley's crossover would
randomly choose a city not already included in the child. ABC will check the
successors of city A in parent 1, city E in parent 2, city F in parent 3 and city H in
parent 4 (and if any of these have already been included in the child, their successors),
the city to be added to the child will be chosen from among these successors.
We define two types of ABC, namely occurrence-based (OB-ABC) and fitness-based
(FB-ABC) similarily to occurrence-based and fitness-based scanning. The difference
is the marker update mechanism. OB-ABC is shown in figure 2.3.

Parent lira71214181116151 ~ 1317121418116151
Parent 212151117161318141 ~ 121511171613181~1
Parent312131815161417111 ~ 121318BI61417ll1
P a r e n t 4 ~ ~ 11131217151418111

113n~ Child ~

Parentll31712EISIll6151 ~ 131712181116151 1317121418111m51
P a r e n t 2 [" ~ 121511i61318141 12151117m318141 121511171B318141
P a r e n t 3 [' ~ 23 5 ~ 121318151m417111 23 8 ~
Parent4111312ll51418161 ~ 1113121715ml8161

C h i l d ~ ~ 131811121517141m 13181112151714161

Figure 2.3. OB-ABC

2.3 Diagonal multi-parent crossover

Diagonal crossover is a generalization of n-point crossover, which creates 2 children
from 2 parents. Diagonal crossover uses n z 1 crossover points and creates n+l
children from n+l parents as the following figure illustrates.

Parent 1 - Child 1 ~iiiiii!ii~i!i~iiiiiiiiiiiiiiiiiiiiiii~iiiiiiiiiii~ii~iiiiiiiiii] I
Parent 2 [)!i!!~ii~!ii~i~iiii~ii!~i~ii~i~i~ii~}~ii|i~i~ii~i~i~iii~i~iiiiiiiiiii;ii~ii!i!~iiiiii~i~1ii~Iiii}!i~}i~i~i!!~i~!i~i!!~i~ ! Child 2 [iiiiliiiiiiili:.iiiiiiiiiiii~i~iiiiii~ili~iiiiiiiiiiiill
Parent3 I [[I Child3 [[l[~E~j~!!}ii!!ili~i!i!~iiiii[iiiii[!iiiiii!i I

I I

Figure 2A: The diagonal crossover operator for 3 parents.

As mentioned before, in this paper we concentrate on scanning. We will report on the
effect of the number of parents for diagonal crossover in forthcoming publications

3 The experiments

We decided to study multi-parent recombination within the framework of scanning by
testing and comparing the three basic versions of scanning (uniform, occurrence-
based and fitness-based) together with the scanning-like ABC which is tailored to
routing problems. We were mainly interested in the following issues:

82

�9 Is scanning better than classical crossover?
�9 Which version of scanning is the best?
�9 What is the optimal number of parents?
�9 Does a relation exist between the type of the problem and

�9 the optimal version of scanning (as a refinement of the second question),
�9 the optimal number of parents (as a refinement of the third question)?

We have tested five numerical functions to be optimized and two 'real ' problems. For
numerical optimization we have chosen four well-known DeJong functions (the
formulas were taken from [Go189]) and a function from [Mic92] because these
functions provide a test-bench with variously shaped functions. The first ' real '
problem is the TSP because it is well known constrained optimization problem in the
GA community and is important in practice. We use an instance concerning 30 cities
from [Oli87] to keep running times down. For the second 'real ' problem we have
chosen graph 3-coloring: the nodes of a graph must be colored using three colors so
that no neighboring nodes have the same color. This is known to be a very tough
constraint satisfaction problem. (Note that this problem is different from the graph
coloring problem discussed in [DavL91].) We considered 'difficult, but solvable'
graphs: graphs which can be colored with 3 colors, but for which solutions are
difficult to construct [Che91]. In other papers we report on heuristic GAs that
outperformed the applicable classical deterministic search methods, [Eib94a, Eib94b].

For the DeJong functions and the function from [Mic92] we applied the standard
binary representation. For the TSP and graph coloring we used order-based
representation, furthermore we tested graph coloring with a representation based on a
ternary alphabet. As for the number of parents we tested every multi-parent version of
our crossovers for any number of parents from 2 to 10. The results shown here were
obtained by running the GA 100 or 200 times and calculating performance averages
for each number of parents. We used the generational GA model with 100% crossover
rate and 50% mutation rate (per individual, not per position). The maximum number
of generations was set to 500 (with earlier termination if the optimum was reached).

3.1 The test results

We tested the performance of uniform, occurrence-based and fitness-based scanning
on the DeJong functions F1, F2, F3 and F4 (all minimization problems). In section 4
we compare the results with classical 1-point crossover. (The legend is the same for
each graph.)

] OB-Scan FB-Scan ~ U - S c a n]

14

2 3 4 5 6 7 8 9 10
Figure 3.1. The average nr. of generations
needed to find the optimum for OB/FB/U-

Scanning on F1 (chrom. length = 30)

2 3 4 5 6 7 8. 9 10
Figure 3.2. The best f-value after 500

generations for OB/FB/U-Scanning on F2
(chrom. length = 22)

�9 stus!ueq~om ~umu~s ,pxepuels, oql jo o~uetuaojaod
oql le po~lOOI o,~ zse~ s!ql u I "aOlO~ ouo ~upouop loqtu,(s q~eo 'loqeqdle ~(a~uaol
e ql!A~ uo!leluosoadoa e po~so~ OSle onx s~u!aoloo 30 uo!le~uosoad~a poseq-aopao sop!soft

(08I = oz!s uopelndod '06 = qlguol -tuoaqo 'uo!leluosoadoa poseq aopao)
sopou 06 ql!ta ~u.uolo~ qdea~ aoj punoj svn~ uo!mlOS e uoqA~ saseo jo o~eluo~ao d "9"s aan~!,tI

I oz 117[9t I oz I 8[I0~ 19[I or [i]i~i!iii~i~!i~i~i]

g'Sg g'~g

I sz 19z I 6E] IE I gszl cz I 8z I~'g l~::~si~i:~iili~#~i'~il ili~iiiiiii]

iiiiiiiiiiii iiiiiii[iiiiii]iiiiiiiiiiiiiiii i]iiiiii iiiiiiii] iiii[iiii ~ii~ i iiiiiliiiiiiiiii!iiiiiiiii!iiiiiiiiiiii iiiiiiiiiiii[iiiiiiiiiiiiiiiiiiiiii t

�9 ~UpOlO3 qd~ag aog s lsoq~nol oql ,(IO~tu!xoadde oq
o~, u~ou, 4 s! s!q,L 'opou aod so~po ~ pu~ sopou 06 tll!A~ sqd~a~ oau po~so~ OAk "[q176q!~t]
'stuolqoad ~u!inpoq~s aoi ouop s! ~! q~!q~a u! .~en~ oql o) Xel!tU!S suop,~mtuaod ~u!po~op
'uope~uosoad~a poseq-aopao s po!Idd~ on~ molqoad ~u!aoIo~ qdea~ ottl ao fl

(El = tll3UO I "Uloaqo 'molqoad uopezau!xetu)
IrE "~d ' [~;6o.qAI] tuoa3 uo!wunj oq~ uo (017~ = t0~UOl "tuoaqo)

~u!uueoS-l-l/K~l/flO aoj suo!leaouo~ lz~l uo
00~ a~ onlea-J ~soq oqJ. "$'s aan3!d gu.muv~s-flO aoj mntugdo oql pm.t ol popoou

0I 6 8 L 9 g 17 ~ Z suo!leaouo~ jo "all o~eaoAe oq,L'qlr aanBt.A

', I I ', I I I I 18"s163 0[6 8 s 9 ~ lz ~
I I I I I I I I lo~z

�9 =~ 0~

~9"8E ~;OE
~0s163

(01,~; = tO3uaI -tuoaqo)
I,,4 uo ~m.utmoS-f!/K_q aog tuntu!ldo atll

pug ol p~poau

OI 6 8 L 9 ~ 17 ~ E
L ,!_..~ t I I i Io8

0~!

(0~ = tp3uoI "tuo~) s uo ~u!uuv~ S
-fl/K_q/flO aoj umturldo o~ pm.j oj popoou
suo.uea~uag jo "all o~eaa^e ~q,L "~s ~an~!A

O[6 8 L 9 ~ 17 s

/
II

g[

~g

84

::,~,~,:,:~.::~:.,:,,:,:::=::~:, ...:, ~:~:~,::~:~:...: ~ ~,::~:
[i~!i~!ii~i~,iii~iiiiisii~iiiiiiiiiiiil 2-5 4 .5 I 2 1 5 _ 5 1.5 I 1 0 1 1 - 5 /

[l~ii~!~|iiiiiii}ii~iiii}iii~}i] 26 34]34.5 I 33 32_5133.5 31.51 29]
~il~|~:ii!~'~ii!iiit 35 32.5128.5 I 27 2 6 1 3 2 . 5 30 I 27 [

Figure 3.7. Percentage of cases when a solution was found for graph coloring with 30 nodes
(ternary alphabet, chrom, length = 30, population size = 100)

When testing the TSP we found that the best 'traditional' order-based crossover was
orderl, which we used to compare our results against. For TSP only occurrence-based
scanning and ABC had an optimal number of parents higher than two, the other
scanning techniques performed best with two parents, and only FB-ABC was able to
outperform the orderl crossover. The results are summarized in the following figure
showing the effectivity of the GA.

I/iiii!iiii~~i!iiliiii . I . I I �9 liiiiii~i~!~i:!ii~i~iiii0i~iiit ,
iiiii~iiiilI!lii!~i~::iil~i;~iiJ 493.4 493.7 497.3 499.9 499.0 I 497.3 [500.7 I
~!~d!l!!!l~litliiiliiii~!iii~ii 492.2 1500.3 494.5 493.4 497.7 498.3]495.1]500.7 I
iiiiiiiii Ililt5o91i 486.6]484.8 477.4 475.6 478 474.9 i~i~i~iS~i~i1476.6 I
iiiliiii~iiiiiiiiiiiili~ii~ii~i~ 458.7 [457.9 459.5 461.7 457.3 462.8] 463.6] 461.6 [
iii!!i}iii#iiii~ii}iiiiiiiiiiiiii~ii~i] 461.6

Figure 3.8. The length of the best route after 500 generations
(order based representation, chrom, length = 30, population size =100).

4 Evaluation of the tests

In this part we review the test results grouped around three main questions:
advantages of scanning with respect to classical recombination mechanisms, different
types of bias in scanning and the effect of different numbers of parents.

4.1 Scanning and classical recombination

Considering the five numerical optimization problems we have tested, we observed
that in 4 out of the 5 cases (fitness-based) scanning outperformed 1-point crossover.
On the DeJong functions it outperformed 1-point crossover by respectively, 42%,
19%, 40% and 59%. On the function from [Mic92] fitness-based scanning was 1.3%
worse than 1-point crossover. Let us remark that on the function F20B-Scan proved
to be better than FB-Scan and outperformed 1-point crossover by as much as 70%.

For the TSP we first tested the classical order based crossovers orderl, order2,
position, cycle, PMX and uox (provided by our test environment LibGA, [Cor93])
and observed that orderl outperformed the rest. Then we ran tests to compare
different versions of scanning with orderl. Here, the fitness-based version of ABC (a
multi-parent operator designed specifically for the TSP) turned out to be the best
scanning mechanism, and was slightly (1.8%) better than orderl.

85

4.2 Different types of bias in scanning

On 4 out of the 5 numerical optimization problems fitness-based scanning was
superior to the uniform and occurrence-based versions. The exception was F2, where
OB-Scan was better, even though on the other 4 functions it was the worst of the
three. In section 5 we give a possible explanation for this. For graph coloring we
found that choosing genes uniform randomly proved to be better than choosing
fitness- or occurrence-based. On the TSP, performance for the uniform and fitness-
based scanning was approximately the same, OB-Scan was inferior to both. As for the
adjacency-based crossover operators, FB-ABC clearly outperformed OB-ABC.

4.3 The effect of different number of parents

The results on the DeJong functions show that the performance increases as the
number of parents is raised above 2. The tests, however, provide no real insight into
the optimal number of parents. For instance, the optimal number of parents for
fitness-based scanning was respectively, 9, 4, 6-10, 10 for F1, F2, F3 and F4. We also
observed that the different versions of scanning show different behaviour, i.e. reach
optimal performance at different numbers of parents. Nevertheless, on all of the
DeJong functions we tested the optimal number was higher than 2. For the function
from [Mic92] 2 parents proved to be optimal, although the difference in performance
between different numbers of parents remained below 1%. This suggests that for this
function the number of parents does not really matter.

The TSP shows a somewhat similar picture. We have tested 5 multi-parent
recombination mechanisms and each of them has shown little variance in
performance for different numbers of parents. For three of them the results became
worse (by at most 2.3%) when the number of parents was raised above 2; for the two
occurrence-based recombination mechanisms the optimal number of parents was 10,
respectively 9, but the gain with respect to 2 parents did not exceed 7.2%. For graph
coloring the data clearly shows that 2 parents are superior.

When increasing the number of parents extra costs are introduced. These costs
occur due to the extra time needed to select additional parents and the time needed to
identify the gene to be inherited. Gene inheritance costs are almost negligible on
binary strings. In the worst case (e.g. order-based representation), the increase can be
quadratic, for instance for OB-Scan. However, even in this case, the decrease in the
number of generations may compensate the time increase per generation.

5 Open quest ions and future w o r k

In spite of the 23.000 runs in total, we are aware of the limitations of the present
investigation. Thus, instead of general conclusions we discuss some questions that
can only be answered reliably if more knowledge is collected on the phenomenon of
multi-parent reproduction.

5.1 When is the optimal number of parents larger than 2?

Using a greater number of parents, the child creation is biased based on a larger
sample from the search space. If a function has many (almost) optimal points
separated by 'gaps ' of poor points then sampling might not help. The different good
elements in a population may very well belong to the "gravity field' of different

86

solutions. Hence, the larger number of parents does not provide information about the
s a m e solution, and the generated child will most likely be somewhere in-between the
(different) gravity fields of the parents, instead of getting closer to one of them.
Hence, one might not expect improvement by increasing the number of parents for
'hedgehog-like' functions. This was justified for FB-Scan and U-Scan on the function
taken from [Mic92], and we expect similar results for the F5 DeJong function.

If there are relatively few (optimal) solutions, OB-Scan is expected to be the most
effective (as was shown for F2), since in this case the fit parents close to different
solutions differ on many bits, and the occurrence-based inheritance of genes is likely
to produce children close to that solution which is close to many of the parents.

Obviously, the number of parents which can be used in the recombination
mechanism is limited by the number of individuals in the pool. The question is
whether increasing the number of parents always improves the performance of the
GA. Our experiments support two kinds of conclusions. In some cases, increasing the
number of parents improves the performance, though the degree of improvement
becomes smaller and smaller. This was observed for FB-Scan and U-Scan for F3, and
roughly for all multi-parent crossovers for F1 and F4. In other cases, the performance
improves up to a certain number of parents and decreases, or oscillates afterwards.
This was observed for the OB-Scan for F2 and F3.

The largest improvement when increasing the number of parents was achieved in
the case of OB-Scan, independently from the problem. This is not surprising, as a
larger sample provides more reliable information on strong gene patterns, and the
two-parent OB-Scan in our implementation always reproduced the first parent.

In most of the cases we experienced a much larger improvement when the number
of parents was changed from 2 to 3 than in the successive steps. We do not have a
sound explanation for this phenomenon, though from the practical point of view it
would be very useful to know that it is not worth while to go beyond 3-4 parents.

Another interesting question is whether the type of (the bias in) a crossover is the
decisive factor with respect to the performance. In other words, if a 2-parent
crossover is better than another crossover, does the same apply for the n-parent
version for any n > 2 as well? (For the optimization problems we tested this was
approximately true, with the exception of F2.)

5.2 Other issues

In our first experiments, we were interested whether the increase in the number of
parents results in better performance. The optimal number of parents obviously
depends on the length of the individuals and on the alphabet, or in general, on the size
of the search space (in addition to its topology). A further investigation could aim at
deciding the optimal number of parents in different stages of the GA, especially, in
the case of premature convergence. By introducing incest prevention the performance
of the multi-parent crossovers may improve.

Another aspect which needs to be investigated is the number of children generated
from a given number of parents. So far, we have only studied n-parents-l-child
versions of scanning-like crossovers, whereas more children can be created easily.

Looking at the performance as we have done here is the most common way in
which to compare different genetic operators or genetic algorithms. Nevertheless, to
get a better understanding of this novel phenomenon of multi-parent recombination
we need a 'higher resolution' picture of the behaviour of our GAs. This can be
obtained by a theoretical schema survival analysis, or monitoring extra features along
the evolution, such as:

87

�9 uniformity within the population measured by the average Hamming distance of
randomly chosen pairs of individuals;

�9 power of sexual reproduction measured by the child fitness - parent fitness ratio.

Acknowledgements
We wish to thank A.L. Corcoran who provided us the LibGA library that we used for
our experiments.

References
[Biic93]

[Che91]

[Cor93]

[DavY91]

[DavL91]

[Eib91]

[Eib94a]

[Eib94b]

[Go189]

[Gre85]

[Mic92]

[Miih89]

[01i87]

[Ser92]

[Whi91]

T.-B. Biick and H.-P. Schwefel, An Overview of Evolutionary
Algorithms for parameter Optimization, Journal of Evolutionary
Computation I(1), 1993, pp. 1-23.
P. Cheeseman, B. Kenefsky and W.M. Taylor, Where the really hard
problems are, Proc. of IJCAI-91, 1991, pp. 331-337.
A.L. Corcoran and R.L. Wainwright, LibGA: A User Friendly
Workbench for Order-Based Genetic Algorithm Research, Proc. of
Applied Computing: Sates of the Art and Practice, 1993, pp. 111-117.
Y. Davidor, Epistasis Variance: A View-point on GA-Hardness, Proc.
of FOGA-90, 1991, pp. 23-35.
L. Davis, Handbook of Genetic Algorithms, Van Nostrand Reinhold,
New York, 1991.
A.E. Eiben, A Method for Designing Decision Support Systems for
Operational Planning, PhD Thesis, Eindhoven University of
Technology, 1991.
A.E. Eiben, P.-E. Rau6 and Zs. Ruttkay, Solving Constraint Satisfaction
Problems Using Genetic Algorithms, proceedings of the 1st IEEE
World Conference on Computational Intelligence, to appear in 1994.
A.E. Eiben, P-E., Rau6, Zs. Ruttkay, GA-easy and GA-hard Constraint
Satisfaction Problems, Proc. of the ECAI'94 Workshop on Constraint
Processing, LNCS Series, Springer-Verlag, to appear in August, 1994.
D.E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning, Addison-Wesley, 1989.
J. Grefenstette, R. Gopal, B. Rosmaita and D. Van Gucht, Genetic
Algorithms for the Travelling Salesman Problem, Proc. of ICGA-85,
1985, pp.160-168.
Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs, Springer-Verlag, 1992.
H. Mtihlenbein, Parallel Genetic Algorithms, Population Genetics and
Combinatorial Optimization, Proc. of ICGA-89, 1989, pp. 416-421.
I.M. Oliver, D.J. Smith and J.R.C. Holland, A study of permutation
crossover operators on the travelling salesman problem, Proc. of ICGA-
87, 1987, pp. 224-230.
G. Seront and H. Bersini, In Search of a Good Evolution-Optimization
Crossover, Proc. of PPSN 2, 1992, pp. 479-488.
D. Whitley, T. Starkweather and D. Shaner, The traveling salesman and
sequence scheduling: quality solutions using genetic edge
recombination, In: [DavL91], pp. 350-372.

