
Web hosting Custom Email SiteBuilder

Genetic Algorithms

Computer programs that "evolve" in ways that resemble natural selection can solve
complex problems even their creators do not fully understand

John H. Holland

Living organisms are consummate problem solvers.They exhibit a versatility that puts the best
computer programs to shame.This observation is especially galling for computer scientists, who may
spend months or years of intellectual effort on an algorithm, whereas organisms come by their
abilities through the apparently undirected mechanism of evolution and natural selection.

Pragmatic researchers see evolution's remarkable power as something to be emulated rather than
envied. Natural selection eliminates one of the greatest hurdles in software design: specifying in
advance all the features of a problem and the actions a program should take to deal with them. By
harnessing the mechanisms of evolution, researchers may be able to "breed" programs that solve
problems even when no person can fully understand their structure. Indeed, these so-called genetic
algorithms have already demonstrated the ability to make breakthroughs in the design of such
complex systems as jet engines.

Genetic algorithms make it possible to explore a far greater range of potential solutions to a problem
than do conventional programs. Furthermore, as researchers probe the natural selection of programs
under controlled and well-understood conditions, the practical results they achieve may yield some
insight into the details of how life and intelligence evolved in the natural world.

Most organisms evolve by means of two primary processes: natural selection and sexual
reproduction.The first determines which members of a population survive to reproduce, and the
second ensures mixing and recombination among the genes of their offspring. When sperm and ova
fuse, matching chromosomes line up with one another and then cross over partway along their length,
thus swapping genetic material. This mixing allows creatures to evolve much more rapidly than they
would if each offspring simply contained a copy of the genes of a single parent, modified
occasionally by mutation. (Although unicellular organisms do not engage in mating as humans like to
think of it, they do exchange genetic material, and their evolution can be described in analogous
terms.)

JOHN H. HOLLAND has been investigating the theory and practice of algorithmic evolution for
nearly 40 years. He is a professor of psychology and of electrical engineering and computer science
at the University of Michigan. Holland received a B.S. in physics from the Massachusetts Institute
of Technology in 1950 and served on the Logical Planning Group for IBM's first programmed
electronic computer (the 701) from 1950 until 1952. He received an M.A. in mathematics and a Ph-
D. in communication sciences from the University of Michigan. Holland has been a member of the
Steering Committee of the Santa Fe Institute since its inception in 1987 and is an external professor
there.

Ads by Google Quantum Theory The Big Bang Theory Computer Games Genetic Algorithm Theory Test

Page 1 of 11Genetic Algorithms

1/3/2011http://www.fortunecity.com/emachines/e11/86/algo.html

Selection is simple: if an organism fails some test of fitness, such as recognizing a predator and
fleeing, it dies. Similarly, computer scientists have little trouble weeding out poorly performing
algorithms. If a program is supposed to sort numbers in ascending order, for example, one need
merely check whether each entry of the program's output is larger than the preceding one.

People have employed a combination of crossbreeding and selection for millennia to breed better
crops, racehorses or ornamental roses. It is not as easy, however, to translate these procedures for use
on computer programs. The chief problem is the construction of a "genetic code" that can represent
the structure of different programs, just as DNA represents the structure of a person or a mouse.
Mating or mutating the text of a FORTRAN program, for example, would in most cases not produce a
better or worse FORTRAN program but rather no program at all.

The first attempts to mesh computer science and evolution, in the late 1950s and early 1960s, fared
poorly because they followed the emphasis in biological texts of the time and relied on mutation
rather than mating to generate new gene combinations.Then, in the early 1960s, Hans J. Bremermann
of the University of California at Berkeley added a kind of mating: the characteristics of offspring
were determined by summing up corresponding genes in the two parents. This mating procedure was
limited, however, because it could apply only to characteristics that could be added together in a
meaningful way.

During this time, I had been investigating mathematical analyses of adaptation and had become
convinced that the recombination of groups of genes by means of mating was a critical part of
evolution. By the mid-1960s I had developed a programming technique, the genetic algorithm, that is
well suited to evolution by both mating and mutation. During the next decade, I worked to extend the
scope of genetic algorithms by creating a genetic code that could represent the structure of any
computer program.

The result was the classifier system, consisting of a set of rules, each of which performs particular
actions every time its conditions are satisfied by some piece of information.The conditions and
actions are represented by strings of bits corresponding to the presence or absence of specific
characteristics in the rules' input and output For each characteristic that was present, the string would
contain a 1 in the appropriate position, and for each that was absent, it would contain a 0. For
example, a classifier rule that recognized dogs might be encoded as a string containing 1's for the bits
corresponding to "hairy," "slobbers," "barks," "loyal" and "chases sticks" and 0's for the bits
corresponding to "metallic," "speaks Urdu" and "possesses credit cards." More realistically, the
programmer should choose the simplest, most primitive characteristics so that they can be combined-
as in the game of 20 Questions-to classify a wide range of objects and situations.

Although they excel at recognition, these rules can also be made to trigger actions by tying bits in
their output to the appropriate behavior [see Illustration]. Any program that can be written in a
standard programming language such as FORTRAN or LISP can be rewritten as a classifier system.

To evolve classifier rules that solve a particular problem, one simply starts with a population of
random strings of 1's and 0's and rates each string according to the quality of its result. Depending on
the problem, the measure of fitness could be business profitability, game payoff, error rate or any
number of other criteria. High-quality strings mate; low-quality ones perish.As generations pass,
strings associated with improved solutions will predominate. Furthermore, the mating process
continually combines these strings in new ways, generating ever more sophisticated solutions. The
kinds of problems that have yielded to the technique range from developing novel strategies in game
theory to designing complex mechanical systems.

Recast in the language of genetic algorithms, the search for a good solution to a problem is a search
for particular binary strings. The universe of all possible strings can be considered as an imaginary
landscape; valleys mark the location of strings that encode poor solutions, and the landscape's highest
point corresponds to the best possible string.

Page 2 of 11Genetic Algorithms

1/3/2011http://www.fortunecity.com/emachines/e11/86/algo.html

Regions in the solution space can also be defined by looking at strings that have 1's or 0's in specified
places-a kind of binary equivalent of map coordinates. The set of all strings that start with a 1, for
example, constitutes a region in the set of possibilities. So do all the strings that start with a 0 or that
have a 1 in the fourth position, a 0 in the fifth and a 1 in the sixth and so on.

One conventional technique for exploring such a landscape is hill
climbing: start at some random point, and if a slight modification
improves the quality of your solution, continue in that direction;
otherwise, go in the opposite direction. Complex problems, however,
make landscapes with many high points. As the number of
dimensions of the problem space increases, the countryside may
contain tunnels, bridges and even more convoluted topological
features. Finding the right hill or even determining which way is up
becomes increasingly difficult. In addition, such search spaces are
usually enormous. If each move in a chess game, for example, has an
average of 10 alternatives, and a typical game lasts for 30 moves on

each side, then there are about 1060 strategies for playing chess
(most of them bad).

Genetic algorithms cast a net over this landscape. The multitude of
strings in an evolving population samples it in many regions
simultaneously. Notably the rate at which the genetic algorithm
samples different regions corresponds directly to the regions' average
"elevation"-that is, the probability of finding a good solution in that
vicinity.

This remarkable ability of genetic algorithms to focus their attention
on the most promising parts of a solution space is a direct outcome of
their ability to combine strings containing partial solutions. First,
each string in the population is evaluated to determine the
performance of the strategy that it encodes. Second, the higher-

ranking strings mate. Two strings line up, a point along the strings is selected at random and the
portions to the left of that point are exchanged to produce two offspring: one containing the symbols
of the first string up to the crossover point and those of the second beyond it, and the other containing
the complementary cross [see illustration below]. Biological chromosomes cross over one another
when two gametes meet to form a zygote, and so the process of crossover in genetic algorithms does
in fact closely mimic its biological model. The offspring do not replace the parent strings; instead
they replace low-fitness strings, which are discarded at each generation so that the total population
remains the same size.

BEE ORCHID demonstrates
the specificity with which
natural genetic selection can
match an organism to a
particular niche. The flower,
which resembles a female
bumblebee, is fertilized by
male bees that attempt to mate
with it. Mechanisms similar to
natural selection, the author
says, can produce computer
programs (so-called genetic
algorithms) capable of solving
such complex problems as the
design of jet engines or
communications networks.

Chromosomes line up and then
swap the portions of their genetic
code beyond the crossover point.

CROSSOVER is the fundamental mechanism of genetic

Page 3 of 11Genetic Algorithms

1/3/2011http://www.fortunecity.com/emachines/e11/86/algo.html

Third, mutations modify a small fraction of the strings: roughly one in every 10,000 symbols flips
from 0 to 1, or vice versa. Mutation alone does not generally advance the search for a solution, but it
does provide insurance against the development of a uniform population incapable of further
evolution.

The genetic algorithm exploits the higher-payoff, or "target," regions of the solution space, because
successive generations of reproduction and crossover produce increasing numbers of strings in those
regions. The algorithm favors the fittest strings as parents, and so above-average strings (which fall in
target regions) will have more offspring in the next generation.

Indeed, the number of strings in a given region increases at a rate proportional to the statistical
estimate of that region' s fitness. A statistician would need to evaluate dozens of samples from
thousands or millions of regions to estimate the average fitness of each region. The genetic algorithm
manages to achieve the same result with far fewer strings and virtually no computation.

The key to this rather surprising behavior is the fact that a single string belongs to all the regions in
which any of its bits appear. For example, the string 11011001 is a member of regions 11******
(where the * indicates that a bit's value is unspecified), 1******1 , **0**00* and so forth. The largest
regions-those containing many unspecified bits-will typically be sampled by a large fraction of all the
strings in a population. Thus, a genetic algorithm that manipulates a population of a few thousand
strings actually samples a vastly larger number of regions. This implicit parallelism gives the genetic
algorithm its central advantage over other problem-solving processes.

Crossover complicates the effects of implicit parallelism. The purpose of crossing strings in the
genetic algorithm is to test new parts of target regions rather than testing the same string over and
over again in successive generations. But the process can also "move" an offspring out of one region
into another, causing the sampling rate of different regions to depart from a strict proportionality to
average fitness. That departure will slow the rate of evolution.

The probability that the offspring of two strings will leave its parents' region depends on the distance
between the 1's and 0's that define the region. The offspring of a string that samples 10****, for
example, can be outside that region only if crossover begins at the second position in the string-one
chance in five for a string containing six genes. (The same building block would run a risk of only
one in 999 if contained in a 1,000-gene string.) The offspring of a six-gene string that samples region
1****1 runs the risk of leaving its parents' region no matter where crossover occurs.

Closely adjacent 1's or 0's that define a region are called compact building blocks. They are most
likely to survive crossover intact and so be propagated into future generations at a rate proportional to
the average fitness of strings that carry them. Although a reproduction mechanism that includes
crossover does not manage to sample all regions at a rate proportional to their fitness, it does succeed
in doing so for all regions defined by compact building blocks. The number of compactly defined
building blocks in a population of strings still vastly exceeds the number of strings, and so the genetic
algorithm still exhibits implicit parallelism.

Curiously, an operation in natural genetics called inversion occasionally rearranges genes so that
those far apart in the parents may be placed close to one another in the offspring. This amounts to
redefining a building block so that it is more compact and less subject to being broken up by
crossover. If the building block specifies a region of high average fitness, then the more compact
version automatically displaces the less compact one because it loses fewer offspring to copying
error. As a result, an adaptive system using inversion can discover and favor compact versions of
useful building blocks.

rearrangement for both real organisms and genetic algorithms.

Page 4 of 11Genetic Algorithms

1/3/2011http://www.fortunecity.com/emachines/e11/86/algo.html

The genetic algorithm's implicit parallelism allows it to test and exploit large numbers of regions in
the search space while manipulating relatively few strings. Implicit parallelism also helps genetic
algorithms to cope with nonlinear problems-those in which the fitness of a string containing two
particular building blocks may be much greater (or much smaller) than the sum of the fitnesses
attributable to each building block alone.

Linear problems present a reduced search space because the presence of a 1 or a 0 at one position in a
string has no effect on the fitness attributable to the presence of a 1 or 0 somewhere else. The space of

1,000-digit strings, for example, contains more than 31,000 possibilities, but if the problem is linear,
an algorithm need investigate only strings containing 1 or 0 at each position, a total of just 2,000
possibilities.

When the problem is nonlinear, the difficulty increases sharply.The average fitness of strings in the
region * 01***, for example, could be above the population average, even though the fitnesses
associated with * 0**** and **1*** are below the population average. Nonlinearity does not mean
that no useful building blocks exist but merely that blocks consisting of single 1's or 0's will be
inadequate. That characteristic, in turn, leads to an explosion of possibilities: the set of all strings 20
bits in length contains more than three billion building blocks. Fortunately, implicit parallelism can
still be exploited. In a population of a few thousand strings, many compact building blocks will
appear in 100 strings or more, enough to provide a good statistical sample. Building blocks that
exploit nonlinearities to attain above-average performance will automatically be used more often in
future generations.

In addition to coping with nonlinearity, the genetic algorithm helps to solve a conundrum that has
long bedeviled conventional problem-solving methods: striking a balance between exploration and
exploitation. Once one finds a good strategy for playing chess, for example, it is possible to
concentrate on exploiting that strategy. But this choice carries a hidden cost because exploitation
makes the discovery of truly novel strategies unlikely. Improvements come from trying new, risky
things. Because many of the risks fail, exploration involves a degradation of performance. Deciding
to what degree the present should be mortgaged for the future is a classic problem for all systems that
adapt and learn.

The genetic algorithm' s approach to this obstacle turns on crossover. Although crossover can
interfere with the exploitation of a building block by breaking it up, this process of recombination
tests building blocks in new combinations and new contexts. Crossover generates new samples of
above-average regions, confirming or disproving the estimates produced by earlier samples.
Furthermore, when crossover breaks up a building block, it produces a new block that enables the
genetic algorithm to test regions it has not previously sampled.

The Prisoner's Dilemma

PLAYER (B)
COOPERATE

(B)
DEFECT

(B)
COOPERATE 3/3 5/0

(B)
DEFECT 0/5 0/0

IN PRISONER'S DILEMMA each player can
either cooperate or defect and receives a
payoff based on the other's choice. If both
cooperate, for example, both receive three
points. Mutual defection is the safest strategy,
but repeated play often leads to cooperation

Page 5 of 11Genetic Algorithms

1/3/2011http://www.fortunecity.com/emachines/e11/86/algo.html

The game known as the Prisoner's Dilemma [Ref: "The Politics of Private Desire" M.Laver
p47;Psychology Today Aug96 p46] illustrates the genetic algorithm's ability to balance exploration
against exploitation. This long-studied game presents its two players with a choice between
"cooperation" and "defection": if both players cooperate, they both receive a payoff; if one player
defects, the defector receives a higher payoff and the cooperator receives nothing; if both defect, they
both receive a minimal payoff [see table above]. For example, if player A cooperates and player B
defects, then player A receives no payoff and player B receives a payoff of five points.

Political scientists and sociologists have studied the Prisoner's Dilemma because it provides a simple,
clear-cut example of the difficulties of cooperation. Game theory predicts that each player should
minimize the maximum damage the other player can inflict: that is, both players should defect.Yet
when two people play the game together repeatedly, they typically learn to cooperate with each other

instead.

How to Build a Classifier System
Building a computer algorithm that can evolve requires a
way of representing the program so that any change in its
genotype (the bits that compose the program) leads to a
meaningful change in its phenotype (what the program
does). A classifier consists simply of strings representing
possible characteristics of the program's input and actions to
take (below). Changing any symbol in a string changes its
behavior.

Classifier Alphabet 1=Yes 0=No #=Don't Care

A classifier system to emulate a frog, for
example, might contain strings that react to
objects that the frog sees. Depending on an
object's motion, size, location and other
attributes, the frog would attack, pursue or
ignore it. Several strings may match the
same input string; the one with the fewest
"don't care" symbols governs the system's
actions.

Moving
On the
Ground Large Far Striped Flee Pursue!

Input Output

1 # # # # 1 0

If object is moving,flee

1 0 0 0 # 0 1

If object is moving,in the air,small and near,pursue

1 0 0 0 1 0 0

If object is moving,in the air,small,near and
striped,do nothing

Page 6 of 11Genetic Algorithms

1/3/2011http://www.fortunecity.com/emachines/e11/86/algo.html

to raise their joint payoff. One of the most effective known strategies for the Prisoner's Dilemma is
"tit for tat," which begins by cooperating but thereafter mimics the last play of the other player. That
is, it "punishes" a defection by defecting the next time, and it rewards cooperation by cooperating the
next time.

Robert Axelrod of the University of Michigan, working with Stephanie Forrest, now at the University
of New Mexico, decided to find out if the genetic algorithm could discover the tit-for-tat strategy.
Applying the genetic algorithm first requires translating possible strategies into strings. One simple
way is to base the next response on the outcome of the last three plays. Each iteration has four
possible outcomes, and so a sequence of three plays yields 64 possibilities. A 64-bit string contains
one gene (or bit position) for each. The first gene, for instance, would be allocated to the case of three
consecutive mutual cooperations and the last to three mutual defections. The value of each gene
would be either 1 or 0 depending on whether the preferred response to its corresponding history was
cooperation or defection. For example, the 64-bit string consisting of all 0's would designate the

strategy that defects in all cases. Even for such a simple game, there are 264 (approximately 16
quadrillion) different strategies.

Axelrod and Forrest supplied the genetic algorithm with a small random collection of strings
representing strategies. The fitness of each string was simply the average of the payoffs its strategy
received under repeated play. All these strings had low fitnesses because most strategies for playing
the Prisoner's Dilemma are not very good. Quickly the genetic algorithm discovered and exploited tit
for tat, but further evolution introduced an additional improvement.The new strategy, discovered
while the genetic algorithm was already playing at a high level, exploited players that could be
"bluffed"-lured into cooperating repeatedly in the face of defection. It reverted to tit for tat, however,
when the history indicated the player could not be bluffed.

Biological evolution operates, of course, not to produce a single superindividual but rather to produce
interacting species well adapted to one another. (Indeed, in the biological realm there is no such thing
as a best individual.) Similarly, the genetic algorithm can be used, with modifications, to govern the
evolution not merely of individual rules or strategies but of classifier-system "organisms" composed
of many rules. Instead of selecting the fittest rules in isolation, competitive pressures can lead to the
evolution of larger systems whose abilities are encoded in the strings that make them up.

Re-creating evolution at this higher level requires several modifications to the original genetic
algorithm. Strings still represent condition-action rules, and each rule whose conditions are met
generates an action as before. Rating each rule by the number of correct actions it generates, however,
will favor the evolution of individual "superrules" instead of finding clusters of rules that interact
usefully. To redirect the search toward interacting rules, the procedure is modified by forcing rules to

GENE POOL of algorithms consists of strings of 1's and 0's. Each string is evaluated for fitness, and
the best strings mate (second column) and produce offspring by means of crossover (indicated by a
vertical black line). Strings of indeterminate fitness simply survive to the next generation, and the
least fit perish. If particular patterns of bits (shown here by colored areas) improve the fitness of
strings that carry them, repeated cycles of evaluation and mating (succeeding columns) will cause
the proportion of these high-quality "building blocks" to increase. The pattern corresponding to each
building block appears in the rightmost column; asterisks represent bits whose values are
unspecified.

Page 7 of 11Genetic Algorithms

1/3/2011http://www.fortunecity.com/emachines/e11/86/algo.html

compete for control of the system's actions. Each rule whose conditions are met competes with all
other rules whose conditions are met, and the strongest rules determine what the system will do in
that given situation. If the system's actions lead to a successful outcome, all the winning rules are
strengthened; otherwise they are weakened.

Another way of looking at this method is to consider each rule string as a hypothesis about the
classifier's world. A rule enters the competition only when it "claims" to be relevant to the current
situation. Its ability to compete depends on how much of a contribution it has made to solving similar
problems. As the genetic algorithm proceeds, strong rules mate and form offspring rules that combine
their parents' building blocks. These offspring, which replace the weakest rules, amount to plausible
but untried hypotheses.

Competition among rules provides the system with a graceful way of handling perpetual novelty.
When a system has strong rules that respond to a particular situation, that is the equivalent of saying
that it has certain well-validated hypotheses. Offspring rules, which begin life weaker than do their
parents, can win the competition and influence the system's behavior only when there are no strong
rules whose conditions are satisfied-in other words, when the system does not know what to do. If
their actions help, they survive; if not, they are soon replaced. Thus, the offspring do not interfere
with the system's action in well- practiced situations but wait gracefully in the wings as hypotheses
about what to do under novel circumstances.

Adding competition in this way strongly affects the evolution of a classifier system. Shortly after the
system starts running, it evolves rules with simple conditions-treating a broad range of situations as if
they were identical. The system exploits such rules as defaults that specify something to be done in
the absence of more detailed information. Because the default rules make only coarse discriminations,
however, they are often wrong and so do not grow in strength. As the system gains experience,
reproduction and crossover lead to the development of more complex, specific rules that rapidly
become strong enough to dictate behavior in particular cases.

Eventually the system develops a hierarchy: layers of exception rules at the lower levels handle most
cases, but the default rules at the top level of the hierarchy come into play when none of the detailed
rules has enough information to satisfy its conditions. Such default hierarchies bring relevant
experience to bear on novel situations while preventing the system from becoming bogged down in
overly detailed options.

The same characteristics that make evolving classifier systems adept at handling perpetual novelty
also do a good job of handling situations where the payoff for a given action may come only long
after the action is taken. The earliest moves of a chess game, for example, may set the stage for later
victory or defeat.

To train a classifier system for such long-term goals, a programmer gives the system a payoff each
time it completes a task. The credit for success (or the blame for failure) can propagate through the
hierarchy to strengthen (or weaken) individual rules even if their actions had only a distant effect on
the outcome. Over the course of many generations the system develops rules that act ever earlier to
set the stage for later payoffs. It therefore becomes increasingly able to anticipate the consequences of
its actions.

Genetic algorithms have now been tested in a wide variety of contexts. David E. Goldberg of the
University of Illinois, for example, has developed algorithms that learn to control a gas pipeline
system modeled on the one that carries natural gas from the Southwest to the Northeast. The pipeline
complex consists of many branches, all carrying various amounts of gas; the only controls available
are compressors that increase pressure in a particular branch of the pipeline and valves to regulate the
flow of gas to and from storage tanks. Because of the tremendous lag between manipulating valves or
compressors and the actual pressure changes in the lines, there is no analytic solution to the problem,
and human controllers, like Goldberg's algorithm, must learn by apprenticeship.

Page 8 of 11Genetic Algorithms

1/3/2011http://www.fortunecity.com/emachines/e11/86/algo.html

Goldberg's system not only met gas demand at costs comparable to those achieved in practice, but it
also developed a hierarchy of default rules capable of responding properly to holes punched in the
pipeline (as happens all too often in reality at the blade of an errant bulldozer). Lawrence Davis of
Tica Associates in Cambridge, Mass., has used similar techniques to design communications
networks; his software's goal is to carry the maximum possible amount of data with the minimum
number of transmission lines and switches interconnecting them.

A group of researchers at General Electric and Rensselaer Polytechnic Institute recently put a genetic
algorithm to good use in the design of a high-by- pass jet engine turbine such as those that power
commercial airliners. Such turbines, which consist of multiple stages of stationary and rotating blade
rows enclosed in a roughly cylindrical duct, are at the center of engine-development projects that last
five years or more and consume up to $2 billion.

The design of a turbine involves at least 100 variables, each of which can take on a different range of

values.The resulting search space contains more than 10387 points. The "fitness" of the turbine
depends on how well it satisfies a series of 50 or so constraints, such as the smooth shape of its inner
and outer walls or the pressure, velocity and turbulence of the flow at various points inside the
cylinder. Evaluating a single design requires running an engine simulation that takes about 30 seconds
on a typical engineering workstation.

In one fairly typical case, an engineer working alone took about
eight weeks to reach a satisfactory design. So-called expert systems,
which use inference rules based on experience to predict the effects
of a change of one or two variables, can help direct the designer in
seeking out useful changes. An engineer using such an expert system
took less than a day to design an engine with twice the
improvements of the eight-week manual design.

Such expert systems, however, soon get stuck at points where further
improvements can be made only by changing many variables
simultaneously. These dead ends occur because it is practically
impossible to sort out all the effects associated with different
multiple changes, let alone to specify the regions of the design space
within which previous experience remains valid.

To get away from such a point, the designer must find new building
blocks for a solution. Here is where the genetic algorithm comes into
play. Seeding the algorithm with designs produced by the expert

system, an engineer took only two days to find a design with three times the improvements of the
manual version (and half again as many as using the expert system alone).

This example points up both a strength and a limitation of simple genetic algorithms: they are at their
best when exploring complex landscapes to locate regions of enhanced opportunity. But if a partial
solution can be improved further by making small changes in a few variables, it is best to augment the
genetic algorithm with other, more standard methods.

Although genetic algorithms mimic the effects of natural selection, until now they have operated on a
much smaller scale than does biological evolution. My colleagues and I have run classifier systems
containing as many as 8,000 rules, but this size is at the low end of viability for natural populations.
Large animals that are not endangered may number in the millions, insect populations in the trillions
and bacteria in the quintillions or more. These large numbers greatly enhance the advantages of
implicit parallelism.

As massively parallel computers become more common, it will be feasible to evolve software

SOFTWARE TO DESIGN
JET TURBINE includes a
genetic algorithm that
combines the best features of
designs produced by other
programs. Engineers using the
algorithm achieved better
results than with more
conventional software aids.

Page 9 of 11Genetic Algorithms

1/3/2011http://www.fortunecity.com/emachines/e11/86/algo.html

Scientific American July 1992 File Info: Created 5/6/2000 Updated 3/7/2002 Page Address:

populations whose size more closely approaches those of natural species. Indeed, the genetic
algorithm lends itself nicely to such machines. Each processor can be devoted to a single string
because the algorithm's operations focus on single strings or, at most, a pair of strings during
crossover. As a result, the entire population can be processed in parallel.

We still have much to learn about classifier systems, but the work done so far suggests they will be
capable of remarkably complex behavior. Rick L. Riolo of the University of Michigan has already
observed genetic algorithms that display "latent learning" (a phenomenon in which an animal such as
a rat explores a maze without reward and is subsequently able to find food placed in the maze much
more quickly).

At the Santa Fe Institute, Forrest, W Brian Arthur, John H.Miller, Richard G. Palmer and I have used
classifier systems to simulate economic agents of limited rationality. These agents evolve to the point
of acting on trends in a simple commodity market, producing speculative bubbles and crashes.

The simulated worlds these agents inhabit show many similarities to natural ecosystems: they exhibit
counterparts to such phenomena as symbiosis, parasitism, biological "arms races," mimicry, niche
formation and speciation. Still other work with genetic algorithms has shed light on the conditions
under which evolution will favor sexual or asexual reproduction. Eventually artificial adaptation may
repay its debt to nature by increasing researchers' understanding of natural ecosystems and other
complex adaptive systems.

** COMPUTER PROGRAM SPEEDS SEARCH FOR NOVEL ALLOYS Hundreds of thousands
of possible metal alloy combinations can be formed from a relatively small number of elements. As
a result, finding new metal blends with desirable qualities (such as rust resistance or heat
conductivity) can be an arduous task. Now a team of Danish physicists has developed a novel
approach to this treasure hunt, using a computer algorithm that borrows from evolutionary theory
to test which compounds hold the most promise for resisting high temperatures and corrosion.
http://sciam.rsc03.net/servlet/cc?lJpDUAVEmLtisHklLkpLlFHhsDJhtE0EB

Further Reading

INDUCTION: PROCESSES OF INFERENCE, LEARNING, AND DISCOVERY. J. H. Holland, K. J.
Holyoak, R E. Nisbett and P. R Thagard. MIT Press, 1986.
GENETIC ALGORITHMS AND SIMULATED ANNEALING. Edited by Lawrence Davis. Morgan
Kaufmann, 1987.
GENETIC ALGORITHMS IN SEARCH OPTIMIZATION , AND MACHINE LEARNING. D. E. Goldberg.
Addison-Wesley, 1989.
GENETIC ALGORITHMS: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE. Edited
by Richard Belew and Lashon Booker. Morgan Kaufmann, 1991.
ADAPTATION IN NATURAL AND ARTIFICIAL SYSTEMS. J. H. Holland. MIT Press, 1992.
COMPLEX ADAPTIVE SYSTEMS. J. H. Holland in Dædalus, Vol. 121, No. 1, pages 17-30; Winter 1992.

MAIN INDEX

REFERENCE GUIDE TRANSCRIPTS GLOSSARY
Chaos Quantum Logic Cosmos Conscious Belief Elect. Art Chem. Maths

Page 10 of 11Genetic Algorithms

1/3/2011http://www.fortunecity.com/emachines/e11/86/algo.html

http://members.fortunecity.com/templarser/algo.html

web hosting • domain names
web design • online games

Page 11 of 11Genetic Algorithms

1/3/2011http://www.fortunecity.com/emachines/e11/86/algo.html

