
Genetic Programming: An Introduction
and Tutorial, with a Survey of Techniques
and Applications

William B. Langdon1, Riccardo Poli2, Nicholas F. McPhee3,
and John R. Koza4

1 Departments of Biological and Mathematical Sciences, University of Essex, UK,
wlangdon@essex.ac.uk

2 Department of Computing and Electronic Systems, University of Essex, UK,
rpoli@essex.ac.uk

3 Division of Science and Mathematics, University of Minnesota, Morris, USA,
mcphee@morris.umn.edu

4 Stanford University, Stanford, CA, USA, john@johnkoza.com

1 Introduction

The goal of having computers automatically solve problems is central to arti-
ficial intelligence, machine learning, and the broad area encompassed by what
Turing called ‘machine intelligence’ [384]. Machine learning pioneer Arthur
Samuel, in his 1983 talk entitled ‘AI: Where It Has Been and Where It Is
Going’ [337], stated that the main goal of the fields of machine learning and
artificial intelligence is:

“to get machines to exhibit behavior, which if done by humans, would
be assumed to involve the use of intelligence.”

Genetic programming (GP) is an evolutionary computation (EC) tech-
nique that automatically solves problems without having to tell the computer
explicitly how to do it. At the most abstract level GP is a systematic, domain-
independent method for getting computers to automatically solve problems
starting from a high-level statement of what needs to be done.

Over the last decade, GP has attracted the interest of streams of researchers
around the globe. This Chapter is intended to give an overview of the basics of
GP, to summarize important work that gave direction and impetus to research
in GP as well as to discuss some interesting new directions and applications.
Things change fast in this field, as investigators discover new ways of doing
things, and new things to do with GP. It is impossible to cover all aspects
of this area, even within the generous page limits of this chapter. Thus this

W.B. Langdon et al.: Genetic Programming: An Introduction and Tutorial, with a Survey of

Techniques and Applications, Studies in Computational Intelligence (SCI) 115, 927–1028 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

928 W.B. Langdon et al.

Algorithm 1 Abstract GP algorithm
1: Randomly create an initial population of programs from the available primitives

(see Sect. 2.2).
2: repeat
3: Execute each program and ascertain its fitness.
4: Select one or two program(s) from the population with a probability based

on fitness to participate in genetic operations (see Sect. 2.3).
5: Create new individual program(s) by applying genetic operations with

specified probabilities (see Sect. 2.4).
6: until an acceptable solution is found or some other stopping condition is met

(for example, reaching a maximum number of generations).
7: return the best-so-far individual.

Chapter should be seen as a snapshot of the view we, the authors, have at the
time of writing.

1.1 GP in a Nutshell

Technically, GP is a special evolutionary algorithm (EA) where the individ-
uals in the population are computer programs. So, generation by generation
GP iteratively transforms populations of programs into other populations of
programs as illustrated in Fig. 1. During the process, GP constructs new pro-
grams by applying genetic operations which are specialized to act on computer
programs.

Algorithmically, GP comprises the steps shown in Algorithm 1. The main
genetic operations involved in GP (line 5 of Algorithm 1) are the following:

• Crossover: the creation of one or two offspring programs by recombining
randomly chosen parts from two selected programs.

• Mutation: the creation of one new offspring program by randomly
altering a randomly chosen part of one selected program.

Some GP systems also support structured solutions (see, for example,
Sect. 5.1), and some of these then include architecture-altering operations

Generate Population
of Random Programs

Run Programs and
Evaluate Their Quality

Breed Fitter Programs

Solution

(* (SIN (- y x))
 (IF (> x 15.43)
 (+ 2.3787 x)
 (* (SQRT y)
 (/ x 7.54))))

Fig. 1. GP main loop

Genetic Programming: An Introduction and Tutorial 929

which randomly alter the architecture (for example, the number of subrou-
tines) of a program to create a new offspring program. Also, often, in addition
of crossover, mutation and the architecture-altering operations, an operation
which simply copies selected individuals in the next generation is used. This
operation, called reproduction, is typically applied only to produce a fraction
of the new generation.

1.2 Overview of the Chapter

This Chapter starts with an overview of the key representations and opera-
tions in GP (Sect. 2), a discussion of the decisions that need to be made before
running GP (Sect. 3), and an example of a GP run (Sect. 4).

This is followed by descriptions of some more advanced GP techniques
including: automatically defined functions (Sect. 5.1) and architecture-altering
operations (Sect. 5.2), the GP problem solver (Sect. 5.3), systems that con-
strain the syntax of evolved programs in some way (for instance, using
grammars or type systems; Sect. 5.4) and developmental GP (Sect. 5.5). Alter-
native program representations, namely linear GP (Sect. 6.1) and graph-based
GP (Sect. 6.2) are then discussed.

After this survey of representations, we provide a review of the enor-
mous variety of applications of GP, including curve fitting and data modeling
(Sect. 7.1), human competitive results (Sect. 7.2) and much more, and a sub-
stantial collection of ‘tricks of the trade’ used by experienced GP practitioners
(Sect. 8). We also give an overview of some of the considerable work that has
been done on the theory of GP (Sect. 9).

After concluding the Chapter (Sect. 10), we provide a resources appendix
that reviews the many sources of further information on GP, its applications,
and related problem solving systems.

2 Representation, Initialization and Operators
in Tree-Based GP

In this Section we will introduce the basic tools and terms used in genetic
programming. In particular, we will look at how solutions are represented in
most GP systems (Sect. 2.1), how one might construct the initial, random
population (Sect. 2.2), and how selection (Sect. 2.3) as well as recombination
and mutation (Sect. 2.4) are used to construct new individuals.

2.1 Representation

In GP programs are usually expressed as syntax trees rather than as lines
of code. Figure 2 shows, for example, the tree representation of the pro-
gram max(x*x,x+3*y). Note how the variables and constants in the program

930 W.B. Langdon et al.

x x

+ +

max

x

y3

∗

Fig. 2. GP syntax tree representing max(x*x,x+3y)

ROOT

...

Component
1

Component
2

Component
N

Branches

Fig. 3. Multi-component program representation

(x, y, and 3), called terminals in GP, are leaves of the tree, while the arith-
metic operations (+, *, and max) are internal nodes (typically called functions
in the GP literature). The sets of allowed functions and terminals together
form the primitive set of a GP system.

In more advanced forms of GP, programs can be composed of multiple
components (say, subroutines). In this case the representation used in GP is
a set of trees (one for each component) grouped together under a special root
node that acts as glue, as illustrated in Fig. 3. We will call these (sub)trees
branches. The number and type of the branches in a program, together with
certain other features of the structure of the branches, form the architecture
of the program.

It is common in the GP literature to represent expressions in a prefix nota-
tion similar to that used in Lisp or Scheme. For example, max(x*x,x+3*y)
becomes (max (* x x) (+ x (* 3 y))). This notation often makes it eas-
ier to see the relationship between (sub)expressions and their corresponding

Genetic Programming: An Introduction and Tutorial 931

(sub)trees. Therefore, in the following, we will use trees and their correspond-
ing prefix-notation expressions interchangeably.

How one implements GP trees will obviously depend a great deal on the
programming languages and libraries being used. Most traditional languages
used in AI research (such as Lisp and Prolog), many recent languages (say
Ruby and Python), and the languages associated with several scientific pro-
gramming tools (namely, MATLAB� and Mathemtica�) provide automatic
garbage collection and dynamic lists as fundamental data types making it
easy to directly implement expression trees and the necessary GP operations.
In other languages one may have to implement lists/trees or use libraries that
provide such data structures.

In high performance environments, however, the tree-based representation
may be too memory-inefficient since it requires the storage and management of
numerous pointers. If all functions have a fixed arity (which is extremely com-
mon in GP applications) the brackets become redundant in prefix-notation
expressions, and the tree can be represented as a simple linear sequence.
For example, the expression (max (* x x) (+ x (* 3 y))) could be written
unambiguously as the sequence max * x x + x * 3 y. The choice of whether
to use such a linear representation or an explicit tree representation is typically
guided by questions of convenience, efficiency, the genetic operations being
used (some may be more easily or more efficiently implemented in one repre-
sentation), and other data one may wish to collect during runs (for instance,
it is sometimes useful to attach additional information to nodes, which may
require that they be explicitly represented). There are also numerous high-
quality, freely available GP implementations (see the resources in the appendix
at the end of this chapter for more information).

While these tree representations are the most common in GP, there are
other important representations, some of which are discussed in Sect. 6.

2.2 Initializing the Population

Similar to other evolutionary algorithms, in GP the individuals in the ini-
tial population are randomly generated. There are a number of different
approaches to generating this random initial population. Here we will describe
two of the simplest (and earliest) methods (the Full and Grow methods), and
a widely used combination of the two known as Ramped half-and-half.

In both the Full and Grow methods, the initial individuals are generated
subject to a pre-established maximum depth. In the Full method (so named
because it generates full trees) nodes are taken at random from the function
set until this maximum tree depth is reached, and beyond that depth only
terminals can be chosen. Figure 4 shows snapshots of this process in the
construction of a full tree of depth 2. The children of the * node, for example,

932 W.B. Langdon et al.

+
t=1

+

∗

t=2 t=3

x

+

∗

+
t=4

x

∗

y

+
t=6

x

∗

y

/

+
t=7

x

∗

y 01

/

+
t=5

x

∗

y

/

1

Fig. 4. Creation of a full tree having maximum depth 2 (and therefore a total of
seven nodes) using the Full initialization method (t=time)

+
t=1

+
t=2

x

t=3

+

−x

t=4

+

−x

2

t=5

+

−x

2 y

Fig. 5. Creation of a five node tree using the Grow initialization method with a
maximum depth of 2 (t=time). A terminal is chosen at t = 2, causing the left branch
of the root to be closed at that point even though the maximum depth had not been
reached

must be leaves, or the resulting tree would be too deep; thus at time t = 3
and time t = 4 terminals must be chosen (x and y in this case).

Where the Full method generates trees of a specific size and shape, the
Grow method allows for the creation of trees of varying size and shape. Here
nodes are selected from the whole primitive set (functions and terminals)
until the depth limit is reached, below which only terminals may be chosen
(as is the case in the Full method). Figure 5 illustrates this process for the
construction of a tree with depth limit 2. Here the first child of the root +
node happens to be a terminal, thus closing off that branch before actually
reaching the depth limit. The other child, however, is a function (-), but its
children are forced to be terminals to ensure that the resulting tree does not
exceed the depth limit.

Pseudo code for a recursive implementation of both the Full and Grow
methods is given in Algorithm 2.

Genetic Programming: An Introduction and Tutorial 933

Algorithm 2 Pseudo code for recursive program generation with the Full
and Grow methods
procedure: gen rnd expr(func set, term set, max d, method)

1: if max d = 0 or
(
method = grow and rand() < |term set|

|term set|+|func set|

)
then

2: expr = choose random element(term set)
3: else
4: func = choose random element(func set)
5: for i = 1 to arity(func) do
6: arg i = gen rnd expr(func set, term set, max d - 1, method);
7: expr = (func, arg 1, arg 2, ...);
8: return expr

Notes: func set is a function set, term set is a terminal set, max d is the maximum
allowed depth for expressions, method is either Full or Grow and expr is the
generated expression in prefix notation.

Note here that the size and shapes of the trees generated via the Grow
method are highly sensitive to the sizes of the function and terminal sets. If,
for example, one has significantly more terminals than functions, the Grow
method will almost always generate very short trees regardless of the depth
limit. Similarly, if the number of functions is considerably greater than the
number of terminals, then the Grow method will behave quite similarly to
the Full method. While this is a particular problem for the Grow method, it
illustrates a general issue where small (and often apparently inconsequential)
changes such as the addition or removal of a few functions from the function
set can in fact have significant implications for the GP system, and potentially
introduce important unintended biases.

Because neither the Grow or Full method provide a very wide array of sizes
or shapes on their own, Koza proposed a combination called ramped half-and-
half [188]. Here half the initial population is constructed using Full and half
is constructed using Grow. This is done using a range of depth limits (hence
the term ‘ramped’) to help ensure that we generate trees having a variety of
sizes and shapes.

While these methods are easy to implement and use, they often make it
difficult to control the statistical distributions of important properties such as
the sizes and shapes of the generated trees. Other initialization mechanisms,
however, have been developed (such as [239]) that do allow for closer control
of these properties in instances where such control is important.

It is also worth noting that the initial population need not be entirely
random. If something is known about likely properties of the desired solution,
trees having these properties can be used to seed the initial population. Such
seeds might be created by humans based on knowledge of the problem domain,
or they could be the results of previous GP runs. However, one needs to be
careful not to create a situation where the second generation is dominated

934 W.B. Langdon et al.

by offspring of a single or very small number of seeds. Diversity preserving
techniques, such as multi-objective GP [287,344], demes [203] (see Sect. 8.6),
fitness sharing [115] and the use of multiple seed trees, might be used. In any
case, the diversity of the population should be monitored to ensure that there
is significant mixing of different initial trees.

2.3 Selection

Like in most other EAs, genetic operators in GP are applied to individuals that
are probabilistically selected based on fitness. That is, better individuals are
more likely to have more child programs than inferior individuals. The most
commonly employed method for selecting individuals in GP is tournament
selection, followed by fitness-proportionate selection, but any standard EA
selection mechanism can be used. Since selection has been described elsewhere
in this book (in the Chapters on EAs), we will not provide any additional
details.

2.4 Recombination and Mutation

Where GP departs significantly from other EAs is in the implementation of
the operators of crossover and mutation. The most commonly used form of
crossover is subtree crossover. Given two parents, subtree crossover randomly
selects a crossover point in each parent tree. Then, it creates the offspring
by replacing the sub-tree rooted at the crossover point in a copy of the first
parent with a copy of the sub-tree rooted at the crossover point in the second
parent, as illustrated in Fig. 6.

Fig. 6. Example of subtree crossover

Genetic Programming: An Introduction and Tutorial 935

Except in technical studies on the behavior of GP, crossover points are
usually not selected with uniform probability. Typical GP primitive sets lead
to trees with an average branching factor of at least two, so the majority
of the nodes will be leaves. Consequently the uniform selection of crossover
points leads to crossover operations frequently exchanging only very small
amounts of genetic material (that is, small subtrees); many crossovers may in
fact reduce to simply swapping two leaves. To counter this, Koza suggested
the widely used approach of choosing functions 90% of the time, while leaves
are selected 10% of the time.

While subtree crossover is the most common version of crossover in tree-
based GP, other forms have been defined and used. For example, one-point
crossover [222, 298, 300] works by selecting a common crossover point in the
parent programs and then swapping the corresponding subtrees. To account
for the possible structural diversity of the two parents, one-point crossover
analyzes the two trees from the root nodes and considers for the selection of
the crossover point only the parts of the two trees, called the common region,
which have the same topology (that is, the same arity in the nodes encountered
traversing the trees from the root node). In context-preserving crossover [79],
the crossover points are constrained to have the same coordinates, like in one-
point crossover. However, in this case no other constraint is imposed on their
selection (in other words, they are not limited to the common region).

In size-fair crossover [205, 206] the first crossover point is selected ran-
domly like in standard crossover. Then the size of the subtree to be excised
from the first parent is calculated. This is used to constrain the choice of the
second crossover point so as to guarantee that the subtree excised from the
second parent will not be ‘unfairly’ big. Finally, it is worth mentioning that
the notion of common region is related to the notion of homology, in the sense
that the common region represents the result of a matching process between
parent trees. It is then possible to imagine that within such a region transfer of
homologous primitives can happen in very much like the same way as it hap-
pens in GAs operating on linear chromosomes. An example of recombination
operator that implements this idea is uniform crossover for GP [299].

The most commonly used form of mutation in GP (which we will call sub-
tree mutation) randomly selects a mutation point in a tree and substitutes the
sub-tree rooted there with a randomly generated sub-tree. This is illustrated
in Fig. 7. Subtree mutation is sometimes implemented as crossover between a
program and a newly generated random program; this operation is also known
as ‘headless chicken’ crossover [10].

Another common form of mutation is point mutation, which is the rough
equivalent for GP of the bit-flip mutation used in GAs. In point mutation
a random node is selected and the primitive stored there is replaced with a
different random primitive of the same arity taken from the primitive set. If no
other primitives with that arity exist, nothing happens to that node (but other

936 W.B. Langdon et al.

3

yx

+

+

Mutation
Point

Randomly Generated
Sub-tree

y

∗

2x

/

yx

+

+

Mutation
Point

y

∗

2x

/

Fig. 7. Example of subtree mutation

nodes may still be mutated). Note that, when subtree mutation is applied, this
involves the modification of exactly one subtree. Point mutation, on the other
hand, is typically applied with a given mutation rate on a per-node basis,
allowing multiple nodes to be mutated independently.

There are a number of mutation operators which treat constants in the
program as special cases. [341] mutates constants by adding Gaussianly dis-
tributed random noise to them. However, others use a variety of potentially
expensive optimization tools to try and fine tune an existing program by find-
ing the ‘best’ value for constants within it. For instance, [340] uses ‘a numerical
partial gradient ascent . . . to reach the nearest local optimum’ to modify all
constants in a program, while [348] uses simulated annealing to stochastically
update numerical values within individuals.

While mutation is not necessary for GP to solve many problems, [281]
argues that, in some cases, GP with mutation alone can perform as well as
GP using crossover. While mutation was often used sparsely in early GP work,
it is more widely used in GP today, especially in modeling applications.

3 Getting Ready to Run Genetic Programming

To run a GP system to solve a problem a small number of ingredients, often
termed preparatory steps, need to be specified:

1. the terminal set,
2. the function set,
3. the fitness measure,
4. certain parameters for controlling the run, and
5. the termination criterion and method for designating the result of the run.

In this Section we consider these ingredients in more detail.

Genetic Programming: An Introduction and Tutorial 937

3.1 Step 1: Terminal Set

While it is common to describe GP as evolving programs, GP is not typ-
ically used to evolve programs in the familiar, Turing-complete languages
humans normally use for software development. It is instead more common to
evolve programs (or expressions or formulae) in a more constrained and often
domain-specific language. The first two preparatory steps, the definition of the
terminal and function sets, specify such a language – that is, the ingredients
that are available to GP to create computer programs.

The terminal set may consist of:

• the program’s external inputs, typically taking the form of named variables
(say x, y);

• functions with no arguments, which are, therefore, interesting either be-
cause they return different values in different invocations (for exam-
ple, the function rand() that returns random numbers, or a function
dist to wall() that returns the distance from the robot we are controlling
to an obstacle) or because the produce side effects (such as go left());
and

• constants, which can either be pre-specified or randomly generated as part
of the tree creation process.

Note that using a primitive such as rand can cause the behavior of an
individual program to vary every time it is called, even if it is given the
same inputs. What we often want instead is a set of fixed random constants
that are generated as part of the process of initializing the population. This is
typically accomplished by introducing a terminal that represents an ephemeral
random constant. Every time this terminal is chosen in the construction of an
initial tree (or a new subtree to use in an operation like mutation), a different
random value is generated which is then used for that particular terminal, and
which will remain fixed for the rest of the run. The use of ephemeral random
constants is typically denoted by including the symbol $ in the terminal set;
see Sect. 4 for an example.

3.2 Step 2: Function Set

The function set used in GP is typically driven by the nature of the problem
domain. In a simple numeric problem, for example, the function set may
consist of merely the arithmetic functions (+, -, *, /). However, all sorts of
other functions and constructs typically encountered in computer programs
can be used. Table 1 shows a sample of some of the functions one sees in the
GP literature. Also for many problems, the primitive set includes specialised
functions and terminals which are expressly designed to solve problems in a
specific domain of application. For example, if the goal is to program a robot
to mop the floor, then the function set might include such actions as move,
turn, and swish-the-mop.

938 W.B. Langdon et al.

Table 1. Examples of primitives allowed in the GP function and terminal sets

Function Set

Kind of Primitive Example(s)

Arithmetic +, *, /
Mathematical sin, cos, exp
Boolean AND, OR, NOT
Conditional IF-THEN-ELSE

Looping FOR, REPEAT
...

...

Terminal Set

Kind of Primitive Example(s)

Variables x, y
Constant values 3, 0.45
0-arity functions rand, go left

Closure

For GP to work effectively, most function sets are required to have an impor-
tant property known as closure [188], which can in turn be broken down into
the properties of type consistency and evaluation safety.

Type consistency is necessitated by the fact that subtree crossover (as
described in Sect. 2.4) can mix and join nodes quite arbitrarily during the
evolutionary process. As a result it is necessary that any subtree can be used
in any of the argument positions for every function in the function set, because
it is always possible that sub-tree crossover will generate that combination. For
functions that return a value (such as +, -, *, /), it is then common to require
that all the functions be type consistent, namely that they all return values of
the same type, and that all their arguments be of that type as well. In some
cases this requirement can be weakened somewhat by providing an automatic
conversion mechanism between types – for example, converting numbers to
Booleans by treating all negative values as false, and non-negative values as
true. Conversion mechanisms like this can, however, introduce unexpected
biases into the search process, so they should be used thoughtfully.

The requirement of type consistency can seem quite limiting, but often
simple restructuring of the functions can resolve apparent problems. An if
function, for example, would often be defined as taking three arguments: The
test, the value to return if the test evaluates to true, and the value to return
if the test evaluates to false. The first of these three arguments is clearly
Boolean, which would suggest that if can’t be used with numeric functions
like +. This can easily be worked around however by providing a mecha-
nism to automatically convert a numeric value into a Boolean as discussed
above. Alternatively, one can replace the traditional if with a function of
four (numeric) arguments a, b, c, d with the semantics ‘If a < b then return
value c, otherwise return value d’. These are obviously just specific examples
of general techniques; the details are likely to depend on the particulars of
your problem domain.

Genetic Programming: An Introduction and Tutorial 939

An alternative to requiring type consistency is to extend the GP system
to, for example, explicitly include type information, and constrain operations
like crossover so they do not perform ‘illegal’ (from the standpoint of the type
system) operations. This is discussed further in Sect. 5.4.

The other component of closure is evaluation safety, necessitated by the
fact that many commonly used functions can fail in various ways. An evolved
expression might, for example, divide by 0, or call MOVE FORWARD when facing
a wall or precipice. This is typically dealt with by appropriately modifying the
standard behavior of primitives. It is common, for example, to use protected
versions of numeric functions that can throw exceptions, such as division,
logarithm, and square root. The protected version of such a function first tests
for potential problems with its input(s) before executing the corresponding
instruction, and if a problem is spotted some pre-fixed value is returned.
Protected division (often notated with %), for example, checks for the case
that its second argument is 0, and typically returns 1 if it is (regardless of
the value of the first argument).1 Similarly, MOVE AHEAD can be modified to do
nothing if a forward move is illegal for some reason or, if there are no other
obstacles, the edges can simply be eliminated by making the world toroidal.

An alternative to protected functions is to trap run-time exceptions and
strongly reduce the fitness of programs that generate such errors. If the like-
lihood of generating invalid expressions is very high, however, this method
can lead to all the individuals in the population having nearly the same (very
poor) fitness, leaving selection with very little discriminatory power.

One type of run-time error that is somewhat more difficult to check for
is numeric overflow. If the underlying implementation system throws some
sort of exception, then this can be handled either by protection or by penal-
izing as discussed above. If, however, the implementation language quietly
ignores the overflow (for instance, the common practice of wrapping around
on integer overflow), and if this behavior is seen as unacceptable, then the
implementation will need to include appropriate checks to catch and handle
such overflows.

Sufficiency

There is one more property that, ideally, primitives sets should have: suffi-
ciency. Sufficiency requires that the primitives in the primitive set are capable
of expressing the solutions to the problem, in other words that the set of all
the possible recursive compositions of such primitives includes at least one

1 The decision to return 1 here provides the GP system with a simple and reliable
way to generate the constant 1, via an expression of the form (/ x x). This,
combined with a similar mechanism for generating 0 via (- x x) ensures that
GP can easily construct these two important constant.

940 W.B. Langdon et al.

solution. Unfortunately, sufficiency can be guaranteed only for some prob-
lems, when theory or experience with other methods tells us that a solution
can be obtained by combining the elements of the primitive set.

As an example of a sufficient primitive set let us consider the set {AND, OR,
NOT, x1, x2, ..., xN}, which is always sufficient for Boolean function induction
problems, since it can produce all Boolean functions of the variables x1, x2,
..., xN. An example of insufficient set is the set {+, -, *, /, x, 0, 1, 2}, which is
insufficient whenever, for example, the target function is transcendental – for
example, exp(x) – and therefore cannot be expressed as a rational function
(basically, a ratio of polynomials). When a primitive set is insufficient for a
particular application, GP can only develop programs that approximate the
desired one, although perhaps very closely.

Evolving Structures other than Programs

There are many problems in the real world where solutions cannot be directly
cast as computer programs. For example, in many design problems the solution
is an artifact of some type (a bridge, a circuit, or similar). GP has been applied
to problems of this kind by using a trick: the primitive set is designed in
such a way that, through their execution, programs construct solutions to the
problem. This has been viewed as analogous to the development by which an
egg grows into an adult. For example, if the goal is the automatic creation of
an electronic controller for a plant, the function set might include common
components such as integrator, differentiator, lead, lag, and gain, and
the terminal set might contain reference, signal, and plant output. Each
of these operations, when executed, then insert the corresponding device into
the controller being built. If, on the other hand, the goal is the synthesis of
analogue electrical circuits the function set might include components such
as transistors, capacitors, resistors, and so on. This is further discussed in
Sect. 5.5.

3.3 Step 3: Fitness Function

The first two preparatory steps define the primitive set for GP, and there-
fore, indirectly define the search space GP will explore. This includes all the
programs that can be constructed by composing the primitives in all possible
ways. However, at this stage we still do not know which elements or regions
of this search space are good (that is, include programs that solve or approx-
imately solve the problem). This is the task of the fitness measure, which
effectively (albeit implicitly) specifies the desired goal of the search process.
The fitness measure is our primary (and often sole) mechanism for giving a
high-level statement of the problem’s requirements to the GP system. For
example, if the goal is to get GP to automatically synthesize an amplifier, the
fitness function is the mechanism for telling GP to synthesize a circuit that

Genetic Programming: An Introduction and Tutorial 941

amplifies an incoming signal (as opposed to, say, a circuit that suppresses the
low frequencies of an incoming signal or computes its square root).

Depending on the problem at hand, fitness can be measured in terms of the
amount of error between its output and the desired output, the amount of time
(fuel, money, and the like) required to bring a system to a desired target state,
the accuracy of the program in recognizing patterns or classifying objects into
classes, the payoff that a game-playing program produces, the compliance of
a structure with user-specified design criteria, and so on.

There is something unusual about the fitness functions used in GP that
differentiates them from those used in most other EAs. Because the struc-
tures being evolved in GP are computer programs, fitness evaluation normally
requires executing all the programs in the population, typically multiple
times. While one can compile the GP programs that make up the popula-
tion, the overhead is usually substantial, so it is much more common to use
an interpreter to evaluate the evolved programs.

Interpreting a program tree means executing the nodes in the tree in an
order that guarantees that nodes are not executed before the value of their
arguments (if any) is known. This is usually done by traversing the tree recur-
sively starting from the root node, and postponing the evaluation of each
node until the value of its children (arguments) is known. This process is
illustrated in Fig. 8, where the number to the right of each internal node rep-
resents the result of evaluating the subtree root at that node. In this example,
the independent variable X evaluates to -1. Algorithm 3 gives a pseudo-code
implementation of the interpretation procedure. The code assumes that pro-
grams are represented as prefix-notation expressions and that such expressions
can be treated as lists of components.

-

+ /

x3 0 1 2

- - - -

x 03

3

x=-1

-2

1

3 -3

-1

2

Fig. 8. Example interpretation of a syntax tree (the terminal x is a variable has a
value of −1). The number to the right of each internal node represents the result of
evaluating the subtree root at that node

942 W.B. Langdon et al.

Algorithm 3 Typical interpreter for GP

procedure: eval(expr)

1: if expr is a list then
2: proc = expr(1) {Non-terminal: extract root}
3: if proc is a function then
4: value = proc(eval(expr(2)), eval(expr(3)), ...) {Function: evaluate

arguments}
5: else
6: value = proc(expr(2), expr(3), ...) {Macro: don’t evaluate arguments}
7: else
8: if expr is a variable or expr is a constant then
9: value = expr {Terminal variable or constant: just read the value}

10: else
11: value = expr() {Terminal 0-arity function: execute}
12: return value

Notes: expr is an expression in prefix notation, expr(1) represents the primitive at
the root of the expression, expr(2) represents the first argument of that primitive,
expr(3) represents the second argument, and so forth.

In some problems we are interested in the output produced by a program,
namely the value returned when we evaluate starting at the root node. In
other problems, however, we are interested in the actions performed by a pro-
gram. In this case the primitive set will include functions with side effects –
that is, functions that do more than just return a value – but say change
some global data structures, print or draw something on the screen or control
the motors of a robot. Irrespective of whether we are interested in program
outputs or side effects, quite often the fitness of a program depends on the
results produced by its execution on many different inputs or under a variety
of different conditions. These different test cases typically incrementally con-
tribute to the fitness value of a program, and for this reason are called fitness
cases.

Another common feature of GP fitness measures is that, for many practical
problems, they are multi-objective, in other words they combine two or more
different elements that are often in competition with one another. The area of
multi-objective optimization is a complex and active area of research in GP
and machine learning in general; see [73], for example, for more.

3.4 Steps 4 and 5: Parameters and Termination

The fourth and fifth preparatory steps are administrative. The fourth prepara-
tory step entails specifying the control parameters for the run. The most
important control parameter is the population size. Other control parameters
include the probabilities of performing the genetic operations, the maximum
size for programs, and other details of the run.

Genetic Programming: An Introduction and Tutorial 943

The fifth preparatory step consists of specifying the termination criterion
and the method of designating the result of the run. The termination criterion
may include a maximum number of generations to be run as well as a problem-
specific success predicate. Typically the single best-so-far individual is then
harvested and designated as the result of the run, although one might wish
to return additional individuals and data as necessary or appropriate for your
problem domain.

4 Example Genetic Programming Run

This Section provides a concrete, illustrative run of GP in which the goal is to
automatically evolve an expression whose values match those of the quadratic
polynomial x2 + x+ 1 in the range [−1, +1]. That is, the goal is to automat-
ically create a computer program that matches certain numerical data. This
process is sometimes called system identification or symbolic regression (see
Sect. 7.1 for more).

We begin with the five preparatory steps from the previous section, and
then describe in detail the events in one possible run.

4.1 Preparatory Steps

The purpose of the first two preparatory steps is to specify the ingredients
the evolutionary process can use to construct potential solutions. Because the
problem is to find a mathematical function of one independent variable, x,
the terminal set (the inputs to the to-be-evolved programs) must include this
variable. The terminal set also includes ephemeral random constants, drawn
from some reasonable range, say from −5.0 to +5.0, as described in Sect. 3.1.
Thus the terminal set, T , is

T = {x,$} (1)

The statement of the problem is somewhat flexible in that it does not
specify what functions may be employed in the to-be-evolved program. One
simple choice for the function set consists of the four ordinary arithmetic
functions: addition, subtraction, multiplication, and division. Most numeric
regression will include at least these operations, often in conjunction with
additional functions such as sin and log. In our example, however, we will
restrict ourselves to the simple function set

F = {+, -, *, %} (2)

where % is protected division as discussed in Sect. 3.2.

The third preparatory step involves constructing the fitness measure that
specifies what the human wants. The high-level goal of this problem is to

944 W.B. Langdon et al.

find a program whose output is equal to the values of the quadratic poly-
nomial x2 +x+ 1. Therefore, the fitness assigned to a particular individual
in the population for this problem must reflect how closely the output of an
individual program comes to the target polynomial x2 +x+ 1.

The fitness measure could be defined as the integral of the absolute
value of the differences (errors) between the individual mathematical expres-
sion and the target quadratic polynomial x2 +x+ 1, taken over the range
[−1, +1]. However, for most symbolic regression problems, it is not practical
or possible to analytically compute the value of the integral of the abso-
lute error. Thus it is common to instead define the fitness to be the sum
of absolute errors measured at different values of the independent variable
x in the range [−1.0, +1.0]. In particular, we will measure the errors for
x = −1.0,−0.9, · · · , 0.9, 1.0. A smaller value of fitness (error) is better; a
fitness (error) of zero would indicate a perfect fit. Note that with this def-
inition, our fitness is (approximately) proportional to the area between the
parabola x2 +x+ 1 and the curve representing the candidate individual (see
Fig. 10 for examples).

The fourth step is where we set our run parameters. The population size
in this small illustrative example will be just four. In actual practice, the
population size for a run of GP typically consists of thousands or millions
of individuals, but we will use this tiny population size to keep the example
manageable. In practice, the crossover operation is commonly used to generate
about 90% of the individuals in the population; the reproduction operation
(where a fit individual is simply copied from one generation to the next) is
used to generate about 8% of the population; the mutation operation is used to
generate about 1% of the population; and the architecture-altering operations
(see Sect. 5.2) are used to generate perhaps 1% of the population. Because this
example involves an abnormally small population of only four individuals, the
crossover operation will be used to generate two individuals, and the mutation
and reproduction operations will each be used to generate one individual. For
simplicity, the architecture-altering operations are not used for this problem.

In the fifth and final step we need to specify a termination condition. A
reasonable termination criterion for this problem is that the run will continue
from generation to generation until the fitness (or error) of some individual
is less than 0.1. In this contrived example, our example run will (atypically)
yield an algebraically perfect solution (with a fitness of zero) after merely one
generation.

4.2 Step-by-Step Sample Run

Now that we have performed the five preparatory steps, the run of GP can be
launched.

Genetic Programming: An Introduction and Tutorial 945

(a) (b) (c) (d)

- + + *

+ 0 1 * 2 0 x

x 1 x x -1 -2

x+1 x +1
2 2 x

-

Fig. 9. Initial population of four randomly created individuals of generation 0

Initialization

GP starts by randomly creating a population of four individual computer
programs. The four programs are shown in Fig. 9 in the form of trees.

The first randomly constructed program tree (Fig. 9a), and is equivalent to
the expression x+1. The second program (Fig. 9b) adds the constant terminal
1 to the result of multiplying x by x and is equivalent to x2 + 1. The third
program (Fig. 9c) adds the constant terminal 2 to the constant terminal 0
and is equivalent to the constant value 2. The fourth program (Fig. 9d) is
equivalent to x.

Fitness Evaluation

Randomly created computer programs will, of course, typically be very poor
at solving the problem at hand. However, even in a population of randomly
created programs, some programs are better than others. Here, for exam-
ple, the four random individuals from generation 0 in Fig. 9 produce outputs
that deviate by different amounts from the target function x2 +x+ 1. Fig. 10
compares the plots of each of the four individuals in Fig. 9 and the target
quadratic function x2 +x+ 1. The sum of absolute errors for the straight line
x+1 (the first individual) is 7.7 (Fig. 10a). The sum of absolute errors for the
parabola x2 +1 (the second individual) is 11.0 (Fig. 10b). The sums of the
absolute errors for the remaining two individuals are 17.98 (Fig. 10c) and 28.7
(Fig. 10d), respectively.

As can be seen in Fig. 10, the straight line x+ 1 (Fig. 10a) is closer to
the parabola x2 +x+ 1 in the range from –1 to +1 than any of three other
programs in the population. This straight line is, of course, not equivalent to
the parabola x2 +x+ 1; it is not even a quadratic function. It is merely the
best candidate that happened to emerge from the blind (and very limited)
random search of generation 0. In the valley of the blind, the one-eyed man
is king.

946 W.B. Langdon et al.

(a) (b)

(c) (d)

-2

-1 1

-2

-1

-2

-1 1

-2

-1

4

1

4

4 4

1

Fig. 10. Graphs of the evolved functions from generation 0. The heavy line in each
plot is the target function x2 +x+1, with the other line being the evolved functions
from the first generation (see Fig. 9). The fitness of each of the four randomly created
individuals of generation 0 is approximately proportional to the area between two
curves, with the actual fitness values being 7.7, 11.0, 17.98 and 28.7 for individuals
(a) through (d), respectively

Selection, Crossover and Mutation

After the fitness of each individual in the population is ascertained, GP then
probabilistically selects relatively more fit programs from the population to
act as the parents of the next generation. The genetic operations are applied
to the selected individuals to create offspring programs. The important point
for our example is that our selection process is not greedy. Individuals that are
known to be inferior will be selected to a certain degree. The best individual
in the population is not guaranteed to be selected and the worst individual in
the population will not necessarily be excluded.

In this example, we will start with the reproduction operation. Because
the first individual (Fig. 9a) is the most fit individual in the population, it is
very likely to be selected to participate in a genetic operation. Let us suppose
that this particular individual is, in fact, selected for reproduction. If so, it is
copied, without alteration, into the next generation (generation 1). It is shown
in Fig. 11a as part of the population of the new generation.

We next perform the mutation operation. Because selection is probabilis-
tic, it is possible that the third best individual in the population (Fig. 9c) is
selected. One of the three nodes of this individual is then randomly picked as
the site for the mutation. In this example, the constant terminal 2 is picked

Genetic Programming: An Introduction and Tutorial 947

(a) (b) (c) (d)

- + - +

+ 0 % 0 x 0 1 *

x 1 x x x

x+1 1 x

x 1

+

x + x + 1
2

Fig. 11. Population of generation 1 (after one reproduction, one mutation, and one
two-offspring crossover operation)

as the mutation site. This program is then randomly mutated by deleting
the entire subtree rooted at the picked point (in this case, just the constant
terminal 2) and inserting a subtree that is randomly constructed in the same
way that the individuals of the initial random population were originally cre-
ated. In this particular instance, the randomly grown subtree computes the
quotient of x and x using the protected division operation %. The resulting
individual is shown in Fig. 11b. This particular mutation changes the original
individual from one having a constant value of 2 into one having a constant
value of 1, improving its fitness from 17.98 to 11.0.

Finally, we use the crossover operation to generate our final two individuals
for the next generation. Because the first and second individuals in genera-
tion 0 are both relatively fit, they are likely to be selected to participate in
crossover. However, selection can always pick suboptimal individuals. So, let
us assume that in our first application of crossover the pair of selected parents
is composed of the above-average tree in Figs. 9a and the below-average tree
in Fig. 9d. One point of the first parent, namely the + function in Fig. 9a, is
randomly picked as the crossover point for the first parent. One point of the
second parent, namely the leftmost terminal x in Fig. 9d, is randomly picked
as the crossover point for the second parent. The crossover operation is then
performed on the two parents. The offspring (Fig. 11c) is equivalent to x and
is not particularly noteworthy.

Let us now assume, that in our second application of crossover, selection
chooses the two most fit individuals as parents: the individual in Fig. 9b as
the first parent, and the individual in Fig. 9a as the second. Let us further
imagine that crossover picks the leftmost terminal x in Fig. 9b as a crossover
point for the first parent, and the + function in Fig. 9a as the crossover point
for the second parent. Now the offspring (Fig. 11d) is equivalent to x2 + x + 1
and has a fitness (sum of absolute errors) of zero. Because the fitness of this

948 W.B. Langdon et al.

individual is below 0.1, the termination criterion for the run is satisfied and
the run is automatically terminated. This best-so-far individual (Fig. 11d) is
then designated as the result of the run.

Note that the best-of-run individual (Fig. 11d) incorporates a good trait
(the quadratic term x 2) from the first parent (Fig. 9b) with two other good
traits (the linear term x and constant term of 1) from the second parent
(Fig. 9a). The crossover operation thus produced a solution to this problem
by recombining good traits from these two relatively fit parents into a superior
(indeed, perfect) offspring.

This is, obviously, a highly simplified example, and the dynamics of a real
GP run are typically far more complex than what is presented here. Also, in
general there is no guarantee that an exact solution like this will be found
by GP.

5 Advanced Tree-Based GP Techniques

5.1 Automatically Defined Functions

Human programmers organize sequences of repeated steps into reusable com-
ponents such as subroutines, functions, and classes. They then repeatedly
invoke these components — typically with different inputs. Reuse eliminates
the need to ‘reinvent the wheel’ every time a particular sequence of steps is
needed. Reuse makes it possible to exploit a problem’s modularities, symme-
tries, and regularities (and thereby potentially accelerate the problem-solving
process). This can be taken further, as programmers typically organize these
components into hierarchies in which top level components call lower level
ones, which call still lower levels, and so forth.

While several different mechanisms for evolving reusable components have
been proposed (for instance, [13, 331]), Koza’s Automatically Defined Func-
tions (ADFs) [189] have been the most successful way of evolving reusable
components.

When ADFs are used, a program consists of one (or more) function-
defining trees (that is, ADFs) as well as one or more main result-producing
trees (see Fig. 3). An ADF may have none, one, or more inputs. The body of
an ADF contains its work-performing steps. Each ADF belongs to a particular
program in the population. An ADF may be called by the program’s main
result-producing tree, by another ADF, or by another type of tree (such as the
other types of automatically evolved program components described below).
Recursion is sometimes allowed. Typically, the ADFs are called with different
inputs. The work-performing steps of the program’s main result-producing
tree and the work-performing steps of each ADF are automatically and simul-
taneously created by GP. The program’s main result-producing tree and its

Genetic Programming: An Introduction and Tutorial 949

ADFs typically have different function and terminal sets. ADFs are the focus
of [189] and [190].

Koza also proposed other types of automatically evolved program compo-
nents. Automatically defined iterations (ADIs), automatically defined loops
(ADLs) and automatically defined recursions (ADRs) provide means (in addi-
tion to ADFs) to reuse code. Automatically defined stores (ADSs) provide
means to reuse the result of executing code. These automatically defined
components are described in [195].

5.2 Program Architecture and Architecture-Altering Operations

The architecture of a program consists of the total number of trees, the type
of each tree (for example, result-producing tree, ADF, ADI, ADL, ADR, or
ADS), the number of arguments (if any) possessed by each tree, and, finally,
if there is more than one tree, the nature of the hierarchical references (if any)
allowed among the tree.

There are three ways to determine the architecture of the computer
programs that will be evolved:

1. The human user may specify in advance the architecture of the overall
program, in other words perform an architecture-defining preparatory step
in addition to the five itemized in Sect. 2.

2. The run may employ evolutionary selection of the architecture (as described
in [189]), thereby enabling the architecture of the overall program to emerge
from a competitive process during the run of GP.

3. The run may employ a set of architecture-altering operations which can
create new ADFs, remove ADFs, and increase or decrease the number of
inputs an ADF has. Note initially, many architecture changes (such as those
define in [189]) are designed not to change the semantics of the program
and, so, the altered program often has exactly the same fitness as its parent.
However, the new arrangement of ADFs may make it easier for subsequent
changes to evolve better programs later.

5.3 Genetic Programming Problem Solver

The Genetic Programming Problem Solver (GPPS) is described in part 4
of [195]. It is a very powerful AI approach, but typically it requires considerable
computational time.

When GPPS is used, the user does not need to chose either the terminal
set or the function set (the first and second preparatory steps – Sect. 2).
The function set for GPPS is the four basic arithmetic functions (addition,
subtraction, multiplication, and division) and a conditional operator IF. The
terminal set for GPPS consists of numerical constants and a set of input
terminals that are presented in the form of a vector. By employing this generic

950 W.B. Langdon et al.

function set and terminal set, GPPS reduces the number of preparatory steps
from five to three.

GPPS relies on the architecture-altering operations described in Sect. 5.2
to dynamically create, duplicate, and delete subroutines and loops during
the run of GP. Additionally, in version 2.0 of GPPS [195, Chapter 22], the
architecture-altering operations are used to dynamically create, duplicate, and
delete recursions and internal storage. Because the architecture of the evolv-
ing program is automatically determined during the run, GPPS eliminates
the need for the user to specify in advance whether to employ subroutines,
loops, recursions and internal storage in solving a given problem. It similarly
eliminates the need for the user to specify the number of arguments possessed
by each subroutine. Further, GPPS eliminates the need for the user to specify
the hierarchical arrangement of the invocations of the subroutines, loops, and
recursions.

5.4 Constraining Syntactic Structures

As discussed in Sect. 3, most GP systems require type consistency where all
sub-trees return data of the same type, ensuring that the output of any subtree
can be used as one of the inputs to any other node. This ensures that the
shuffling caused by sub-tree crossover, and so on, doesn’t lead to incompatible
connections between nodes. Many problem domains, however, have multiple
types and do not naturally satisfy the type consistency requirement. This can
often be addressed through creative definitions of functions and implicit type
conversion, but this may not always be desirable. For example, if a key goal
is that the evolved solutions should be easily understood or analyzed, then
removing type concepts and other common constraints may lead to solutions
that are unacceptable because they are quite difficult to interpret. GP systems
that are constrained structurally or via a type system often generate results
that are easier for humans to understand and analyze [137], [203, p. 126].

In this Section we will look at three different approaches to constraining
the syntax of the evolved expression trees in GP: simple structure enforcement,
strongly typed GP and grammar-based constraints.

Enforcing Particular Structures

If a particular structure is believed or known to be important then one can
modify the GP system to require all individuals to have that structure [188].
A periodic function, for example, might be believed to be of the form a sin(bt)
and so the GP is restricted to evolving expressions having that structure.
(in other words, a and b are allowed to evolve freely, but the rest of the
structure is fixed). Syntax restriction can also be used to make GP follow
sensible engineering practices. For example, we might want to ensure that
loop control variables appear in the correct parts of FOR loops and nowhere
else [203, p.126].

Genetic Programming: An Introduction and Tutorial 951

This can be implemented in a number of ways. One could, for example,
ensure that all the initial individuals have that structure (for example, gener-
ating random sub-trees for a and b while fixing the rest), and then constrain
operations like crossover so that they do not alter any of the fixed regions.
An alternative approach would be to evolve the various (sub)components sep-
arately in any of several ways. One could, for example, evolve pairs of trees
(a, b), or one could have two separate populations, one of which is being used
to evolve candidates for a while the other is evolving candidates for b.

Strongly Typed GP

Since constraints are often driven by or expressed using a type system, a
natural approach is to incorporate types and their constraints into the GP
system [259]. In strongly typed GP, every terminal has a type, and every
function has types for each of its arguments and a type for its return value.
The process that generates the initial, random expressions, and all the genetic
operators are then constrained to not violate the type system’s constraints.

Returning to the if example from Sect. 3, we might have a domain
with both numeric and Boolean terminals (for instance, get speed and
is food ahead). We might then have an if function that takes three argu-
ments: A test (Boolean), the value to return if the test is true, and the value to
return if the test is false. Assuming that the second and third values are con-
strained to be numeric, then the output of the if is also going to be numeric.
If we choose the test argument as a root parent crossover point, then the
sub-tree to insert must have a Boolean output; if we choose either the second
or third argument as a root parent crossover point, then the inserted sub-tree
must be numeric.

This basic approach to types can be extended to more complex type sys-
tems including simple generics [259], multi-level type systems [138], and fully
polymorphic, higher-order type systems with generics [413].

Grammar-Based Constraints

Another natural way to express constraints is via grammars, and these have
been used in GP in a variety of ways [123,143,279,395,404]. Many of these sim-
ply use a grammar as a means of expressing the kinds of constraints discussed
above in Sect. 5.4. One could enforce the structure for the period function
using a grammar such as the following:

tree ::= E × sin(E × t)
E ::= var | E op E

op ::= + | − | × | ÷ (3)
var ::= x | y | z

952 W.B. Langdon et al.

Genetic operators are restricted to only swapping sub-trees deriving from
a common non-terminal symbol in the grammar. So, for example, an E could
be replaced by another E, but an E could not be replaced by an op. This
can be extended to, for example, context-sensitive grammars by incorporating
various related concepts from computational linguistics. The TAG3P+ system
[143,144], for example, uses tree-adjoining grammars (TAGs) to constrain the
evolved structures.

Another major area is grammatical evolution (GE) [279, 336]. In GE a
grammar is used as in the example above. However instead of representing
individuals directly using either expression or derivation trees, grammatical
evolution represents individuals using a variable length sequence of integers.
For each production rule, the set of options on the right hand side are num-
bered from 0 upwards. In the example above the first rule only has one option
on the right hand side; this would both be numbered 0. The second rule has
two options, which would be numbered 0 and 1, the third rule has four options
which would be numbered 0 to 3, and the fourth rule has three options num-
bered 0 to 2. An expression tree is then generated by using the values in the
individual to ‘choose’ which option to take in the production rules, rewriting
the left-most non-terminal is the current expression.

If, for example, an individual is represented by the sequence:

39, 7, 2, 83, 66, 92, 57, 80, 47, 94

then the translation process would proceed as follows (with the non-terminal
to be rewritten underlined in each case):

tree

→ 〈 39 mod 1 = 0, that is, there is only one option 〉
E × sin(E × t)

→ 〈 7 mod 2 = 1, in other words, choose second option 〉
(E op E) × sin(E × t)

→ 〈 2 mod 2 = 0, namely, take the first option 〉
(const op E) × sin(E × t)

→ 〈 83 mod 3 = 2, again, only one option, generate an ephemeral constant 〉
(z op E) × sin(E × t)

→ 〈 66 mod 4 = 2, take the third option 〉
(z × E) × sin(E × t)

. . .

(z × x) × sin(z × t)

In this example we didn’t need to use all the numbers in the sequence
to generate a complete expression free of non-terminals; 94 was in fact never
used. In general ‘extra’ genetic material is simply ignored. Alternatively, some-
times a sequence can be ‘too short’ in the sense that the end of the sequence

Genetic Programming: An Introduction and Tutorial 953

is reached before the translation process is complete. There are a variety of
options in this case, including failure (assigning this individual the worst pos-
sible fitness) and wrapping (continuing the translation process, moving back
to the front of the numeric sequence). See [279] for further details on this and
other aspects of grammatical evolution.

Constraints and Bias

While increasing the expressive power of a type system or other constraint
mechanism may indeed limit the search space by restricting the kinds of struc-
tures that can be constructed, this often comes at a price. An expressive
type system typically requires more complex machinery to support it. It often
makes it more difficult to generate type-correct individuals in the initial popu-
lation, and more difficult to find genetic operations that do not violate the type
system. In an extreme case like constructive type theory, the type system is
so powerful that it can completely express the formal specification of the pro-
gram, so any program/expression having this type is guaranteed to meet that
specification. In the GP context this would mean that all the members of the
initial population (assuming that they are required to have the desired type)
would in fact be solutions to the problem, thus removing the need for any evo-
lution at all! Even without such extreme constraints, it has often been found
necessary to develop additional machinery in order to efficiently generate an
initial population that satisfies the necessary constraints [259, 318, 339, 413].

As a rule, systems that focus on syntactic constraints (such as grammar
based systems) require less machinery than those that focus on semantic
constraints (such as type systems), since it’s typically easier to satisfy the
syntactic constraints in a mechanistic fashion. Grammar based systems such
as GE and TAG, for example, are typically simple to initialize, and require
few if any constraints to be honored by the mutation and recombination oper-
ators. The work (and the bias) in these systems is much more in the design of
the grammar; once that is in place there is often little additional work required
of either the practitioner or the GP system to enforce the constraints implied
by the grammar.

While a constraint system may limit the search space in valuable ways [318]
and can improve performance on interesting problems [144], there is no general
guarantee that constraint systems will make the evolutionary search process
easier. There is no broad assurance, for example, that constraint systems will
significantly increase the density of solutions or (perhaps more importantly)
approximate solutions. While there are cases where constraint systems smooth
the search landscape [144], it is also possible for constraint systems to make the
search landscape more rugged by preventing genetic operations from creating
intermediate forms on potentially valuable evolutionary paths. It might be
useful to extend solution density studies such as those summarised in [222] to

954 W.B. Langdon et al.

the landscapes generated by constraint systems in order to better understand
the impact of these constraints on the underlying search spaces.

In summary, while types, grammars, and other constraint systems can
be powerful tools, all such systems carry biases. One, therefore, needs to be
careful to explore the biases introduced by the constraints and not simply
assume that they are beneficial to the search process.

5.5 Developmental Genetic Programming

When appropriate terminals, functions and/or interpreters are defined, stan-
dard GP can go beyond the production of computer programs. For example,
in a technique called cellular encoding, programs are interpreted as sequences
of instructions which modify (grow) a simple initial structure (embryo). Once
the program terminates, the quality of the resulting structure is taken to be
the fitness of the program. Naturally, the primitives of the language must be
appropriate to grow structures in the domain of interest. Typical instructions
involve the insertion and/or sizing of components, topological modifications of
the structure, etc. Cellular encoding GP has successfully been used to evolve
neural networks [121, 122, 124] and electronic circuits [193–195], as well as in
numerous other domains.

One of the advantages of indirect representations such as cellular encoding
is that the standard GP operators can be used to manipulate structures (such
as circuits) which may have nothing in common with standard GP trees. A
disadvantage is that they require an additional genotype-to-phenotype decod-
ing step. However, when the fitness function involves complex calculations
with many fitness cases the relative cost of the decoding step is often small.

5.6 Strongly Typed Autoconstructive GP – PushGP

In some ways Spector’s PushGP [183,328,357,364] is also a move away from
constraining evolution. Push is a strongly typed tree based language which
does not enforce syntactic constraints. Essentially PushGP uses evolution (i.e.
genetic programming) to automatically create programs written in the Push
programming language. Each of Push’s types has its own stack. In addition to
stacks for integers, floats, Booleans and so on, there is a stack for objects of
type program. Using this code stack, Push naturally supports both recursion
and program modules (see Sect. 5.1) without human pre-specification. The
code stack allows an evolved program to push itself or fragments of itself onto
the stack for subsequent manipulation.

Somewhat like ‘core wars’, PushGP can use the code stack and other
operations to allow programs to construct their own crossover and other
genetic operations and create their own offspring. (Spector prevents programs
from simply duplicating themselves to prevent catastrophic loss of population
diversity.)

Genetic Programming: An Introduction and Tutorial 955

6 Linear and Graph-Based GP

Until now we have been talking about the evolution of programs expressed as
one or more trees which are evaluated by a suitable interpreter. This is the
original and most widespread type of GP, but there are other types of GP
where programs are represented in different ways. This Section will look at
linear programs and graph-like (parallel) programs.

6.1 Linear Genetic Programming

There are two different reasons for trying linear GP. Basic computer architec-
tures are fundamentally the same now as they were twenty years ago, when GP
began. Almost all architectures represent computer programs in a linear fash-
ion (albeit with control structures, jumps and loops). So, why not evolve linear
programs [24,280,288]. Also, computers do not naturally run tree-shaped pro-
grams. So, slow interpreters have to be used as part of tree-based GP. On the
contrary, by evolving the binary bit patterns actually obeyed by the computer,
the use of an expensive interpreter (or compiler) is avoided and GP can run
several orders of magnitude faster [65, 88, 272,275].

The typical crossover and mutation operators for linear GP ignore the
details of the machine code of the computer being used. For example, crossover
typically chooses randomly two crossover points in each parent and swaps the
code lying between them. Since the crossed over fragments are typically of
different lengths, such a crossover may change the programs’ lengths (see
Fig. 12). Since computer machine code is organised into 32- or 64-bit words,
the crossover points occur only at the boundaries between words. Therefore,
a whole number of words, containing a whole number of instructions are typ-
ically swapped over. Similarly, mutation operations normally respect word
boundaries and generate legal machine code. However, linear GP lends itself to
a variety of other genetic operations. For example, Fig. 13 shows homologous
crossover. Many other crossover and mutation operations are possible [215].

Fig. 12. Typical linear GP crossover. Two instructions are randomly chosen in each
parent (top two genomes) as cut points. If the code fragment excised from the first
parent is replaced with the code fragment excised form the second to give the child
(lower chromosome)

956 W.B. Langdon et al.

Fig. 13. Discipulus’ ‘homologous’ crossover [99,101,275]. Two parents (top two pro-
grams) crossover to yield two child programs (bottom). The two crossover cut points
are the same in both parents. Note code does not change its position relative to the
start of the program (left edge) and the child programs are the same lengths as their
parents. Homologous crossover is often combined with a small amount of normal
two point crossover (Fig. 12) to introduce length changes into the GP population

If the goal is execution speed, then the evolved code should be machine
code for a real computer rather than some higher level language or virtual-
machine code. For example, [272] started by evolving machine code for SUN
computers; [65] targeted the Z80. The linear GP of [226] was firmly targeted at
novel hardware but much of the GP development had to be run in simulation
whilst the hardware itself was under development.

The Sun SPARC has a simple 32-bit RISC architecture which eases design-
ing genetic operation which manipulate its machine code. Nordin wrapped
each machine code GP individual inside a C function [273]. Each of the GP
program’s inputs were copied from one of the C function’s arguments into one
of the machine registers. Note that typically there are only a small number of
inputs. Linear GP should be set up to write-protect these registers, so that
inputs cannot be overwritten, since if an input is overwritten and its value is
lost, the evolved code cannot be a function of it. As well as the registers used
for inputs, a small number (say 2–4) of other registers are used for scratch
memory to store partial results of intermediate calculations. Finally, the GP
simply leaves its answer in one of the registers. The external framework uses
this as the C function’s return value.

Note that execution speed is not the only reason for using linear GP.
Linear programs can be interpreted, just as trees can be. Indeed a linear
interpreter can be readily implemented. A simple linear structure lends itself
to rapid analysis, which can be used for ‘dead code’ removal [33]. In some
ways the search space of linear GP is easier to analyse than that of trees
[204, 207–209, 215]. For example, we have used the T7 and T8 architectures
(in simulation) for several large scale experimental and mathematical analysis
of Turing complete GP [214,220,223,224]. For these reasons, it makes sense to
consider linear ‘machine’ code GP, for example, in Java. Since Java is usually

Genetic Programming: An Introduction and Tutorial 957

Arg 1
R0..R7

Output
R0..R7

Arg 2
Opcode

0...127

R0..R7
or+ − * /

Fig. 14. Format of a linear GP engine instruction. To avoid the overhead of packing
and unpacking data in the interpreter (written in a high level language such as C++),
virtual machine instructions, unlike real machine instructions, are not packed into
bit fields. In linear GP, instructions are laid from the start of the program to its
end. In machine code GP, these are real machine code instructions. In interpreted
linear GP, machine code is replaced with virtual machine code

run on a virtual machine, almost by definition this requires a virtual machine
(like [226]) to interpret the evolved byte code [133,240].

Since Unix was ported onto the x86, Intel’s complex instruction set has had
almost complete dominance. Seeing this, Nordin ported his Sun RISC linear
GP onto Intel’s CISC. Various changes were made to the genetic operations
which ensure that the initial random programs are made only of legal Intel
machine code and that mutation operations, which act inside the x86’s 32-bit
word, respect the x86’s complex sub-fields. Since the x86 has instructions of
different lengths, special care was taken when altering them. Typically several
short instructions are packed into the 4-byte words. If there are any bytes left
over, they are filled with no-operation codes. In this way best use is made of
the available space, without instructions crossing 32-bit boundaries. Nordin’s
work led to Discipulus [99], which has been used from applications ranging
from Bioinformatics [390] to robotics [219] and bomb disposal [78]. Generally,
in linear GP instructions take the form shown in Fig. 14.

6.2 Graph-Based Genetic Programming

Trees are special types of graphs. So, it is natural to ask what would happen
if one extended GP so as to be able to evolve graph-like programs. Starting
from the mid 1990s researchers have proposed several extensions of GP that
do just that, albeit in different ways.

For example, Poli proposed Parallel Distributed GP (PDGP) [290, 292].
PDGP is a form of GP which is suitable for the evolution of efficient highly
parallel programs which effectively reuse partial results. Programs are repre-
sented in PDGP as graphs with nodes representing functions and terminals.
Edges represent the flow of control and results. In the simplest form of PDGP
edges are directed and unlabeled, in which case PDGP can be considered a
generalization of standard GP. However, more complex representations can
be used, which allow the exploration of a large space of possible programs
including standard tree-like programs, logic networks, neural networks, recur-
rent transition networks and finite state automata. In PDGP, programs are

958 W.B. Langdon et al.

manipulated by special crossover and mutation operators which guarantee
the syntactic correctness of the offspring. For this reason PDGP search is
very efficient. PDGP programs can be executed in different ways, depending
on whether nodes with side effects are used or not.

In a system called PADO (Parallel Algorithm Discovery and Orchestra-
tion), Teller and Veloso used a combination of GP and linear discrimination
to obtain parallel classification programs for signals and images [375] The
programs in PADO are represented as graphs, although their semantics and
execution strategy are very different from those of PDGP.

In Miller’s Cartesian GP [256, 257], programs are represented by linear
chromosomes containing integers. These are divided into groups of three or
four. Each group is associated to a position in a 2-D array. An element of
the group prescribes which primitive is stored at that location in the array,
while the remaining elements indicate from which other locations the inputs
for that primitive should be read. So, the chromosome represents a graph-like
program, which is very similar to PDGP. The main difference between the two
systems is that Cartesian GP operators (mainly mutation) act at the level of
the linear chromosome, while in PDGP they act directly on the graph.

It is also possible to use non-graph-based GP to evolve parallel programs.
For example, Bennett used a parallel virtual machine in which several standard
tree-like programs (called ‘agents’) would have their nodes executed in paral-
lel with a two stage mechanism simulating parallelism of sensing actions and
simple conflict resolution (prioritization) for actions with side effects [28]. [8]
used GP to discover rules for cellular automata, a highly parallel computa-
tional architecture, which could solve large majority classification problems.
In conjunction with an interpreter implementing a parallel virtual machine,
GP can also be used to translate sequential programs into parallel ones [392],
or to develop parallel programs.

7 Applications

Since its early beginnings, GP has produced a cornucopia of results. The liter-
ature, which covers more than 5000 recorded uses of GP, reports an enormous
number of applications where GP has been successfully used as an auto-
matic programming tool, a machine learner or an automatic problem-solving
machine. It is impossible to list all such applications here. In the following Sec-
tions we mention a representative subset for each of the main application areas
of GP (Sects. 7.1–7.10), devoting particular attention to the important areas
of symbolic regression (Sect. 7.1) and human-competitive results (Sect. 7.2).
We conclude the section with guidelines for the choice of application areas
(Sect. 7.11).

Genetic Programming: An Introduction and Tutorial 959

7.1 Curve Fitting, Data Modeling, and Symbolic Regression

In principle, the possible applications of GP are as many as the applications
for programs (virtually infinite). However, before one can try to solve a new
problem with GP, one needs to define an appropriate fitness function. In
problems where only the side effects of the program are of interest, the fitness
function usually compares the effects of the execution of a program in some
suitable environments with a desired behavior, often in a very application-
dependent manner. In many problems, however, the goal is finding a function
whose output has some desired property – for example, it matches some target
values (as in the example given in Sect. 4), or it is optimum against some other
criteria. This type of problem is generally known as a symbolic regression
problem.

Many people are familiar with the notion of regression, which is a technique
used to interpret experimental data. It consists in finding the coefficients of
a predefined function such that the function best fits the data. A problem
with regression analysis is that, if the fit is not good, the experimenter has
to keep trying different functions until a good model for the data is found.
Also, in many domains thestrong tradition of only using linear or quadratic
models, even though it is possible that the data would be better fit by some
other model. The problem of symbolic regression, instead, consists in finding
a general function (with its coefficients) that fits the given data points. Since
GP does not assume a priori a particular structure for the resulting function,
it is well suited to this sort of discovery task. Symbolic regression was one
of the earliest applications of GP [188], and continues to be a widely studied
domain [45, 126,167,227].

The steps necessary to solve symbolic regression problems include the five
preparatory steps mentioned in Sect. 2. However, while in the example in
Sect. 4 the data points were computed using a simple formula, in most realistic
situations the collection of an appropriate set of data points is an important
and sometimes complex task. Often, for example, each point represents the
(measured) values taken by some variables at a certain time in some dynamic
process or in a certain repetition of an experiment.

Consider, for example, the case of using GP to evolve a soft sensor [161].
The intent is to evolve a function that will provide a reasonable estimate of
what a sensor (in, say, a production facility) would report, based on data
from other actual sensors in the system. This is typically done in cases where
placing an actual sensor in that location would be difficult or expensive for
some reason. It is necessary, however, to place at least one instance of such a
sensor in a working system in order to collect the data needed to train and
test the GP system. Once such a sensor is placed, one would collect the values
reported by that sensor, and by all the other hard sensors that are available
to the evolved function, at various times, presumably covering the various
conditions the evolved system will be expected to act under.

960 W.B. Langdon et al.

Such experimental data typically come in large tables where numerous
quantities are reported. In many case which quantity is the dependent variable,
that is the thing that we want to predict (for example, the soft sensor value),
and which other quantities are the independent variables – in other words,
the information we want to use to make the prediction (say the hard sensor
values), is pre-determined. If it is not, then the experimenter needs to make
this decision before GP can be applied. Finally, in some practical situations,
the data tables include hundreds or even thousands of variables. It is well-
known, that in these cases the efficiency and effectiveness of any machine
learning or program induction method, including GP, can dramatically drop
as most of the variables are typically redundant or irrelevant, forcing the
system to focus considerable energy on isolating the key features. It is then
necessary to perform some form of feature selection – that is, we need to
decide which independent variables to keep and which to leave out.

There are problems where more than one output (prediction) is required.
For example, Table 2 shows a data set with four independent variables (left)
and six dependent variables (right). The data were collected for the purpose
of solving an inverse kinematics problem in the Elvis robot [219] (the robot
is shown in Fig. 15 during the acquisition of a data sample). In situations like
this, one can use GP individuals including multiple trees (as in Fig. 3), graph-
based GP with multiple output nodes (see Sect. 6.2), linear GP with multiple

Table 2. Samples showing apparent size and location to both of Elvis’ eyes of his
finger tip, given various right arm actuator set points (4 degrees of freedom) – see
Fig. 15. When the data are used for training, GP is asked to invert the mapping and
evolve functions from data collected by both cameras showing a target location to
instructions to give to Elvis’ four arm motors so that his arm moves to the target

Arm actuator Left eye Right eye

x y size x y size

−376 −626 1000 −360 44 10 29 −9 12 25
−372 −622 1000 −380 43 7 29 −9 12 29
−377 −627 899 −359 43 9 33 −20 14 26
−385 −635 799 −319 38 16 27 −17 22 30
−393 −643 699 −279 36 24 26 −21 25 20
−401 −651 599 −239 32 32 25 −26 28 18
−409 −659 500 −200 32 35 24 −27 31 19
−417 −667 399 −159 31 41 17 −28 36 13
−425 −675 299 −119 30 45 25 −27 39 8
−433 −683 199 −79 31 47 20 −27 43 9
−441 −691 99 −39 31 49 16 −26 45 13

...
...

...
...

...
...

...
...

...
...

continues for a total of 691 lines

Genetic Programming: An Introduction and Tutorial 961

Fig. 15. Elvis sitting with right hand outstretched. The apparent position and size
of the bright red laser attached to his finger tip is recorded (see Table 2). The data
are then used to train a GP to move the robot’s arm to a spot in three dimensions
using only its eyes

output registers (see Sect. 6.1), a single GP tree with primitives operating on
vectors, and so on.

Once a suitable data set is available, its dependent variables must all be
represented in the primitive set. What other terminals and functions this
will include depends very much on the type of the data being processed (are
they numeric? strings?) and is often guided by information available to the
experimenter on the process that generated the data. If something is known
(or strongly suspected) about the desired structure of the evolved function (for
example, the data is known to be periodic, so the function should probably
be based on a something like sine), then applying some sort of constraint, like
those discussed in Sect. 5.4, may be beneficial.

What is common to virtually all symbolic regression problems is that the
fitness function must measure the ability of each program to predict the value
of the dependent variable given the values of the independent ones (for each
data point). So, most symbolic regression fitness functions tend to include
sums over the (usually absolute or squared) errors measured for each record
in the data set, as we did in Sect. 4.2.

962 W.B. Langdon et al.

The fourth preparatory step typically involves choosing a size for the pop-
ulation (which is often done initially based on the perceived difficulty of the
problem, and is then refined based on the actual results of preliminary runs)
and the balance between the selection strength (normally tuned via the tour-
nament size) and the intensity of variation (which can be varied by varying
the mutation and crossover rates, but many researchers tend to keep these
fixed to some standard values).

7.2 Human Competitive Results – The Humies

Getting machines to produce human-like results is the reason for the exis-
tence of the fields of artificial intelligence and machine learning. However, it
has always been very difficult to assess how much progress these fields have
made towards their ultimate goal. Alan Turing understood that, to avoid
human biases when assessing machines’ intelligence, there is a need to evalu-
ate their behavior objectively. This led him to propose an imitation game, now
known as the Turing test [385]. Unfortunately, the Turing test is not usable in
practice, and so, there is a need for more workable objective tests of machine
intelligence.

Koza recently proposed to shift the attention from the notion of intelligence
to the notion of human competitiveness [196]. A result cannot acquire the
rating of ‘human competitive’ merely because it is endorsed by researchers
inside the specialized fields that are attempting to create machine intelligence.
A result produced by an automated method must earn the rating of ‘human
competitive’ independently of the fact that it was generated by an automated
method.

Koza proposed that an automatically-created result should be considered
‘human-competitive’ if it satisfies at least one of these eight criteria:

1. The result was patented as an invention in the past, is an improvement over
a patented invention, or would qualify today as a patentable new invention.

2. The result is equal to or better than a result that was accepted as a new sci-
entific result at the time when it was published in a peer-reviewed scientific
journal.

3. The result is equal to or better than a result that was placed into a database
or archive of results maintained by an internationally recognized panel of
scientific experts.

4. The result is publishable in its own right as a new scientific result,
independent of the fact that the result was mechanically created.

5. The result is equal to or better than the most recent human-created solu-
tion to a long-standing problem for which there has been a succession of
increasingly better human-created solutions.

6. The result is equal to or better than a result that was considered an
achievement in its field at the time it was first discovered.

Genetic Programming: An Introduction and Tutorial 963

7. The result solves a problem of indisputable difficulty in its field.
8. The result holds its own or wins a regulated competition involving human

contestants (in the form of either live human players or human-written
computer programs).

These criteria are independent of and at arms-length from the fields of artificial
intelligence, machine learning, and GP.

Over the years, tens of results have passed the human-competitiveness test.
Some pre-2004 human-competitive results include (see [192] for a complete
list):

• Creation of quantum algorithms including: a better-than-classical algo-
rithm for a database search problem and a solution to an AND/OR query
problem [361,362].

• Creation of a competitive soccer-playing program for the RoboCup 1997
competition [238].

• Creation of algorithms for the transmembrane segment identification prob-
lem for proteins [189, Sects. 18.8 and 18.10] and [195, Sects. 16.5 and
17.2].

• Creation of a sorting network for seven items using only 16 steps [195,
Sects. 21.4.4, 23.6, and 57.8.1].

• Synthesis of analogue circuits (with placement and routing, in some
cases), including: 60- and 96-decibel amplifiers [195, Sect. 45.3]; circuits for
squaring, cubing, square root, cube root, logarithm, and Gaussian func-
tions [195, Sect. 47.5.3]; a circuit for time-optimal control of a robot [195,
Sect. 48.3]; an electronic thermometer [195, Sect. 49.3]; a voltage-current
conversion circuit [197, Sect. 15.4.4].

• Creation of a cellular automata rule for the majority classification problem
that is better than all known rules written by humans [8].

• Synthesis of topology for controllers, including: a PID (proportional, inte-
grative, and derivative) [197, Sect. 9.2] and a PID-D2 (proportional, inte-
grative, derivative, and second derivative) [197, Sect. 3.7] controllers; PID
tuning rules that outperform the Ziegler-Nichols and Astrom-Hagglund
tuning rules [197, Chapter 12]; three non-PID controllers that outperform
a PID controller that uses the Ziegler-Nichols or Astrom-Hagglund tuning
rules [197, Chapter 13].

In total [192] lists 36 human-competitive results. These include 23 cases
where GP has duplicated the functionality of a previously patented inven-
tion, infringed a previously patented invention, or created a patentable new
invention. Specifically, there are fifteen examples where GP has created an
entity that either infringes or duplicates the functionality of a previously
patented 20th Century invention, six instances where GP has done the same
with respect to an invention patented after January 1, 2000, and two cases
where GP has created a patentable new invention. The two new inventions are

964 W.B. Langdon et al.

Fig. 16. Award winning human-competitive antenna design produced by GP

general-purpose controllers that outperform controllers employing tuning rules
that have been in widespread use in industry for most of the 20th Century.

Many of the pre-2004 results were obtained by Koza. However, since
2004, a competition is held annually at ACM’s Genetic and Evolution-
ary Computation Conference (termed the ‘Human-Competitive awards – the
‘Humies’). The $10,000 prize is awarded to applications that have produced
automatically-created results which are equivalent to human achievements or,
better.

The Humies Prizes have typically been awarded to applications of EC to
high-tech fields. Many used GP. For example, the 2004 gold medals were given
for the design, via GP, of an antenna for deployment on NASA’s Space Tech-
nology 5 Mission (see Fig. 16) [233] and for evolutionary quantum computer
programming [358]. There were three silver medals in 2004: one for evolving
local search heuristics for SAT using GP [104], one for the application of GP to
the synthesis of complex kinematic mechanisms [231], and one for organization
design optimization using GP [175, 176]. Also, four of the 2005 medals were
awarded for GP applications: the invention of optical lens systems [1, 198],
the evolution of quantum Fourier transform algorithm [247], evolving assem-
bly programs for Core War [61], and various high-performance game players
for Backgammon, Robocode and Chess endgame [16, 17, 135, 350]. In 2006
GP again scored a gold medal with the synthesis of interest point detec-
tors for image analysis [381, 382], while it scored a silver medal in 2007 with

Genetic Programming: An Introduction and Tutorial 965

Fig. 17. Example mate-in-2 problem

the evolution of an efficient search algorithm for the Mate-in-N problem in
Chess [136] (see Fig. 17).

Note that many human competitive results were presented at the Humies
2004–2007 competitions (for instance, 11 of the 2004 entries were judged to
be human competitive). However, only the very best were awarded medals.
So, at the time of writing we estimate that there are at least something of
the order of 60 human competitive results obtained by GP. This shows GP’s
potential as a powerful invention machine.

7.3 Image and Signal Processing

Hampo was one of the first people from industry to consider using GP for
signal processing. He evolved algorithms for preprocessing electronic motor
vehicle signals for possible use in engine monitoring and control [127]. Sev-
eral applications of GP for image processing have been for military uses – for
example, Tackett evolved algorithms to find tanks in infrared images [370].
Howard evolved program to pick out ships from SAR radar mounted on
satellites in space [149] and to locate ground vehicles from airborne photo
reconnaissance [150]. He also used GP to process surveillance data for civil-
ian purposes, such as predicting motorway traffic jams from subsurface traffic
speed measurements [148]. Using satellite SAR radar, [67] evolved algorithms
to find features in polar sea ice. Optical satellite images can also be used for
environmental studies [47], and for prospecting for valuable minerals [332].

Alcazar used GP to find recurrent filters (including artificial neural net-
works – ANN [92]) for one dimensional electronic signals [347]. Local search
(simulated annealing or gradient descent) can be used to adjust or fine-tune
‘constant’ values within the structure created by genetic search [354]. [411]

966 W.B. Langdon et al.

have used GP to preprocess images, particularly of human faces, to find regions
of interest, for subsequent analysis. (See also [382].) A particular strength of
GP is its ability to take data from disparate sources [43, 369].

Zhang has been particularly active at evolving programs with GP to visu-
ally classify objects (typically coins) [419]. He has also applied GP to human
speech [409]. ‘Parisian GP’ is a system in which the image processing task is
split across a swarm of evolving agents (‘flies’). In [235, 236] the flies recon-
struct three-dimensions from pairs of stereo images. In [235] as the flies buzz
around in three-dimensions their position is projected onto the left and right
of a pair of stereo images. The fitness function tries to minimize the discrep-
ancy between the two images, thus encouraging the flies to settle on visible
surfaces in the 3-D space. So, the true 3–D space is inferred from pairs of 2-D
image taken from slightly different positions.

While the likes of Google have effectively indexed the written word. For
speech and in particular pictures, it has been much less effective. One area
where GP might be applied is in automatically indexing images. Some initial
steps in this direction are given in [378].

To some extent extracting text from images (OCR) is almost a solved
problem. With well formed letters and digits this is now done with near 100%
accuracy as a matter of routine. However, many interesting cases remain [58]
such as Arabic [182] and oriental languages, handwriting [72, 107, 200, 377]
(such as the MNIST examples), other texts [327], and musical scores [317].

The scope for applications of GP to image and signal processing is almost
unbounded. A promising area is medical imaging [291]. GP image techniques
can also be used with sonar signals [245]. Off-line work on images, includes
security and verification. For example, [386] have used GP to detect image
watermarks which have been tampered with. Whilst recent work by Zhang
has incorporated multi-objective fitness into GP image processing [420].

In 1999 Poli, Cagnoni and others founded the annual European Work-
shop on Evolutionary Computation in Image Analysis and Signal Processing
(EvoIASP). EvoIASP is held every year along with the EuroGP. Whilst
not solely dedicated to GP, many GP applications have been presented at
EvoIASP.

7.4 Financial Trading, Time Series Prediction
and Economic Modeling

GP is very widely used in these areas and it is impossible to describe all its
applications. It this Section we will hint at just a few areas.

Chen has written more than 60 papers on using GP in finance and eco-
nomics. Recent papers include modeling of agents in stock markets [52], game

Genetic Programming: An Introduction and Tutorial 967

theory [54], evolving trading rules for the S&P 500 [414] and forecasting the
Heng-Sheng index [53] (see Chapter 13 of this Compendium).

The efficient markets hypothesis is a tenet of economics. It is founded
on the idea that everyone in a market has ‘perfect information’ and acts
‘rationally’. If the efficient markets hypothesis held, then everyone would see
the same value for items in the market and so agree the same price. Without
price differentials, there would be no money to be made from the market
itself. Whether it is trading potatoes in northern France or dollars for yen
it is clear that traders are not all equal and considerable doubt has been
cast on the efficient markets hypothesis. So, people continue to play the stock
market. Game theory has been a standard tool used by economists to try
to understand markets but is increasingly supplemented by simulations with
both human and computerized agents. GP in increasingly being used as part
of these simulations of social systems.

Neely and Weller of the US Federal Reserve Bank used GP to study intra-
day technical trading of foreign exchange to suggest the market is ‘efficient’
and found no evidence of excess returns [263, 264, 266, 267]. This negative
result was criticized by [244]. Later work by [268] suggested that data after
1995 are consistent with Lo’s adaptive markets hypothesis rather than the
efficient markets hypothesis. Note that here GP and computer tools are being
used in a novel data-driven approach to try and resolve issues which were
previously a matter of dogma.

From a more pragmatic viewpoint, Kaboudan shows GP can forecast inter-
national currency exchange rates [164], stocks [165] and stock returns [163].
[383] continue to apply GP to a variety of financial arenas, including: bet-
ting, forecasting stock prices [109], studying markets [158] and arbitrage [243].
[15,74,75] and HSBC also use GP in foreign exchange trading. Pillay has used
GP in social studies and teaching aids in education, for instance, [289]. As well
as trees [187], other types of GP have been used in finance, for example [270].

The Intl. Conf. on Computing in Economics and Finance (CEF) has been
held every year since 1995. It regularly attracts GP papers, many of which are
on-line. In 2007 Brabazon and O’Neill established the European Workshop on
Evolutionary Computation in Finance and Economics (EvoFIN); EvoFIN is
held with EuroGP.

7.5 Industrial Process Control

Of course most industrialists have little time to spend on academic reporting.
A notable exception is Dow Chemical, where Kordon’s group has been very
active [46,185,254]. [184] describes where industrial GP stands now and how it
will progress. Another active collaboration is that between Kovacic and Balic,
who have used GP in the computer numerical control of industrial milling and
cutting machinery [186]. The partnership of Deschaine and Francone [100] is

968 W.B. Langdon et al.

most famous for their use of Discipulus [99] for detecting bomb fragments
and unexploded ordnance UXO [76]. Discipulus has been used as an aid in
the development of control systems for rubbish incinerators [77].

One of the earliest users of GP in control was Willis’ Chemical Engi-
neering group at Newcastle, which used GP to model flow in a plasticating
extruder [399]. They also modelled extruding food [251] and control of chemi-
cal reactions in continuous stirred tank reactors [342]. Marenbach investigated
GP in the control of biotech reactors [242]. [398] surveyed GP applications,
including to control. Other GP applications to plastic include [38]. Lewin has
applied GP to the control of an integrated circuit fabrication plant [68, 228].
Domingos worked on simulations of nuclear reactors (PWRs to be exact) to
devise better ways of preventing xenon oscillations [83]. GP has also been used
to identify which state a plant to be controlled is in (in order to decide which
of various alternative control laws to apply). For example, Fleming’s group
in Sheffield used multi-objective GP [141, 329] to reduce the cost of running
aircraft jet engines [14,93]. [4] surveys GP and other AI techniques applied in
the electrical power industry.

7.6 Medicine, Biology and Bioinformatics

GP has long been applied to medicine, biology and bioinformatics. Early work
by Handley [128] and Koza [191] used GP to make predictions about the
behavior and properties of biological systems, principally proteins. Oakley, a
practising medical doctor, used GP to model blood flow in toes [276] as part
of his long term interests in frostbite.

In 2002 Banzhaf and Foster organized BioGEC, the first GECCO Work-
shop on Biological Applications of Genetic and Evolutionary Computation.
BioGEC has become a bi-annual feature of the annual GECCO conference.
Half a year later Marchiori and Corne organized EvoBio, the European Conf.
on Evolutionary Computation, Machine Learning and Data Mining in Bioin-
formatics. EvoBio is held every year alongside EuroGP; GP figures heavily in
both BioGEC and EvoBIO.

GP is often used in data mining. Of particular medical interest are very
wide data sets, with many inputs per sample. Examples include infrared
spectra [89, 90, 117, 119, 131, 159, 250, 373, 387], single nuclear polymorphisms
[26, 320, 345] and Affymetrix GeneChip microarray data [71, 91, 139, 142, 147,
217,229,230,412].

Kell and his colleagues in Aberystwyth have had great success in applying
GP widely in bioinformatics (see infrared spectra above and [2, 70, 113, 118,
160, 168–171, 349, 407]). Another very active group is that of Moore and his
colleagues at Vanderbilt [261, 262,325,326].

Computational chemistry is widely used in the drug industry. The proper-
ties of simple molecules can be calculated. However, the interactions between

Genetic Programming: An Introduction and Tutorial 969

chemicals which might be used as drugs and medicinal targets within the body
are beyond exact calculation. Therefore, there is great interest in the phar-
maceutical industry in approximate in silico models which attempt to predict
either favourable or adverse interactions between proto-drugs and biochemi-
cal molecules. Since these are computational models, they can be applied very
cheaply in advance of manufacture of chemicals, to decide which of the myriad
of chemicals might be worth further study. Potentially such models can make
a huge impact both in terms of money and time without being anywhere near
100% correct. Machine learning and GP have both been tried. GP approaches
include [21, 27, 43, 95, 114,120,131,134,199,351,388,393].

7.7 Mixing GP with Other Techniques

GP can be hybridised with other techniques. Iba [152], Nikolaev [269], and
Zhang [417] have incorporated information theoretic and minimum description
length ideas into GP fitness functions to provide a degree of regularization
and so avoid over-fitting (and bloat, see Sect. 9.3). As mentioned in Sect. 5.4
computer language grammars can be incorporated into GP. Indeed Wong
[401–403,405] has had success integrating these with GP. The use of simulated
annealing and hill climbing to locally fine tune parts of solutions found by GP
was described in Sect. 2.

7.8 GP to Create Searchers and Solvers – Hyper-Heuristics

Hyper-heuristics could simply be defined as ‘heuristics to choose other heuris-
tics’ [40]. A heuristic is considered as a rule-of-thumb or ‘educated guess’
that reduces the search required to find a solution. The difference between
meta-heuristics and hyper-heuristics is that the former operate directly on
the problem search space with the goal of finding optimal or near-optimal
solutions. The latter, instead, operate on the heuristics search space (which
consists of the heuristics used to solve the target problem). The goal then is
finding or generating high-quality heuristics for a problem, for a certain class
of instances of a problem, or even for a particular instance.

GP has been very successfully used as a hyper-heuristic. For example,
GP has evolved competitive SAT solvers [19, 20, 103, 177], state-of-the-art or
better than state-of-the-art bin packing algorithms [41,42,313], particle swarm
optimizers [310, 311], evolutionary algorithms [277], and travelling salesman
problem solvers [172–174,278].

7.9 Artistic

Computers have long been used to create purely aesthetic artifacts. Much of
today’s computer art tends to ape traditional drawing and painting, producing
static pictures on a computer monitor. However, the immediate advantage

970 W.B. Langdon et al.

of the computer screen – movement – can also exploited. In both cases EC
can and has been exploited. Indeed with evolution’s capacity for unlimited
variation, EC offers the artist the scope to produce ever changing works.
Some artists have also worked with sound.

The use of GP in computer art can be traced back at least to the work of
Sims [353] and Latham. Jacob provides many examples [155,156]. Since 2003,
EvoMUSART has been held every year with EuroGP. McCormack considers
the recent state of play in evolutionary art and music [249]. Many recent
techniques are described in [241].

Evolutionary music [379] has been dominated by Jazz [359], which is not to
everyone’s taste; an exception is Bach [94]. Most approaches to evolving music
have made at least some use of interactive evolution [371] in which the fitness
of programs is provided by users, often via the Internet [5,49]. The limitation is
almost always finding enough people willing to participate [211]. Funes reports
experiments which attracted thousands of people via the Internet who were
entertained by evolved Tron players [105]. Costelloe tried to reduce the human
burden in [62]; algorithmic approaches are also possible [59, 153].

One of the sorrows of AI is that as soon as it works it stops being AI (and
celebrated as such) and becomes computer engineering. For example, the use
of computer generated images has recently become cost effective and is widely
used in Hollywood. One of the standard state-of-the-art techniques is the use
of Reynold’s swarming ‘boids’ [321] to create animations of large numbers of
rapidly moving animals. This was first used in Cliffhanger (1993) to animate
a cloud of bats. Its use is now common place (herds of wildebeest, schooling
fish, and the like); in 1997 Craig was awarded an Oscar.

7.10 Entertainment and Computer Games

Today the major usage of computers is interactive games [315]. There has been
a little work on incorporating artificial intelligence into mainstream commer-
cial games. The software owners are not keen on explaining exactly how much
AI they use or giving away sensitive information on how they use AI. Work
on GP and games includes [16, 389]. Since 2004 the annual CEC Conference
has included sessions on EC in games. After chairing the IEEE Symposium
on Computational Intelligence and Games 2005 at Essex University, Lucas
founded the IEEE Computational Intelligence Society’s Technical Commit-
tee on Games. GP features heavily in the Games TC’s activities, for example
Othello, Poker, Backgammon, Draughts, Chess, Ms Pac-Man, robotic football
and radio controlled model car racing.

7.11 Where can we Expect GP to Do Well?

GP and other EC methods have been especially productive in areas having
some or all of the following properties:

Genetic Programming: An Introduction and Tutorial 971

• The interrelationships among the relevant variables is unknown or poorly
understood (or where it is suspected that the current understanding may
possibly be wrong).

• Finding the size and shape of the ultimate solution to the problem is a
major part of the problem.

• Large amounts of primary data requiring examination, classification, and
integration is available in computer-readable form.

• There are good simulators to test the performance of tentative solutions
to a problem, but poor methods to directly obtain good solutions.

• Conventional mathematical analysis does not, or cannot, provide analytic
solutions.

• An approximate solution is acceptable (or is the only result that is ever
likely to be obtained).

• Small improvements in performance are routinely measured (or easily
measurable) and highly prized.

The best predictor of future performance is the past. So, we should expect
GP to continue to be successful in application domains with these features.

8 Tricks of the Trade

8.1 Getting Started

Newcomers to the field of GP often ask themselves (and/or other more
experienced genetic programmers) questions such as:

1. What is the best way to get started with GP? Which papers should I read?
2. Should I implement my own GP system or should I use an existing package?

If so, what package should I use?

Let us start from question 1. A variety of sources of information about
GP are available (many of which are listed in the Resources Appendix).
Consulting information available on the Web is certainly a good way to get
quick answers for a ‘newbie’ who wants to know what GP is. These answers,
however, will often be too shallow for someone who really wants to then
apply GP to solve practical problems. People in this position should probably
invest some time going through more detailed accounts, such [25, 188, 222]
or some of the other books in the Resources Appendix. Technical papers
may be the next stage. The literature on GP is now quite extensive. So,
although this is easily accessible thanks to the complete online bibliography
(http://www.cs.bham.ac.uk/∼wbl/biblio/), newcomers will often need to be
selective in what they read. The objective here may be different for different
types of readers. Practitioners should probably identify and read only papers
which deal with the same problem they are interested in. Researchers and
PhD students interested in developing a deeper understanding of GP should
also make sure they identify and read as many seminal papers as possible,

972 W.B. Langdon et al.

including papers or books on empirical and theoretical studies on the inner
mechanisms and behavior of GP. These are frequently cited in other papers
and so can easily be identified.

The answer to question 2 depends on the particular experience and back-
ground of the questioner. Implementing a simple GP system from scratch is
certainly an excellent way to make sure one really understands the mechanics
of GP. In addition to being an exceptionally useful exercise, this will always
result in programmers knowing their systems so well that they will have no
problems customizing them for specific purposes (for example, adding new,
application specific genetic operators or implementing unusual, knowledge-
based initialization strategies). All of this, however, requires reasonable pro-
gramming skills and the will to thoroughly test the resulting system until
it fully behaves as expected. If the skills or the time are not available, then
the best way to get a working GP application is to retrieve one of the many
public-domain GP implementations and adapt this for the user’s purposes.
This process is faster, and good implementations are often quite robust, effi-
cient, well-documented and comprehensive. The small price to pay is the need
to study the available documentation and examples. These often explain also
how to modify the GP system to some extent. However, deeper modifica-
tions (such as the introduction of new or unusual operators) will often require
studying the actual source code of the system and a substantial amount of
trial and error. Good, publicly-available GP implementations include: Lil-GP,
ECJ, and DGPC.

While perhaps to some not as exciting as coding or running GP, a through
search of the literature can avoid ‘re-inventing the wheel’.

8.2 Presenting Results

It is so obvious that it is easy to forget one major advantage of GP: we
create visible programs. That is, the way they work is accessible. This need
not be the case with other approaches. So, when presenting GP results, as a
matter of routine one should perhaps always make a comprehensible slide or
figure which contains the whole evolved program,2 trimming unneeded details
(such as removing excess significant digits) and combining constant terms.
Naturally, after cleaning up the answer, one should make sure the program
still works.

If one’s goal is to find a comprehensible model, in practice it must be small.
A large model will not only be difficult to understand but also may over-fit
the training data [112]. For this reason (and possibly others), one should use
one of the anti-bloat mechanisms described in Sect. 9.3.

There are methods to automatically simplify expressions (for example, in
Mathematica and Emacs). However, since in general there is an exponentially
2 The program Lisp2dot can be of help in this.

Genetic Programming: An Introduction and Tutorial 973

large number of equivalent expressions, automatic simplification is hard.
Another way is to use GP. After GP has found a suitable but large model,
one can continue evolution changing the fitness function to include a second
objective: that the model be as small as possible [203]. GP can then trim the
trees but ensure the evolved program still fits the training data.

It is important to use the language that one’s customers, audience or
readers use. For example, if the fact that GP discovers a particular chemical
is important, one should make this fact standout, say by using colours. Also,
GP’s answer may have evolved as a tree but, if the customers use Microsoft
Excel, it may be worthwhile translating the tree into a spreadsheet formula.

Also, one should try to discover how the customers intend to validate GP’s
answer. Do not let them invent some totally new data which has nothing to
do with the data they supplied for training (‘just to see how well it does...’).
Avoid customers with contrived data. GP is not god, it knows nothing about
things it has not seen. At the same time users should be scrupulous about their
own use of holdout data. GP is a very powerful machine learning technique.
With this comes the ever present danger of over-fitting. One should never
allow performance on data reserved for validation to be be used to choose
which answer to present to the customer.

8.3 Reducing Fitness Evaluations/Increasing their Effectiveness

While admirers of linear GP will suggest that machine code GP is the ulti-
mate in speed, tree GP can be made faster in a number of ways. The first
is to reduce the number of times a tree is evaluated. Many applications find
the fitness of trees by running them on multiple training examples. However,
ultimately the point of fitness evaluation is to make a binary decision: does
this individual get a child or not. Indeed usually a noisy selection technique
is used such as roulette wheel, SUS [22], or tournament selection. Stochas-
tic selection is an essential part of genetic search but it necessarily injects
noise into the vital decision of which points in the search to proceed from and
which to abandon. The overwhelming proportion of GP effort (or indeed any
EC technique) goes into adjusting the probability of the binary decision as
to whether each individual in the population should be allowed to reproduce
or not. If a program has already demonstrated it works very badly compared
to the rest of the population on a fraction of the available training data, it is
likely not to have children. Conversely, if it has already exceeded many pro-
grams in the population after being tested on only a fraction of the training
set, it is likely to have a child [203]. In either case, it is apparent that we
do not need to run it on the remaining training examples. Teller and Andre
developed this idea into an effective algorithm [376].

As well as the computational cost, there are other aspects of using all the
training data all the time. It gives rise to a static fitness function. Arguably

974 W.B. Langdon et al.

this tends to evolve the population into a cul-de-sac where the population
is dominated by offspring of a single initial program which did well of some
fraction of the training data but was unable to fit others. A static fitness
function can easily have the effect that the other good programs which perhaps
did well on other parts of the training data get lower fitness scores and fewer
children.

With high selection pressure, it takes surprisingly little time for the best
individual to dominate the whole population. Goldberg calls this the ‘take over
time’ [115]. This can be made quite formal [31, 85]. However, for tournament
selection, a simple rule of thumb is often sufficient. If T is the tournament
size, about logT (Pop size) generations are needed for the whole population
to become descendants of a single individual. For example, if we use binary
tournaments (T = 2), then ‘take over’ will require about ten generations for
a population of 1,024. Alternatively, if we have a population of one million
(106) and use ten individuals in each tournament (T = 10), then after about
six generations more or less everyone will have the same great6 great5 great4
great3 grand2 mother1.

Gathercole investigated a number of ways of changing which training
examples to use as the GP progressed [110,111]. (Siegel proposed a rather dif-
ferent implementation in [352].) This juggles a number of interacting effects.
Firstly, by using only a subset of the available data, the GP fitness evaluation
takes less time. Secondly, by changing which examples are being used, the
evolving population sees more of the training data and, so, is less liable to
over fit a fraction of it. Thirdly, by randomly changing the fitness function,
it becomes more difficult for evolution to produce an over specialized indi-
vidual which takes over the population at the expense of solutions which
are viable on other parts of the training data. Dynamic Subset Selection
(DSS) appears to have been the most successful of Gathercole’s suggested
algorithms. It has been incorporated into Discipulus. Indeed a huge data
mining application [66] recently used DSS.

Where each fitness evaluation may take a long time, it may be attractive
to interrupt a long running program in order to let others run. In GP systems
which allow recursion or contain iterative elements [36,203,400,404] it is com-
mon to enforce a time limit, a limit on the number of instructions executed, or
a bound on the number of times a loop is executed. Maxwell proposed [248] a
solution to the question of what fitness to we give to a program we have inter-
rupted. He allowed each program in the population a quantum of CPU time.
When the program uses up its quantum it is check-pointed. When the program
is check-pointed, sufficient information (principally the program counter and
stack) is saved so that it can be restarted from where it got to later. (Many
multi-tasking operating systems do something similar.) In Maxwell’s system,
he assumed the program gained fitness as it ran. For example, each time is
correctly processes a fitness case, its fitness is incremented. So the fitness of

Genetic Programming: An Introduction and Tutorial 975

a program is defined while it is running. Tournament selection is then per-
formed. If all members of the tournament have used the same number of CPU
quanta, then the program which is fitter is the winner. However, if a program
has used less CPU than the others (and has a lower fitness) then it is restarted
from where it was and is run until it has used as much CPU as the others.
Then fitnesses are compared in the normal way.

Teller had a similar but slightly simpler approach: everyone in the popula-
tion was run for the same amount of time. When the allotted time elapses the
program is aborted and an answer extracted from it, regardless of whether it
was ready or not; he called this an ‘any time’ approach [374]. This suits graph
or linear GP, where it is easy to designate a register as the output register.
The answer can be extracted from this register or from an indexed memory
cell at any point (including whilst the programming is running). Other any
time approaches include [220,360].

A simple technique to speed up the evaluation of complex fitness func-
tions is to organize the fitness function into stages of progressively increasing
computational cost. Individuals are evaluated stage by stage. Each stage con-
tributes to the overall fitness of a program. However, individuals need to
reach a minimum fitness value in each stage in order for them to be allowed
to progress to the next stage and acquire further fitness. Often different stages
represent different requirements and constraints imposed on solution.

Recently, a sophisticated technique, called backward chaining GP, has been
proposed [297,301–303] that can radically reduce the number of fitness evalu-
ations in runs of GP (and other EAs) using tournament selection with small
tournament sizes. Tournament selection randomly draws programs from the
population to construct tournaments, the winners of which are then selected.
Although this process is repeated many times in each generation, when the
tournaments are small there is a significant probability that an individual
in the current generation is never chosen to become a member of any tour-
nament. By reordering the way operations are performed in GP, backward
chaining GP exploits this not only to avoid the calculation of individuals that
are never sampled, but also to achieve higher fitness sooner.

8.4 Co-Evolution

One way of viewing DSS is as automated co-evolution. In co-evolution there
are multiple evolving species (typically two) whose fitness depends upon the
other species. (Of course, like DSS, co-evolution can be applied to linear and
other types of GP as well as tree GP.) One attraction of co-evolution is that
it effectively produces the fitness function for us. There have been many suc-
cessful applications of co-evolution [16, 35, 39, 48, 82, 108, 140, 338, 346, 400],
however it complicates the already complex phenomena taking place in the
presence of dynamic fitness functions still further. Therefore, somewhat reluc-
tantly, at present it appears to be beneficial to use co-evolution only if an

976 W.B. Langdon et al.

application really requires it. Co-evolution may suffer from unstable popula-
tions. This can occur in nature, oscillations in Canadian Lynx and Snowshoe
Hare populations being a famous example. There are various ‘hall of fame’
techniques [106], which try to damp down oscillations and prevent evolution
driving competing species in circles.

8.5 Reducing Cost of Fitness with Caches

In computer hardware it is common to use data caches which automatically
hold copies of data locally in order to avoid the delays associated with fetching
it from disk or over a network every time it is needed. This can work well where
a small amount of data is needed many times over a short interval. Caches
can also be used to store results of calculations, thereby avoiding the re-
calculation of data [129]. GP populations have enormous amounts of common
code [203,215,220]. This is after all how genetic search works: it promotes the
genetic material of fit individuals. So, typically in each generation we see many
copies of successful code. In a typical GP system, but by no means all GP
systems, each subtree has no side-effects. This means its results pass through
its root node in a well organized and easy to understand fashion. Thus, if
we remember a subtree’s inputs and output when it was run before, we can
avoid re-executing code whenever we are required to run the subtree again.
Note that this is true irrespective of whether we need to run the same subtree
inside a different individual or at a different time (namely, a later generation).
Thus, if we stored the output with the root node, we need only run the subtree
once, for a given set of inputs. Whenever the interpreter comes to evaluate the
subtree, it needs only to check if the root contains a cache of the values the
interpreter calculated last time, thus saving considerable computation time.
However, there is a problem: not only must the answer be stored, but the
interpreter needs to know that the subtree’s inputs are the same too.

The common practices of GP come to our aid here. Usually every tree in
the population is run on exactly the same inputs for each of the fitness cases.
Thus, for a cache to work, the interpreter does not need to know in detail
which inputs the subtree has or their exact values corresponding to every
value calculated by the subtree. It need only know which of the fixed set of
test cases was used.

A simple cache implementation is to store a vector of values returned by
each subtree. The vector is as long as the number of test cases. Whenever
a subtree is created (namely, in the initial generation, by crossover or by
mutations) the interpreter is run and the cache of values for its root node
is set. Note this is recursive, so caches can also be calculated for subtrees
within it at the same time. Now when the interpreter is run and comes to a
subtree’s root node, it will know which test case it is running and instead of
interpreting the subtree it simply retrieves the value it calculated using the

Genetic Programming: An Introduction and Tutorial 977

test case’s number as an index into the cache vector. This could be many
generations after the subtree was originally created.

If a subtree is created by mutation, then its cache of values will be ini-
tially empty and will have to be calculated. However, this costs no more than
without caches.

When subtrees are crossed over the subtree’s cache remains valid and so
cache values can be crossed over like the code.

When code is inserted into an existing tree, be it by mutation or crossover,
the chance that the new code behaves identically to the old code is normally
very small. This means the caches of every node between the new code and
the root node may be invalid. The simplest thing is to re-evaluate them all.
This sounds expensive, but remember the caches in all the other parts of the
individual remain valid and so can be used when the cache above them is
re-evaluated. Thus, in effect, if the crossed over code is inserted at level-d,
only d nodes need to be evaluated. Recent analysis [57,81,222,312] has shown
that GP trees tend not to have symmetric shapes, and many leafs are very
close to the root. Thus in theory (and in practice) considerable computational
saving can be made by using fitness caches. Sutherland is perhaps the best
known GP system which has implemented fitness caches [253]. As well as the
original DAG implementation [129]; other work includes [57, 166, 410].

In [203] we used fitness caches in evolved trees with side effects by exploit-
ing syntax rules about where in the code the side-effects could lie. The whole
question of monitoring how effective individual caches are, what their hit-
rates are, and so on, has been little explored. In practice, in many common
GP systems, impressive savings have been made by simple implementations,
with little monitoring and rudimentary garbage collection. While it is possible
to use hashing schemes to efficiently find common code, in practice assuming
that common code only arises because it was inherited from the same location
(for instance, by crossing over) is sufficient.

8.6 GP Running in Parallel

In contrast to much of computer science, EC can be readily run on parallel
computer hardware; indeed it is ‘embarrassingly parallel’ [7]. For example,
when Turton ran GP on a Cray supercomputer he obtained about 30% of
its theoretical peak performance, embarrassing his ‘supercomputer savvy’
colleagues who rarely got better than a few percent out of it [280].

There are two important aspects of parallel evolutionary algorithms. These
are equally important but often confused. The first is the traditional aspect
of parallel computing. We port an existing algorithm onto a supercomputer
so that it runs faster. The second aspect comes from the biological inspiration
for EC.

978 W.B. Langdon et al.

In Nature everything happens in parallel. Individuals succeed or not in
producing and raising children at the same time as other members of their
species. The individuals are spread across oceans, lakes, rivers, plains, forests,
mountain chains, and the like. It was this geographic spread that led Wright
to propose that geography and changes to it are of great importance to the
formation of new species and so to natural evolution as a whole [408].

While in Nature geographically distributed populations are a necessity, in
EC we have a choice. We can run GP on parallel hardware so as to speed up
runs, or we can distribute GP populations over geographies so as obtain some
of the benefits it brings to natural evolution. In the following we will discuss
both ideas. It is important to note, however, that one does not need to use
parallel hardware to use geographically distributed GP populations. Although
parallel hardware naturally lends itself to realize physically-distributed popula-
tions, one can obtain similar benefits by using logically-distributed populations
in a single machine.

Master-Slave GP

If the objective is purely to speed up runs, we may want our GP to work
exactly the same as it did on a single computer. This is possible, but to
achieve it we have to be very careful to ensure that even if some parts of the
population are evaluated quicker, that parallelization does not change how we
do selection and which GP individual crosses over with the other. Probably
the easiest way to implement this is the master-slave model.

In the master-slave model [285], breeding, selection, crossover, mutation
and so on are exactly as on a single computer, and only fitness evaluation
is spread across a network of computers. Each GP individual and its fitness
cases are sent across the network to a compute node. The central node waits
for it to return the individual’s fitness. Since individuals and fitness values are
small, this can be quite efficient. The central node is an obvious bottleneck.
Also, a slow compute node or a lengthy fitness case will slow down the whole
GP population, since eventually its result will be needed before moving onto
the next generation.

Geographically Distributed GP

As we have seen, unless some type of synchronization or check pointing is
imposed, say at the end of each generation, the parallel GP will not be running
the same algorithm as the single node version, and, so, it will almost certainly
produce different answers. If the population is divided up into sub-populations
(known as demes [60, 80, 203]) and the exchange of individuals among pop-
ulations is limited (both in terms of how many individuals are allowed to
migrate per generation and a geography that constraints which populations
can communicate with which), then parallelization can bring benefits similar

Genetic Programming: An Introduction and Tutorial 979

(a) (b)

Fig. 18. Spatially structured GP populations. (a) Toroidal grid of demes, where each
deme (node) contains a sub-population, and demes periodically exchange a small
group of high-fitness individuals using a grid of communication channels. (b) Fine-
grained distributed GP, where each grid cell contains one individual and where
the selection of a mating partner for the individual in the centre cell is performed
by executing a tournament among randomly selected individuals (for instance, the
individuals shaded) in its 3 × 3 neighbourhood

to those found in Nature by [408]. For example, it may be that with limited
migration between compute nodes, the evolved populations on adjacent nodes
will diverge and that this increased diversity may lead to better solutions.

When Koza first started using GP on a network of Transputers [6], Andre
experimentally determined the best immigration rate for their problem. He
suggested Transputers arranged in an asynchronous 2-D toroidal square grid
(such as the one in Fig. 18a) should exchange 2% of their population with
their four neighbours.

Densely connected grids have been widely adopted in parallel GP. Usually
they allow innovative partial solutions to quickly spread. However, the GA
community reported better results from less connected topologies, such as
arranging the compute node’s populations in a ring, so that they could trans-
port genes only between between themselves and their two neighbours [365].
Potter argues in favour of spatial separation in populations (see Fig. 18b) [314].
Goldberg also suggests low migration rates [116]. In [396], Whitley includes
some guidance on parallel GAs.

While many have glanced enviously at Koza’s 1000 node Beowulf [368], a
supercomputer [29, 162] is often not necessary. Many businesses and research
centres leave computers permanently switched on. During the night their com-
putational resources tend to be wasted. This computing power can easily and
efficiently be used to execute distributed GP runs overnight. Typically GP
does not demand a high performance bus to interconnect the compute nodes,
and, so, existing office Ethernet LANs are often sufficient. Whilst parallel

980 W.B. Langdon et al.

Fig. 19. A global population [213].; the straight lines show connections between
major sites in a continuously evolving L-System

GP systems can be implemented using MPI [391] or PVM [96], the use of such
tools is not necessary: simple Unix commands and port-to-port HTTP is suf-
ficient [307]. The population can be split and stored on modest computers.
With only infrequent interchange of parts of the population or fitness values
little bandwidth is needed. Indeed a global population spread via the Inter-
net [213], á la seti@home, is perfectly feasible [56]. (See Fig. 19). Other parallel
GPs include [6, 44, 50, 63, 97, 98, 125,183,232,246,334,335,372].

GP Running on GPUs

Modern PC graphics cards contain powerful Graphics Processing Units
(GPUs) including a large number of computing components. For example,
it is not atypical to have 128 streaming processors on a single PCI graphics
card. In the last few years there has been an explosion of interest in porting
scientific or general purpose computation to mass market graphics cards [286].

Indeed, the principal manufactures (nVidia and ATI) claim faster than
Moore’s Law increase in performance, suggesting that GPU floating point
performance will continue to double every twelve months, rather than the
18–24 months observed [260] for electronic circuits in general and personal
computer CPUs in particular. In fact, the apparent failure of PC CPUs to keep
up with Moore’s law in the last few years makes GPU computing even more
attractive. Even today’s bottom of the range GPUs greatly exceed the floating
point performance of their hosts’ CPU. However, this speed comes at a price,
since GPUs provide a restricted type of parallel processing, often referred to
a single instruction multiple data (SIMD) or single program multiple data

Genetic Programming: An Introduction and Tutorial 981

(SPMD). Each of the many processors simultaneously runs the same program
on different data items.

There have been a few GP experiments with GPUs [55, 86, 130, 216, 218,
237,255,319]. So far, in GP, GPUs have just been used for fitness evaluation.
Harding used the Microsoft research GPU development Direct X tools to
allow him to compile a whole population of Cartesian GP network programs
into a GPU program [132] which was loaded onto his Laptop’s GPU in order
to run fitness cases. We used [216, 218] a SIMD interpreter [162] written in
C++ using RapidMind’s GCC OpenGL framework to simultaneously run up to
a quarter of a million GP trees on an nVidia GPU. A conventional tree GP
S-expression can be linearized. We used used reverse polish notation (RPN)
– that is, post fix notation – rather than pre-fix notation. RPN avoids recur-
sive calls in the interpreter [216]. Only small modifications are needed to do
crossover and mutation so that they act directly on the RPN expressions.
This means the same representation is used on both the host and the GPU.
In both Cartesian and tree GP the genetic operations are done by the host
CPU. Wong showed, for a genetic algorithm, these too can be done by the
GPU [406].

Although each of the GPU’s processors may be individually quite fast
and the manufacturers claim huge aggregate FLOP ratings, the GPUs are
optimized for graphics work. In practice it is hard to keep all the processors
fully loaded. Nevertheless 30 GFLOPS has been achieved [218]. Given the
differences in CPU and GPU architectures and clock speeds, often the speedup
from using a GPU rather than the host CPU is the most useful statistic. This
is obviously determined by many factors, including the relative importance of
amount of computation and size of data. The measured RPN tree speedups
were 7.6 [218] and 12.6 [216].

8.7 GP Trouble-Shooting

A number of practical recommendations for GP work can be made. To a large
extent the advice in [181] and [188] remains sound. However, we also suggest:

• GP populations should be closely studied as they evolve. There are several
properties that can be easily measured which give indications of problems:
– Frequency of primitives. Recognizing when a primitive has been com-

pletely lost from the population (or its frequency has fallen to a
low level, consistent with the mutation rate) may help to diagnose
problems.

– Population variety. If the variety – the number of distinct individuals
in the population – falls below 90% of the population size, this indi-
cates there may be a problem. However, a high variety does not mean
the reverse. GP populations often contain introns, and so programs
which are not identical may behave identically. Being different, these

982 W.B. Langdon et al.

individuals contribute to a high variety, that is a high variety need not
indicate all is well. Measuring phenotypic variation (that is, diversity
of behavior) may also be useful.

• Measures should be taken to encourage population diversity. Panmic-
tic steady-state populations with tournament selection, reproduction and
crossover may converge too readily.3 The above-mentioned metrics may
indicate if this is happening in a particular case. Possible solutions include:
– Not using the reproduction operator.
– Addition of one or more mutation operators.
– Smaller tournament sizes and/or using uniform random selection (in-

stead of the standard negative tournaments) to decide which individ-
uals to remove from the population. Naturally, the latter means the
selection scheme is no longer elitist; it may be worthwhile forcing it to
be elitist.

– Splitting large populations into semi-isolated demes.4

– Using fitness sharing to encourage the formation of many fitness niches.
• Use of fitness caches (either when executing an individual or between

ancestors and children) can reduce run time and may repay the additional
work involved with using them.

• Where GP run time is long, it is important to periodically save the current
state of the run. Should the system crash, the run can be restarted from
part way through rather than at the start. Care should be taken to save the
entire state, so restarting a run does not introduce any unknown variation.
The bulk of the state to be saved is the current population. This can be
compressed, for example by using gzip. While compression can add a few
percent to run time, reductions in disk space to less than one bit per
primitive in the population have been achieved.

9 Genetic Programming Theory

Most of this Chapter is about the mechanics of GP and its practical use for
solving problems. We have looked at GP from a problem-solving and engi-
neering point of view. However, GP is a non-deterministic searcher and, so,
its behavior varies from run to run. It is also a complex adaptive system which
sometimes shows complex and unexpected behaviors (such as bloat). So, it

3 In a panmictic population no mating restrictions are imposed as to which
individual mates with which.

4 What is meant by a ‘large population’ has changed over time. In the early days of
GP populations of 1,000 or more could be considered large. However, CPU speeds
and computer memory have increased exponentially over time. So, at the time of
writing it is not unusual to see populations of hundred of thousands or millions
of individuals being used in the solution of hard problems. Research indicates
that there are benefits in splitting populations into demes even for much smaller
populations.

Genetic Programming: An Introduction and Tutorial 983

is only natural to be interested in GP also from the scientific point of view.
That is, we want to understand why can GP solve problems, how it does it,
what goes wrong when it cannot, what are the reasons for certain undesirable
behaviors, what can we do to get rid of them without introducing new (and
perhaps even less desirable) problems, and so on.

GP is a search technique that explores the space of computer programs.
The search for solutions to a problem starts from a group of points (random
programs) in this search space. Those points that are above average qual-
ity are then used to generate a new generation of points through crossover,
mutation, reproduction and possibly other genetic operations. This process
is repeated over and over again until a stopping criterion is satisfied. If we
could visualize this search, we would often find that initially the population
looks like a cloud of randomly scattered points, but that, generation after
generation, this cloud changes shape and moves in the search space. Because
GP is a stochastic search technique, in different runs we would observe differ-
ent trajectories. These, however, would show clear regularities which would
provide us with a deep understanding of how the algorithm is searching the
program space for the solutions. We would probably readily see, for example,
why GP is successful in finding solutions in certain runs, and unsuccessful in
others. Unfortunately, it is normally impossible to exactly visualize the pro-
gram search space due to its high dimensionality and complexity, and so we
cannot just use our senses to understand GP.

9.1 Mathematical Models

In this situation, in order to gain an understanding of the behavior of a GP
system one can perform many real runs and record the variations of certain
numerical descriptors (like the average fitness or the average size of the pro-
grams in the population at each generation, the average number of inactive
nodes, the average difference between parent and offspring fitness, and so on).
Then, one can try to suggest explanations about the behavior of the system
which are compatible with (and could explain) the empirical observations.
This exercise is very error prone, though, because a genetic programming sys-
tem is a complex adaptive system with ‘zillions’ of degrees-of-freedom. So,
any small number of statistical descriptors is likely to be able to capture only
a tiny fraction of the complexities of such a system. This is why in order
to understand and predict the behavior of GP (and indeed of most other
evolutionary algorithms) in precise terms we need to define and then study
mathematical models of evolutionary search.

Schema theories are among the oldest and the best known models of evo-
lutionary algorithms [145, 397]. Schema theories are based on the idea of
partitioning the search space into subsets, called schemata. They are con-
cerned with modeling and explaining the dynamics of the distribution of the
population over the schemata. Modern GA schema theory [366,367] provides

984 W.B. Langdon et al.

exact information about the distribution of the population at the next gen-
eration in terms of quantities measured at the current generation, without
having to actually run the algorithm.5

The theory of schemata in GP has had a difficult childhood. Some excel-
lent early efforts led to different worst-case-scenario schema theorems [3,188,
283, 298, 330, 394]. Only very recently have the first exact schema theories
become available [293–295] which give exact formulations (rather than lower
bounds) for the expected number of individuals sampling a schema at the
next generation. Initially [293, 295], these exact theories were only applica-
ble to GP with one-point crossover (see Sect. 2.4). However, more recently
they have been extended to the class of homologous crossovers [309] and to
virtually all types of crossovers that swap subtrees [305,306], including stan-
dard GP crossover with and without uniform selection of the crossover points,
one-point crossover, context-preserving crossover and size-fair crossover which
have been described in Sect. 2.4, as well as more constrained forms of crossover
such as strongly-typed GP crossover (see Sect. 5.4), and many others.

9.2 Search Spaces

Exact schema-based models of GP are probabilistic descriptions of the opera-
tions of selection, reproduction, crossover, and mutation. They make it explicit
how these operations determine the areas of the program space that will be
sampled by GP and with which probability. However, these models treat the
fitness function as a black box. That is, there is no notion of the fact that
in GP, unlike other evolutionary techniques, the fitness function involves the
execution of computer programs with different input data. In other words,
schema theories do not tell us how fitness is distributed in the search space.

The characterization of the space of computer programs explored by GP
has been another main topic of theoretical research [222].6 In this category are
theoretical results showing that the distribution of functionality of non Turing-
complete programs approaches a limit as program length increases. That is,
although the number of programs of a particular length grows exponentially
with length, beyond a certain threshold the fraction of programs implementing
any particular functionality is effectively constant. For example, in Fig. 20 we
plot the proportion of binary program trees composed of NAND gates which
implement each of the 223

= 256 Boolean functions of three inputs.
5 Other models of evolutionary algorithms exist, such those based on Markov chain

theory (for example [69, 271]) or on statistical mechanics (for instance, [316]).
Only Markov models [258,308,309] have been applied to GP, but they are not as
developed as schema theory.

6 Of course results describing the space of all possible programs are widely applica-
ble, not only to GP and other search-based automatic programming techniques,
but also to many other areas ranging from software engineering to theoretical
computer science.

Genetic Programming: An Introduction and Tutorial 985

0 10 20 30 40 50 60 70 80Three-Input Boolean equivalence class
1

31
63

91
127

151

201

255

Size

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

Fig. 20. Proportion of NAND-trees that yield each three-input functions; as circuit
size increases the distribution approaches a limit

Notice how, as the length of programs increases, the proportion of pro-
grams implementing each function approaches a limit. This does not happen
by accident. There is a very substantial body of empirical evidence indicat-
ing that this happens in a variety of other systems. In fact, we have also
been able to prove mathematically these convergence results for two impor-
tant forms of programs: Lisp (tree-like) S-expressions (without side effects)
and machine code programs without loops [207–210, 212, 222]. Also, similar
results were derived for: (a) cyclic (increment, decrement and NOP), (b) bit
flip computer, (flip bit and NOP), (c) any non-reversible computer, (d) any
reversible computer, (e) CCNOT (Toffoli gate) computer, (f) quantum com-
puters, (g) the ‘average’ computer and h) AND, NAND, OR, NOR expressions
(however, these are not Turing complete).

Recently, we started extending our results to Turing complete machine
code programs [304]. We considered a simple but realistic Turing complete
machine code language, T7. It includes: directly accessed bit addressable mem-
ory, an addition operator, an unconditional jump, a conditional branch and
four copy instructions. We performed a mathematical analysis of the halting
process based on a Markov chain model of program execution and halting.
The model can be used to estimate, for any given program length, impor-
tant quantities, such as the halting probability and the run time of halting
programs. This showed a scaling law indicating that the halting probabil-
ity for programs of length L is of order 1/

√
L, while the expected number of

instructions executed by halting programs is of order
√

L. In contrast to many
proposed Markov models, this can be done very efficiently, making it possible
to compute these quantities for programs of tens of million instructions in a
few minutes. Experimental results confirmed the theory.

986 W.B. Langdon et al.

9.3 Bloat

There are a certain number of limits in GP: bloat, limited modularity of
evolved solutions and limited scalability of GP as the problem size increases.
We briefly discuss the main one, bloat, below.

Starting in the early 1990s, researchers began to notice that in addition
to progressively increasing their mean and best fitness, GP populations also
showed certain other dynamics. In particular, it was noted that very often
the average size (number of nodes) of the programs in a population, after a
certain number of generations in which it was largely static, at some point
would start growing at a rapid pace. Typically the increase in program size
was not accompanied by any corresponding increase in fitness. The origin of
this phenomenon, which is know as bloat, has effectively been a mystery for
over a decade.

Note that there are situations where one would expect to see program
growth as part of the process of solving a problem. For example, GP runs
typically start from populations of small random programs, and it may be
necessary for the programs to grow in complexity for them to be able to
comply with all the fitness cases (a situation which often arises in continuous
symbolic regression problems). So, we should not equate bloat with growth.
We should only talk of bloat when there is growth without (significant) return
in terms of fitness.

Because of its surprising nature and of its practical effects (large programs
are hard to interpret, may have poor generalization and are computationally
expensive to evolve and later use), bloat has been a subject of intense study in
GP. As a result, many theories have been proposed to explain bloat: replication
accuracy theory, removal bias theory, nature of program search spaces theory,
and so on. Unfortunately, only recently we have started understanding the
deep reasons for bloat. So, there is a great deal of confusion in the field as to
the reasons of (and the remedies for) bloat. For many people bloat is still a
puzzle.

Let us briefly review these theories:

Replication accuracy theory [252]: This theory states that the success of a GP
individual depends on its ability to have offspring that are functionally
similar to the parent. So, GP evolves towards (bloated) representations
that increase replication accuracy.

Removal bias theory [356]: ‘Inactive code’ (code that is not executed, or is
executed but its output is then discarded) in a GP tree is low in the
tree, forming smaller-than-average-size subtrees. Crossover events excising
inactive subtrees produce offspring with the same fitness as their parents.
On average the inserted subtree is bigger than the excised one, so such
offspring are bigger than average.

Genetic Programming: An Introduction and Tutorial 987

Nature of program search spaces theory [221, 225]: Above a certain size, the
distribution of fitnesses does not vary with size. Since there are more long
programs, the number of long programs of a given fitness is greater than
the number of short programs of the same fitness. Over time GP samples
longer and longer programs simply because there are more of them.

Crossover bias theory [81, 312]: On average, each application of subtree
crossover removes as much genetic material as it inserts. So, crossover
in itself does not produce growth or shrinkage. However, while the mean
program size is unaffected, other moments of the distribution are. In par-
ticular, we know that crossover pushes the population towards a particular
distribution of program sizes (a Lagrange distribution of the second kind),
where small programs have a much higher frequency than longer ones.
For example, crossover generates is a very high proportion of single-node
individuals. In virtually all problems of practical interest, very small pro-
grams have no chance of solving the problem. As a result, programs of
above average length have a selective advantage over programs of below
average length. Consequently, the mean program size increases.

Several effective techniques to control bloat have been proposed [225,355].
For example, size fair crossover or size fair mutation [64,206], Tarpeian bloat
control [296], parsimony pressure [416–418], or using many runs each lasting
only a few generations. Generally the use of multiple genetic operations, each
making a small change, seems to help [11, 281]. There are also several muta-
tion operators that may help control the average tree size in the population
while still introducing new genetic material. [178] proposes a mutation opera-
tor which prevents the offspring’s depth being more then 15% larger than its
parent. [202] proposes two mutation operators in which the new random sub-
tree is on average the same size as the code it replaces. In Hoist mutation [180]
the new subtree is selected from the subtree being removed from the parent,
guaranteeing that the new program will be smaller than its parent. Shrink
mutation [9] is a special case of subtree mutation where the randomly chosen
subtree is replaced by a randomly chosen terminal.

10 Conclusions

In his seminal 1948 paper entitled ‘Intelligent Machinery’, Turing identi-
fied three ways by which human-competitive machine intelligence might be
achieved. In connection with one of those ways, Turing said:

“There is the genetical or evolutionary search by which a combination
of genes is looked for, the criterion being the survival value.” [384]

Turing did not specify how to conduct the ‘genetical or evolutionary search’
for machine intelligence. In particular, he did not mention the idea of a
population-based parallel search in conjunction with sexual recombination

988 W.B. Langdon et al.

(crossover) as described in John Holland’s 1975 book [146]. However, in his
1950 paper ‘Computing Machinery and Intelligence’, he did point out:

“We cannot expect to find a good child-machine at the first attempt.
One must experiment with teaching one such machine and see how well
it learns. One can then try another and see if it is better or worse.
There is an obvious connection between this process and evolution:

‘Structure of the child machine’ = Hereditary material
‘Changes of the child machine’ = Mutations

‘Natural selection’ = Judgement of the experimenter” [385]

In other words, Turing perceived that one possibly productive approach to
machine intelligence would involve an evolutionary process in which a descrip-
tion of a computer program (the hereditary material) undergoes progressive
modification (mutation) under the guidance of natural selection (that is,
selective pressure in the form of what we now call ‘fitness’).

Today, many decades later, we can see that indeed Turing was right.
GP has started fulfilling Turing’s dream by providing us with a systematic
method, based on Darwinian evolution, for getting computers to automati-
cally solve hard real-life problems. To do so, it simply requires a high-level
statement of what needs to be done (and enough computing power).

Turing also understood the need to evaluate objectively the behavior
exhibited by machines, to avoid human biases when assessing their intel-
ligence. This led him to propose an imitation game, now known as the
Turing test for machine intelligence, whose goals are wonderfully summarized
by Samuel’s position statement quoted in the introduction of this chapter.
The eight criteria for human competitiveness we discussed in Sect. 7.2 are
motivated by the same goals.

At present GP is unable to produce computer programs that would pass
the full Turing test for machine intelligence, and it might not be ready for this
immense task for centuries. Nonetheless, thanks to the constant improvements
in GP technology, in its theoretical foundations and in computing power,
GP has been able to solve tens of difficult problems with human-competitive
results (see Sect. 7.2). These are a small step towards fulfilling Turing and
Samuel’s dreams, but they are also early signs of things to come. It is, indeed,
arguable that in a few years’ time GP will be able to routinely and competently
solve important problems for us in a variety of application domains with
human-competitive performance. Genetic programming will then become an
essential collaborator for many human activities. This, we believe, will be a
remarkable step forward towards achieving true, human-competitive machine
intelligence.

Genetic Programming: An Introduction and Tutorial 989

Acknowledgements

Some of the material in this book chapter has previously appeared in a more
extended form in R. Poli, W.B. Langdon, N.F. McPhee, A Field Guide to
Genetic Programming, lulu.com, 2008. Permission to reproduce it here has
been granted by the copyright holders. We would like to thank Rick Riolo,
Matthew Walker, Christian Gagne, Bob McKay, Giovanni Pazienza and Lee
Spector for their timely assistance.

References

1. Al-Sakran SH, Koza JR, Jones LW (2005) Automated re-invention of a pre-
viously patented optical lens system using genetic programming. In: Keijzer
M, Tettamanzi A, Collet P, van Hemert JI, Tomassini M (eds) Proceed-
ings of the 8th European Conference on Genetic Programming, Springer,
Lausanne, Switzerland, Lecture Notes in Computer Science, vol 3447, pp
25–37, URL http://springerlink.metapress.com/openurl.asp?genre=article&
i%ssn=0302-9743&volume=3447&spage=25

2. Allen J, Davey HM, Broadhurst D, Heald JK, Rowland JJ, Oliver SG, Kell DB
(2003) High-throughput classification of yeast mutants for functional genomics
using metabolic footprinting. Nature Biotechnology 21(6):692–696, DOI doi:10.
1038/nbt823, URL http://dbkgroup.org/Papers/NatureBiotechnology21(692-
696).pdf

3. Altenberg L (1994) Emergent phenomena in genetic programming. In: Sebald
AV, Fogel LJ (eds) Evolutionary Programming—Proceedings of the Third
Annual Conference, World Scientific Publishing, San Diego, CA, USA,
pp 233–241, URL http://dynamics.org/˜altenber/PAPERS/EPIGP/

4. Alves da Silva AP, Abrao PJ (2002) Applications of evolutionary computation
in electric power systems. In: Fogel DB, El-Sharkawi MA, Yao X, Greenwood
G, Iba H, Marrow P, Shackleton M (eds) Proceedings of the 2002 Congress
on Evolutionary Computation CEC2002, IEEE Press, pp 1057–1062, DOI doi:
10.1109/CEC.2002.1004389

5. Ando D, Dahlsted P, Nordahl M, Iba H (2007) Interactive GP with tree rep-
resentation of classical music pieces. In: Giacobini M, Brabazon A, Cagnoni
S, Di Caro GA, Drechsler R, Farooq M, Fink A, Lutton E, Machado P,
Minner S, O’Neill M, Romero J, Rothlauf F, Squillero G, Takagi H, Uyar AS,
Yang S (eds) Applications of Evolutionary Computing, EvoWorkshops 2007:
EvoCOMNET, EvoFIN, EvoIASP, EvoInteraction, EvoMUSART, EvoSTOC,
EvoTransLog, Springer Verlag, Valencia, Spain, LNCS, vol 4448, pp 577–584,
DOI doi:10.1007/978-3-540-71805-5 63

6. Andre D, Koza JR (1996) Parallel genetic programming: A scalable implemen-
tation using the transputer network architecture. In: Angeline PJ, Kinnear, Jr
KE (eds) Advances in Genetic Programming 2, MIT Press, Cambridge, MA,
USA, chap 16, pp 317–338

7. Andre D, Koza JR (1998) A parallel implementation of genetic programming
that achieves super-linear performance. Information Sciences 106(3–4):201–
218, URL http://www.sciencedirect.com/science/article/B6V0C-3TKS65B-
21/2/22b9842f820b08883990bbae1d889c03

990 W.B. Langdon et al.

8. Andre D, Bennett III FH, Koza JR (1996) Discovery by genetic program-
ming of a cellular automata rule that is better than any known rule for
the majority classification problem. In: Koza JR, Goldberg DE, Fogel DB,
Riolo RL (eds) Genetic Programming 1996: Proceedings of the First Annual
Conference, MIT Press, Stanford University, CA, USA, pp 3–11, URL http://
www.genetic-programming.com/jkpdf/gp1996gkl.pdf

9. Angeline PJ (1996) An investigation into the sensitivity of genetic program-
ming to the frequency of leaf selection during subtree crossover. In: Koza JR,
Goldberg DE, Fogel DB, Riolo RL (eds) Genetic Programming 1996: Proceed-
ings of the First Annual Conference, MIT Press, Stanford University, CA, USA,
pp 21–29, URL http://www.natural-selection.com/Library/1996/gp96.zip

10. Angeline PJ (1997) Subtree crossover: Building block engine or macromuta-
tion? In: Koza JR, Deb K, Dorigo M, Fogel DB, Garzon M, Iba H, Riolo
RL (eds) Genetic Programming 1997: Proceedings of the Second Annual
Conference, Morgan Kaufmann, Stanford University, CA, USA, pp 9–17

11. Angeline PJ (1998) Multiple interacting programs: A representation for
evolving complex behaviors. Cybernetics and Systems 29(8):779–806, URL
http://www.natural-selection.com/Library/1998/mips3.pdf

12. Angeline PJ, Kinnear, Jr KE (eds) (1996) Advances in Genetic Programming
2. MIT Press, Cambridge, MA, USA, URL http://www.cs.bham.ac.uk/˜wbl/
aigp2.html

13. Angeline PJ, Pollack JB (1992) The evolutionary induction of subroutines.
In: Proceedings of the Fourteenth Annual Conference of the Cognitive Science
Society, Lawrence Erlbaum, Bloomington, Indiana, USA, pp 236–241, URL
http://www.demo.cs.brandeis.edu/papers/glib92.pdf

14. Arkov V, Evans C, Fleming PJ, Hill DC, Norton JP, Pratt I, Rees
D, Rodriguez-Vazquez K (2000) System identification strategies applied
to aircraft gas turbine engines. Annual Reviews in Control 24(1):67–81,
URL http://www.sciencedirect.com/science/article/B6V0H-482MDPD-8/2/
dd470648e2228c84efe7e14ca3841b7e

15. Austin MP, Bates G, Dempster MAH, Leemans V, Williams SN (2004)
Adaptive systems for foreign exchange trading. Quantitative Finance 4(4):37–
45, DOI doi:10.1080/14697680400008593, URL http://www-cfr.jbs.cam.ac.
uk/archive/PRESENTATIONS/seminars/2006/dempster2.pdf

16. Azaria Y, Sipper M (2005a) GP-gammon: Genetically programming backgam-
mon players. Genetic Programming and Evolvable Machines 6(3):283–300,
DOI doi:10.1007/s10710-005-2990-0, URL http://www.cs.bgu.ac.il/˜sipper/
papabs/gpgammon.pdf, published online: 12 August 2005

17. Azaria Y, Sipper M (2005b) Using GP-gammon: Using genetic programming
to evolve backgammon players. In: Keijzer M, Tettamanzi A, Collet P, van
Hemert JI, Tomassini M (eds) Proceedings of the 8th European Conference
on Genetic Programming, Springer, Lausanne, Switzerland, Lecture Notes in
Computer Science, vol 3447, pp 132–142, URL http://springerlink.metapress.
com/openurl.asp?genre=article&issn=0302-9743&volume=3447&spage=132

18. Babovic V (1996) Emergence, evolution, intelligence; Hydroinformatics - A
study of distributed and decentralised computing using intelligent agents. A.
A. Balkema Publishers, Rotterdam, Holland

19. Bader-El-Den M, Poli R (2007a) Generating sat local-search heuristics using a
gp hyper-heuristic framework. In: Proceedings of Evolution Artificielle

Genetic Programming: An Introduction and Tutorial 991

20. Bader-El-Den MB, Poli R (2007b) A GP-based hyper-heuristic framework for
evolving 3-SAT heuristics. In: Thierens D, Beyer HG, Bongard J, Branke J,
Clark JA, Cliff D, Congdon CB, Deb K, Doerr B, Kovacs T, Kumar S, Miller
JF, Moore J, Neumann F, Pelikan M, Poli R, Sastry K, Stanley KO, Stut-
zle T, Watson RA, Wegener I (eds) GECCO ’07: Proceedings of the 9th
annual conference on Genetic and evolutionary computation, ACM Press,
London, vol 2, pp 1749–1749, URL http://www.cs.bham.ac.uk/˜wbl/biblio/
gecco2007/docs/p1749.pdf

21. Bains W, Gilbert R, Sviridenko L, Gascon JM, Scoffin R, Birchall K, Har-
vey I, Caldwell J (2002) Evolutionary computational methods to predict oral
bioavailability QSPRs. Current Opinion in Drug Discovery and Development
5(1):44–51

22. Baker JE (1987) Reducing bias and inefficiency in the selection algorithm.
In: Grefenstette JJ (ed) Proceedings of the Second International Conference
on Genetic Algorithms and their Application, Lawrence Erlbaum Associates,
Cambridge, MA, USA, pp 14–21

23. Balic J (1999) Flexible Manufacturing Systems; Development - Structure
- Operation - Handling - Tooling. Manufacturing technology, DAAAM
International, Vienna

24. Banzhaf W (1993) Genetic programming for pedestrians. In: Forrest S (ed) Pro-
ceedings of the 5th International Conference on Genetic Algorithms, ICGA-93,
Morgan Kaufmann, University of Illinois at Urbana-Champaign, p 628, URL
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/GenProg
forPed.ps.Z

25. Banzhaf W, Nordin P, Keller RE, Francone FD (1998) Genetic Programming
– An Introduction; On the Automatic Evolution of Computer Programs and
its Applications. Morgan Kaufmann, San Francisco, CA, USA

26. Barrett SJ (2003) Recurring analytical problems within drug discovery and
development. In: Scheffer T, Leser U (eds) Data Mining and Text Mining
for Bioinformatics: Proceedings of the European Workshop, Dubrovnik, Croa-
tia, pp 6–7, URL http://www2.informatik.hu-berlin.de/˜scheffer/publications/
ProceedingsWS2003.pdf, invited talk

27. Barrett SJ, Langdon WB (2006) Advances in the application of machine
learning techniques in drug discovery, design and development. In: Tiwari A,
Knowles J, Avineri E, Dahal K, Roy R (eds) Applications of Soft Computing:
Recent Trends, Springer, On the World Wide Web, Advances in Soft Comput-
ing, pp 99–110, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/
barrett 2005 WSC.pdf

28. Bennett III FH (1996) Automatic creation of an efficient multi-agent archi-
tecture using genetic programming with architecture-altering operations.
In: Koza JR, Goldberg DE, Fogel DB, Riolo RL (eds) Genetic Program-
ming 1996: Proceedings of the First Annual Conference, MIT Press, Stan-
ford University, CA, USA, pp 30–38, URL http://cognet.mit.edu/library/
books/view?isbn=0262611279

29. Bennett III FH, Koza JR, Shipman J, Stiffelman O (1999) Building a par-
allel computer system for $18,000 that performs a half peta-flop per day. In:
Banzhaf W, Daida J, Eiben AE, Garzon MH, Honavar V, Jakiela M, Smith
RE (eds) Proceedings of the Genetic and Evolutionary Computation Confer-
ence, Morgan Kaufmann, Orlando, Florida, USA, vol 2, pp 1484–1490, URL
http://www.genetic-programming.com/jkpdf/gecco1999beowulf.pdf

992 W.B. Langdon et al.

30. Bhanu B, Lin Y, Krawiec K (2005) Evolutionary Synthesis of Pattern Recog-
nition Systems. Monographs in Computer Science, Springer-Verlag, New York,
URL http://www.springer.com/west/home/computer/imaging?SGWID=4-
14%9-22-39144807-detailsPage=ppmmedia—aboutThisBook

31. Blickle T (1996) Theory of evolutionary algorithms and application to sys-
tem synthesis. PhD thesis, Swiss Federal Institute of Technology, Zurich, URL
http://www.handshake.de/user/blickle/publications/diss.pdf

32. Brabazon A, O’Neill M (2006) Biologically Inspired Algorithms for Financial
Modeling. Natural Computing Series, Springer

33. Brameier M, Banzhaf W (2001) A comparison of linear genetic program-
ming and neural networks in medical data mining. IEEE Transactions on
Evolutionary Computation 5(1):17–26, URL http://web.cs.mun.ca/˜banzhaf/
papers/ieee taec.pdf

34. Brameier M, Banzhaf W (2007) Linear Genetic Programming. No. XVI in
Genetic and Evolutionary Computation, Springer, URL http://www.springer.
com/west/home/default?SGWID=4-40356-22-173660820-0

35. Brameier M, Haan J, Krings A, MacCallum RM (2006) Automatic discovery
of cross-family sequence features associated with protein function. BMC bioin-
formatics [electronic resource] 7(16), DOI doi:10.1186/1471-2105-7-16, URL
http://www.biomedcentral.com/content/pdf/1471-2105-7-16.pdf

36. Brave S (1996) Evolving recursive programs for tree search. In: Angeline
PJ, Kinnear, Jr KE (eds) Advances in Genetic Programming 2, MIT Press,
Cambridge, MA, USA, chap 10, pp 203–220

37. Brezocnik M (2000) Uporaba genetskega programiranja v inteligentnih
proizvodnih sistemih. University of Maribor, Faculty of mechanical engineer-
ing, Maribor, Slovenia, URL http://maja.uni-mb.si/slo/Knjige/2000-03-mon/
index.htm

38. Brezocnik M, Balic J, Gusel L (2000) Artificial intelligence approach to
determination of flow curve. Journal for technology of plasticity 25(1–2):1–7

39. Buason G, Bergfeldt N, Ziemke T (2005) Brains, bodies, and beyond: Com-
petitive co-evolution of robot controllers, morphologies and environments.
Genetic Programming and Evolvable Machines 6(1):25–51, DOI doi:10.1007/
s10710-005-7618-x

40. Burke E, Kendall G, Newall J, Hart E, Ross P, Schulenburg S (2003) Hyper-
heuristics: an emerging direction in modern search technology. In: Glover
F, Kochenberger G (eds) Handbook of Metaheuristics, Kluwer Academic
Publishers, pp 457–474

41. Burke EK, Hyde MR, Kendall G (2006) Evolving bin packing heuristics with
genetic programming. In: Runarsson TP, Beyer HG, Burke E, Merelo-Guervos
JJ, Whitley LD, Yao X (eds) Parallel Problem Solving from Nature - PPSN
IX, Springer-Verlag, Reykjavik, Iceland, LNCS, vol 4193, pp 860–869, DOI doi:
10.1007/11844297 87, URL http://www.cs.nott.ac.uk/˜mvh/ppsn2006.pdf

42. Burke EK, Hyde MR, Kendall G, Woodward J (2007) Automatic heuristic gen-
eration with genetic programming: evolving a jack-of-all-trades or a master of
one. In: Thierens D, Beyer HG, Bongard J, Branke J, Clark JA, Cliff D, Con-
gdon CB, Deb K, Doerr B, Kovacs T, Kumar S, Miller JF, Moore J, Neumann
F, Pelikan M, Poli R, Sastry K, Stanley KO, Stutzle T, Watson RA, Wegener
I (eds) GECCO ’07: Proceedings of the 9th annual conference on Genetic and
evolutionary computation, ACM Press, London, vol 2, pp 1559–1565, URL
http://www.cs.bham.ac.uk/ wbl/biblio/gecco2007/docs/p1559.pdf

Genetic Programming: An Introduction and Tutorial 993

43. Buxton BF, Langdon WB, Barrett SJ (2001) Data fusion by intelligent clas-
sifier combination. Measurement and Control 34(8):229–234, URL http://
www.cs.ucl.ac.uk/staff/W.Langdon/mc/

44. Cagnoni S, Bergenti F, Mordonini M, Adorni G (2005) Evolving binary
classifiers through parallel computation of multiple fitness cases. IEEE Trans-
actions on Systems, Man and Cybernetics - Part B 35(3):548–555, DOI doi:
10.1109/TSMCB.2005.846671

45. Cai W, Pacheco-Vega A, Sen M, Yang KT (2006) Heat transfer correlations by
symbolic regression. International Journal of Heat and Mass Transfer 49(23-
24):4352–4359, DOI doi:10.1016/j.ijheatmasstransfer.2006.04.029

46. Castillo F, Kordon A, Smits G (2006) Robust pareto front genetic programming
parameter selection based on design of experiments and industrial data. In:
Riolo RL, Soule T, Worzel B (eds) Genetic Programming Theory and Practice
IV, Genetic and Evolutionary Computation, vol 5, Springer, Ann Arbor

47. Chami M, Robilliard D (2002) Inversion of oceanic constituents in case I and
II waters with genetic programming algorithms. Applied Optics 41(30):6260–
6275, URL http://ao.osa.org/ViewMedia.cfm?id=70258&seq=0

48. Channon A (2006) Unbounded evolutionary dynamics in a system of agents
that actively process and transform their environment. Genetic Programming
and Evolvable Machines 7(3):253–281, DOI doi:10.1007/s10710-006-9009-3

49. Chao DL, Forrest S (2003) Information immune systems. Genetic Programming
and Evolvable Machines 4(4):311–331, DOI doi:10.1023/A:1026139027539

50. Cheang SM, Leung KS, Lee KH (2006) Genetic parallel programming: Design
and implementation. Evolutionary Computation 14(2):129–156, DOI doi:10.
1162/evco.2006.14.2.129

51. Chen SH (ed) (2002) Genetic Algorithms and Genetic Programming
in Computational Finance. Kluwer Academic Publishers, Dordrecht,
URL http://www.springer.com/west/home/business?SGWID=4-40517-22-3%
3195998-detailsPage=ppmmedia|toc

52. Chen SH, Liao CC (2005) Agent-based computational modeling of the stock
price-volume relation. Information Sciences 170(1):75–100, DOI doi:10.1016/
j.ins.2003.03.026, URL http://www.sciencedirect.com/science/article/B6V0C-
4B3JHTS-6/2/9e023835b1c70f176d1903dd3a8b638e

53. Chen SH, Wang HS, Zhang BT (1999) Forecasting high-frequency finan-
cial time series with evolutionary neural trees: The case of heng-sheng
stock index. In: Arabnia HR (ed) Proceedings of the International Confer-
ence on Artificial Intelligence, IC-AI ’99, CSREA Press, Las Vegas, Nevada,
USA, vol 2, pp 437–443, URL http://bi.snu.ac.kr/Publications/Conferences/
International/ICAI99.ps

54. Chen SH, Duffy J, Yeh CH (2002) Equilibrium selection via adaptation: Using
genetic programming to model learning in a coordination game. The Electronic
Journal of Evolutionary Modeling and Economic Dynamics

55. Chitty DM (2007) A data parallel approach to genetic programming using
programmable graphics hardware. In: Thierens D, Beyer HG, Bongard J,
Branke J, Clark JA, Cliff D, Congdon CB, Deb K, Doerr B, Kovacs T,
Kumar S, Miller JF, Moore J, Neumann F, Pelikan M, Poli R, Sastry K,
Stanley KO, Stutzle T, Watson RA, Wegener I (eds) GECCO ’07: Proceed-
ings of the 9th annual conference on Genetic and evolutionary computation,
ACM Press, London, vol 2, pp 1566–1573, URL http://www.cs.bham.ac.
uk/˜wbl/biblio/gecco2007/docs/p1566.pdf

994 W.B. Langdon et al.

56. Chong FS, Langdon WB (1999) Java based distributed genetic programming
on the internet. In: Banzhaf W, Daida J, Eiben AE, Garzon MH, Honavar
V, Jakiela M, Smith RE (eds) Proceedings of the Genetic and Evolution-
ary Computation Conference, Morgan Kaufmann, Orlando, Florida, USA,
vol 2, p 1229, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/
p.chong/DGPposter.pdf, full text in technical report CSRP-99-7

57. Ciesielski V, Li X (2004) Analysis of genetic programming runs. In: Mckay
RI, Cho SB (eds) Proceedings of The Second Asian-Pacific Workshop
on Genetic Programming, Cairns, Australia, URL http://goanna.cs.rmit.
edu.au/˜xiali/pub/ai04.vc.pdf

58. Cilibrasi R, Vitanyi PMB (2005) Clustering by compression. IEEE Trans-
actions on Information Theory 51(4):1523–1545, URL http://homepages.
cwi.nl/˜paulv/papers/cluster.pdf

59. Cilibrasi R, Vitanyi P, de Wolf R (2004) Algorithmic clustering of music
based on string compression. Computer Music Journal 28(4):49–67, URL
http://homepages.cwi.nl/˜paulv/papers/music.pdf

60. Collins RJ (1992) Studies in artificial evolution. PhD thesis, UCLA, Artificial
Life Laboratory, Department of Computer Science, University of California,
Los Angeles, LA CA 90024, USA

61. Corno F, Sanchez E, Squillero G (2005) Evolving assembly programs: how
games help microprocessor validation. Evolutionary Computation, IEEE
Transactions on 9(6):695–706

62. Costelloe D, Ryan C (2007) Towards models of user preferences in interac-
tive musical evolution. In: Thierens D, Beyer HG, Bongard J, Branke J, Clark
JA, Cliff D, Congdon CB, Deb K, Doerr B, Kovacs T, Kumar S, Miller JF,
Moore J, Neumann F, Pelikan M, Poli R, Sastry K, Stanley KO, Stutzle T,
Watson RA, Wegener I (eds) GECCO ’07: Proceedings of the 9th annual
conference on Genetic and evolutionary computation, ACM Press, London,
vol 2, pp 2254–2254, URL http://www.cs.bham.ac.uk/˜wbl/biblio/gecco2007/
docs/p2254.pdf

63. Cranmer K, Bowman RS (2005) PhysicsGP: A genetic programming approach
to event selection. Computer Physics Communications 167(3):165–176, DOI
doi:10.1016/j.cpc.2004.12.006

64. Crawford-Marks R, Spector L (2002) Size control via size fair genetic operators
in the PushGP genetic programming system. In: Langdon WB, Cantú-Paz E,
Mathias K, Roy R, Davis D, Poli R, Balakrishnan K, Honavar V, Rudolph G,
Wegener J, Bull L, Potter MA, Schultz AC, Miller JF, Burke E, Jonoska N
(eds) GECCO 2002: Proceedings of the Genetic and Evolutionary Computa-
tion Conference, Morgan Kaufmann Publishers, New York, pp 733–739, URL
http://alum.hampshire.edu/˜rpc01/gp234.pdf

65. Crepeau RL (1995) Genetic evolution of machine language software. In: Rosca
JP (ed) Proceedings of the Workshop on Genetic Programming: From Theory
to Real-World Applications, Tahoe City, California, USA, pp 121–134, URL
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/GEMS Article.pdf

66. Curry R, Lichodzijewski P, Heywood MI (2007) Scaling genetic program-
ming to large datasets using hierarchical dynamic subset selection. IEEE
Transactions on Systems, Man, and Cybernetics: Part B - Cybernetics
37(4):1065–1073, DOI doi:10.1109/TSMCB.2007.896406, URL http://www.cs.
dal.ca/˜mheywood/X-files/GradPubs.html#curry

Genetic Programming: An Introduction and Tutorial 995

67. Daida JM, Hommes JD, Bersano-Begey TF, Ross SJ, Vesecky JF (1996)
Algorithm discovery using the genetic programming paradigm: Extracting
low-contrast curvilinear features from SAR images of arctic ice. In: Angeline
PJ, Kinnear, Jr KE (eds) Advances in Genetic Programming 2, MIT Press,
Cambridge, MA, USA, chap 21, pp 417–442, URL http://sitemaker.umich.
edu/daida/files/GP2 cha21.pdf

68. Dassau E, Grosman B, Lewin DR (2006) Modeling and temperature con-
trol of rapid thermal processing. Computers and Chemical Engineering
30(4):686–697, DOI doi:10.1016/j.compchemeng.2005.11.007, URL http://
tx.technion.ac.il/˜dlewin/publications/rtp paper v9.pdf

69. Davis TE, Principe JC (1993) A Markov chain framework for the simple genetic
algorithm. Evolutionary Computation 1(3):269–288

70. Day JP, Kell DB, Griffith GW (2002) Differentiation of phytophthora infes-
tans sporangia from other airborne biological particles by flow cytometry.
Applied and Environmental Microbiology 68(1):37–45, DOI doi:10.1128/AEM.
68.1.37-45.2002, URL http://intl-aem.asm.org/cgi/reprint/68/1/37.pdf

71. de Sousa JS, de CT Gomes L, Bezerra GB, de Castro LN, Von Zuben FJ
(2004) An immune-evolutionary algorithm for multiple rearrangements of gene
expression data. Genetic Programming and Evolvable Machines 5(2):157–179,
DOI doi:10.1023/B:GENP.0000023686.59617.57

72. De Stefano C, Cioppa AD, Marcelli A (2002) Character preclassification
based on genetic programming. Pattern Recognition Letters 23(12):1439–1448,
DOI doi:10.1016/S0167-8655(02)00104-6, URL http://www.sciencedirect.
com/science/article/B6V15-45J91MV-4/2/3e5c2ac0c51428d0f7ea9fc0142f6790

73. Deb K (2001) Multi-objective optimization using evolutionary algorithms.
Wiley

74. Dempster MAH, Jones CM (2000) A real-time adaptive trading system
using genetic programming. Quantitative Finance 1:397–413, URL http://
mahd-pc.jbs.cam.ac.uk/archive/PAPERS/2000/geneticprogramming.pdf

75. Dempster MAH, Payne TW, Romahi Y, Thompson GWP (2001) Com-
putational learning techniques for intraday FX trading using popular
technical indicators. IEEE Transactions on Neural Networks 12(4):744–
754, DOI doi:10.1109/72.935088, URL http://mahd-pc.jbs.cam.ac.uk/archive/
PAPERS/2000/ieeetrading.pdf

76. Deschaine L (2006) Using information fusion, machine learning, and global
optimisation to increase the accuracy of finding and understanding items
interest in the subsurface. GeoDrilling International (122):30–32, URL http://
www.mining-journal.com/gdi magazine/pdf/GDI0605scr.pdf

77. Deschaine LM, Patel JJ, Guthrie RD, Grimski JT, Ades MJ (2001) Using
linear genetic programming to develop a C/C++ simulation model of a waste
incinerator. In: Ades M (ed) Advanced Technology Simulation Conference,
Seattle, URL http://www.aimlearning.com/Environmental.Engineering.pdf

78. Deschaine LM, Hoover RA, Skibinski JN, Patel JJ, Francone F, Nordin
P, Ades MJ (2002) Using machine learning to compliment and extend the
accuracy of UXO discrimination beyond the best reported results of the
jefferson proving ground technology demonstration. In: 2002 Advanced
Technology Simulation Conference, San Diego, CA, USA, URL http://
www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/deschaine/ASTC 2002 UXO
Finder Invention Paper.pdf

996 W.B. Langdon et al.

79. D’haeseleer P (1994) Context preserving crossover in genetic programming. In:
Proceedings of the 1994 IEEE World Congress on Computational Intelligence,
IEEE Press, Orlando, Florida, USA, vol 1, pp 256–261, URL http://www.
cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/WCCI94 CPC.ps.Z

80. D’haeseleer P, Bluming J (1994) Effects of locality in individual and pop-
ulation evolution. In: Kinnear, Jr KE (ed) Advances in Genetic Program-
ming, MIT Press, chap 8, pp 177–198, URL http://cognet.mit.edu/library/
books/view?isbn=0262111888

81. Dignum S, Poli R (2007) Generalisation of the limiting distribution of program
sizes in tree-based genetic programming and analysis of its effects on bloat. In:
Thierens D, Beyer HG, Bongard J, Branke J, Clark JA, Cliff D, Congdon
CB, Deb K, Doerr B, Kovacs T, Kumar S, Miller JF, Moore J, Neumann F,
Pelikan M, Poli R, Sastry K, Stanley KO, Stutzle T, Watson RA, Wegener I
(eds) GECCO ’07: Proceedings of the 9th annual conference on Genetic and
evolutionary computation, ACM Press, London, vol 2, pp 1588–1595, URL
http://www.cs.bham.ac.uk/˜wbl/biblio/gecco2007/docs/p1588.pdf

82. Dolinsky JU, Jenkinson ID, Colquhoun GJ (2007) Application of genetic
programming to the calibration of industrial robots. Computers in Industry
58(3):255–264, DOI doi:10.1016/j.compind.2006.06.003

83. Domingos RP, Schirru R, Martinez AS (2005) Soft computing systems applied
to PWR’s xenon. Progress in Nuclear Energy 46(3–4):297–308, DOI doi:10.
1016/j.pnucene.2005.03.011

84. Dracopoulos DC (1997) Evolutionary Learning Algorithms for Neural Adap-
tive Control. Perspectives in Neural Computing, Springer Verlag, P.O. Box
31 13 40, D-10643 Berlin, Germany, URL http://www.springer.de/catalog/
html-files/deutsch/comp/3540761616.html

85. Droste S, Jansen T, Rudolph G, Schwefel HP, Tinnefeld K, Wegener I (2003)
Theory of evolutionary algorithms and genetic programming. In: Schwefel HP,
Wegener I, Weinert K (eds) Advances in Computational Intelligence: Theory
and Practice, Natural Computing Series, Springer, chap 5, pp 107–144

86. Ebner M, Reinhardt M, Albert J (2005) Evolution of vertex and pixel
shaders. In: Keijzer M, Tettamanzi A, Collet P, van Hemert JI, Tomassini M
(eds) Proceedings of the 8th European Conference on Genetic Programming,
Springer, Lausanne, Switzerland, Lecture Notes in Computer Science, vol 3447,
pp 261–270, DOI doi:10.1007/b107383, URL http://springerlink.metapress.
com/openurl.asp?genre=article&issn=0302-9743&volume=3447&spage=261

87. Eiben AE, Smith JE (2003) Introduction to Evolutionary Computing. Springer,
URL http://www.cs.vu.nl/˜gusz/ecbook/ecbook.html

88. Eklund SE (2002) A massively parallel GP engine in VLSI. In: Fogel DB, El-
Sharkawi MA, Yao X, Greenwood G, Iba H, Marrow P, Shackleton M (eds)
Proceedings of the 2002 Congress on Evolutionary Computation CEC2002,
IEEE Press, pp 629–633

89. Ellis DI, Broadhurst D, Kell DB, Rowland JJ, Goodacre R (2002) Rapid
and quantitative detection of the microbial spoilage of meat by fourier trans-
form infrared spectroscopy and machine learning. Applied and Environmental
Microbiology 68(6):2822–2828, DOI doi:10.1128/AEM.68.6.2822?2828.2002,
URL http://dbkgroup.org/Papers/app %20env microbiol 68 (2822).pdf

90. Ellis DI, Broadhurst D, Goodacre R (2004) Rapid and quantitative detection
of the microbial spoilage of beef by fourier transform infrared spectroscopy and

Genetic Programming: An Introduction and Tutorial 997

machine learning. Analytica Chimica Acta 514(2):193–201, DOI doi:10.1016/
j.aca.2004.03.060, URL http://dbkgroup.org/dave files/ACAbeef04.pdf

91. Eriksson R, Olsson B (2004) Adapting genetic regulatory models by
genetic programming. Biosystems 76(1–3):217–227, DOI doi:10.1016/j.
biosystems.2004.05.014, URL http://www.sciencedirect.com/science/article/
B6T2K-4D09KY2-7/2/1abfe196bb4afc60afc3311cadb75d66

92. Esparcia-Alcazar AI, Sharman KC (1996) Genetic programming techniques
that evolve recurrent neural networks architectures for signal processing. In:
IEEE Workshop on Neural Networks for Signal Processing, Seiko, Kyoto, Japan

93. Evans C, Fleming PJ, Hill DC, Norton JP, Pratt I, Rees D, Rodriguez-
Vazquez K (2001) Application of system identification techniques to
aircraft gas turbine engines. Control Engineering Practice 9(2):135–148,
URL http://www.sciencedirect.com/science/article/B6V2H-4280YP2-3/1/
24d44180070f91dea854032d98f9187a

94. Federman F, Sparkman G, Watt S (1999) Representation of music in a learn-
ing classifier system utilizing bach chorales. In: Banzhaf W, Daida J, Eiben
AE, Garzon MH, Honavar V, Jakiela M, Smith RE (eds) Proceedings of
the Genetic and Evolutionary Computation Conference, Morgan Kaufmann,
Orlando, Florida, USA, vol 1, p 785

95. Felton MJ (2000) Survival of the fittest in drug design. Modern Drug
Discovery 3(9):49–50, URL http://pubs.acs.org/subscribe/journals/mdd/v03/
i09/html/felton.html

96. Fernandez F, Sanchez JM, Tomassini M, Gomez JA (1999) A parallel genetic
programming tool based on PVM. In: Dongarra J, Luque E, Margalef T (eds)
Recent Advances in Parallel Virtual Machine and Message Passing Interface,
Proceedings of the 6th European PVM/MPI Users’ Group Meeting, Springer-
Verlag, Barcelona, Spain, Lecture Notes in Computer Science, vol 1697, pp 241–
248

97. Fernandez F, Tomassini M, Vanneschi L (2003) An empirical study of multipop-
ulation genetic programming. Genetic Programming and Evolvable Machines
4(1):21–51, DOI doi:10.1023/A:1021873026259

98. Folino G, Pizzuti C, Spezzano G (2003) A scalable cellular implementa-
tion of parallel genetic programming. IEEE Transactions on Evolutionary
Computation 7(1):37–53

99. Foster JA (2001) Review: Discipulus: A commercial genetic programming sys-
tem. Genetic Programming and Evolvable Machines 2(2):201–203, DOI doi:
10.1023/A:1011516717456

100. Francone FD, Deschaine LM (2004) Getting it right at the very start – build-
ing project models where data is expensive by combining human expertise,
machine learning and information theory. In: 2004 Business and Industry Sym-
posium, Washington, DC, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/
ftp/papers/deschaine/ASTC 2004 Getting It Right from the Very Start.pdf

101. Francone FD, Conrads M, Banzhaf W, Nordin P (1999) Homologous crossover
in genetic programming. In: Banzhaf W, Daida J, Eiben AE, Garzon MH,
Honavar V, Jakiela M, Smith RE (eds) Proceedings of the Genetic and Evolu-
tionary Computation Conference, Morgan Kaufmann, Orlando, Florida, USA,
vol 2, pp 1021–1026, URL http://www.cs.bham.ac.uk/˜wbl/biblio/gecco1999/
GP-463.pdf

998 W.B. Langdon et al.

102. Francone FD, Deschaine LM, Warren JJ (2007) Discrimination of munitions
and explosives of concern at F.E. warren AFB using linear genetic program-
ming. In: Thierens D, Beyer HG, Bongard J, Branke J, Clark JA, Cliff D, Con-
gdon CB, Deb K, Doerr B, Kovacs T, Kumar S, Miller JF, Moore J, Neumann
F, Pelikan M, Poli R, Sastry K, Stanley KO, Stutzle T, Watson RA, Wegener
I (eds) GECCO ’07: Proceedings of the 9th annual conference on Genetic and
evolutionary computation, ACM Press, London, vol 2, pp 1999–2006, URL
http://www.cs.bham.ac.uk/˜wbl/biblio/gecco2007/docs/p1999.pdf

103. Fukunaga A (2002) Automated discovery of composite SAT variable selection
heuristics. In: Proceedings of the National Conference on Artificial Intelligence
(AAAI), pp 641–648

104. Fukunaga AS (2004) Evolving local search heuristics for SAT using genetic
programming. In: Deb K, Poli R, Banzhaf W, Beyer HG, Burke E, Darwen P,
Dasgupta D, Floreano D, Foster J, Harman M, Holland O, Lanzi PL, Spector
L, Tettamanzi A, Thierens D, Tyrrell A (eds) Genetic and Evolutionary Com-
putation – GECCO-2004, Part II, Springer-Verlag, Seattle, WA, USA, Lecture
Notes in Computer Science, vol 3103, pp 483–494, DOI doi:10.1007/b98645,
URL http://alexf04.maclisp.org/gecco2004.pdf

105. Funes P, Sklar E, Juille H, Pollack J (1998a) Animal-animat coevolution:
Using the animal population as fitness function. In: Pfeifer R, Blumberg B,
Meyer JA, Wilson SW (eds) From Animals to Animats 5: Proceedings of
the Fifth International Conference on Simulation of Adaptive Behavior., MIT
Press, Zurich, Switzerland, pp 525–533, URL http://www.demo.cs.brandeis.
edu/papers/tronsab98.html

106. Funes P, Sklar E, Juille H, Pollack J (1998b) Animal-animat coevolution:
Using the animal population as fitness function. In: Pfeifer R, Blumberg B,
Meyer JA, Wilson SW (eds) From Animals to Animats 5: Proceedings of
the Fifth International Conference on Simulation of Adaptive Behavior, MIT
Press, Zurich, Switzerland, pp 525–533, URL http://www.demo.cs.brandeis.
edu/papers/tronsab98.pdf

107. Gagne C, Parizeau M (2006) Genetic engineering of hierarchical fuzzy
regional representations for handwritten character recognition. International
Journal on Document Analysis and Recognition 8(4):223–231, DOI doi:
10.1007/s10032-005-0005-6, URL http://vision.gel.ulaval.ca/fr/publications/
Id 607/PublDetails.php

108. Gagné C, Parizeau M (2007) Co-evolution of nearest neighbor classifiers.
International Journal of Pattern Recognition and Artificial Intelligence
21(5):921–946, DOI doi:10.1142/S0218001407005752, URL http://vision.gel.
ulaval.ca/en/publications/Id 692/PublDetails.php

109. Garcia-Almanza AL, Tsang EPK (2006) Forecasting stock prices using
genetic programming and chance discovery. In: 12th International Confer-
ence On Computing In Economics And Finance, p number 489, URL http://
repec.org/sce2006/up.13879.1141401469.pdf

110. Gathercole C, Ross P (1994) Dynamic training subset selection for super-
vised learning in genetic programming. In: Davidor Y, Schwefel HP,
Männer R (eds) Parallel Problem Solving from Nature III, Springer-Verlag,
Jerusalem, LNCS, vol 866, pp 312–321, URL http://citeseer.ist.psu.edu/
gathercole94dynamic.html

111. Gathercole C, Ross P (1997) Tackling the boolean even N parity problem with
genetic programming and limited-error fitness. In: Koza JR, Deb K, Dorigo

Genetic Programming: An Introduction and Tutorial 999

M, Fogel DB, Garzon M, Iba H, Riolo RL (eds) Genetic Programming 1997:
Proceedings of the Second Annual Conference, Morgan Kaufmann, Stanford
University, CA, USA, pp 119–127, URL http://citeseer.ist.psu.edu/79389.html

112. Gelly S, Teytaud O, Bredeche N, Schoenauer M (2006) Universal consistency
and bloat in GP. Revue d’Intelligence Artificielle 20(6):805–827, URL http://
hal.inria.fr/docs/00/11/28/40/PDF/riabloat.pdf, issue on New Methods in
Machine Learning. Theory and Applications

113. Gilbert RJ, Goodacre R, Woodward AM, Kell DB (1997) Genetic pro-
gramming: A novel method for the quantitative analysis of pyrolysis mass
spectral data. ANALYTICAL CHEMISTRY 69(21):4381–4389, DOI doi:
10.1021/ac970460j, URL http://pubs.acs.org/journals/ancham/article.cgi/
ancham/1997/69/i21/pdf/ac970460j.pdf

114. Globus A, Lawton J, Wipke T (1998) Automatic molecular design using
evolutionary techniques. In: Globus A, Srivastava D (eds) The Sixth Fore-
sight Conference on Molecular Nanotechnology, Westin Hotel in Santa
Clara, CA, USA, URL http://www.foresight.org/Conferences/MNT6/Papers/
Globus/index.html

115. Goldberg DE (1989) Genetic Algorithms in Search Optimization and Machine
Learning. Addison-Wesley

116. Goldberg DE, Kargupta H, Horn J, Cantu-Paz E (1995) Critical deme size
for serial and parallel genetic algorithms. Tech. rep., Illinois Genetic Algo-
rithms Laboratory, Department of General Engineering, University of Illinois
at Urbana-Champaign, Il 61801, USA, illiGAL Report no 95002

117. Goodacre R (2003) Explanatory analysis of spectroscopic data using machine
learning of simple, interpretable rules. Vibrational Spectroscopy 32(1):33–
45, DOI doi:10.1016/S0924-2031(03)00045-6, URL http://www.biospec.net/
learning/Metab06/Goodacre-FTIRmaps.pdf, a collection of Papers Presented
at Shedding New Light on Disease: Optical Diagnostics for the New Millennium
(SPEC 2002) Reims, France 23–27 June 2002

118. Goodacre R, Gilbert RJ (1999) The detection of caffeine in a variety of bever-
ages using curie-point pyrolysis mass spectrometry and genetic programming.
The Analyst 124:1069–1074

119. Goodacre R, Shann B, Gilbert RJ, Timmins EM, McGovern AC, Alsberg BK,
Kell DB, Logan NA (2000) The detection of the dipicolinic acid biomarker
in bacillus spores using curie-point pyrolysis mass spectrometry and fourier-
transform infrared spectroscopy. Analytical Chemistry 72(1):119–127, DOI
doi:10.1021/ac990661i, URL http://pubs.acs.org/cgi-bin/article.cgi/ancham/
2000/72/i01/html/ac990661i.html

120. Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB (2004)
Metabolomics by numbers: acquiring and understanding global metabolite
data. Trends in Biotechnology 22(5):245–252, DOI doi:10.1016/j.tibtech.2004.
03.007, URL http://dbkgroup.org/Papers/trends%20in%20biotechnology 22
(24%5).pdf

121. Gruau F (1994a) Genetic micro programming of neural networks. In: Kinnear,
Jr KE (ed) Advances in Genetic Programming, MIT Press, chap 24, pp 495–
518, URL http://cognet.mit.edu/library/books/view?isbn=0262111888

122. Gruau F (1994b) Neural network synthesis using cellular encoding and the
genetic algorithm. PhD thesis, Laboratoire de l’Informatique du Parallilisme,
Ecole Normale Supirieure de Lyon, France, URL ftp://ftp.ens-lyon.fr/pub/
LIP/Rapports/PhD/PhD1994/PhD1994-01-E.ps.Z

1000 W.B. Langdon et al.

123. Gruau F (1996) On using syntactic constraints with genetic programming. In:
Angeline PJ, Kinnear, Jr KE (eds) Advances in Genetic Programming 2, MIT
Press, Cambridge, MA, USA, chap 19, pp 377–394

124. Gruau F, Whitley D (1993) Adding learning to the cellular development
process: a comparative study. Evolutionary Computation 1(3):213–233

125. Gustafson S, Burke EK (2006) The speciating island model: An alternative
parallel evolutionary algorithm. Journal of Parallel and Distributed Comput-
ing 66(8):1025–1036, DOI doi:10.1016/j.jpdc.2006.04.017, parallel Bioinspired
Algorithms

126. Gustafson S, Burke EK, Krasnogor N (2005) On improving genetic program-
ming for symbolic regression. In: Corne D, Michalewicz Z, Dorigo M, Eiben
G, Fogel D, Fonseca C, Greenwood G, Chen TK, Raidl G, Zalzala A, Lucas
S, Paechter B, Willies J, Guervos JJM, Eberbach E, McKay B, Channon A,
Tiwari A, Volkert LG, Ashlock D, Schoenauer M (eds) Proceedings of the 2005
IEEE Congress on Evolutionary Computation, IEEE Press, Edinburgh, UK,
vol 1, pp 912–919

127. Hampo RJ, Marko KA (1992) Application of genetic programming to control
of vehicle systems. In: Proceedings of the Intelligent Vehicles ’92 Symposium,
june 29 July 1, 1992, Detroit, Mi, USA

128. Handley S (1993) Automatic learning of a detector for alpha-helices in pro-
tein sequences via genetic programming. In: Forrest S (ed) Proceedings of
the 5th International Conference on Genetic Algorithms, ICGA-93, Morgan
Kaufmann, University of Illinois at Urbana-Champaign, pp 271–278

129. Handley S (1994) On the use of a directed acyclic graph to represent a popula-
tion of computer programs. In: Proceedings of the 1994 IEEE World Congress
on Computational Intelligence, IEEE Press, Orlando, Florida, USA, vol 1,
pp 154–159, DOI doi:10.1109/ICEC.1994.350024

130. Harding S, Banzhaf W (2007) Fast genetic programming on GPUs. In: Ebner
M, O’Neill M, Ekárt A, Vanneschi L, Esparcia-Alcázar AI (eds) Proceedings of
the 10th European Conference on Genetic Programming, Springer, Valencia,
Spain, Lecture Notes in Computer Science, vol 4445, pp 90–101, DOI doi:
10.1007/978-3-540-71605-1 9

131. Harrigan GG, LaPlante RH, Cosma GN, Cockerell G, Goodacre R, Maddox
JF, Luyendyk JP, Ganey PE, Roth RA (2004) Application of high-throughput
fourier-transform infrared spectroscopy in toxicology studies: contribution to
a study on the development of an animal model for idiosyncratic toxicity.
Toxicology Letters 146(3):197–205, DOI doi:10.1016/j.toxlet.2003.09.011

132. Harris C, Buxton B (1996) GP-COM: A distributed, component-based genetic
programming system in C++. In: Koza JR, Goldberg DE, Fogel DB, Riolo
RL (eds) Genetic Programming 1996: Proceedings of the First Annual Con-
ference, MIT Press, Stanford University, CA, USA, p 425, URL http://
www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gp96com.ps.gz

133. Harvey B, Foster J, Frincke D (1999) Towards byte code genetic programming.
In: Banzhaf W, Daida J, Eiben AE, Garzon MH, Honavar V, Jakiela M, Smith
RE (eds) Proceedings of the Genetic and Evolutionary Computation Confer-
ence, Morgan Kaufmann, Orlando, Florida, USA, vol 2, p 1234, URL http://
citeseer.ist.psu.edu/468509.html

134. Hasan S, Daugelat S, Rao PSS, Schreiber M (2006) Prioritizing genomic
drug targets in pathogens: Application to mycobacterium tuberculosis. PLoS
Computational Biology 2(6):e61, DOI doi:10.1371/journal.pcbi.0020061

Genetic Programming: An Introduction and Tutorial 1001

135. Hauptman A, Sipper M (2005) GP-endchess: Using genetic programming
to evolve chess endgame players. In: Keijzer M, Tettamanzi A, Collet P,
van Hemert JI, Tomassini M (eds) Proceedings of the 8th European Con-
ference on Genetic Programming, Springer, Lausanne, Switzerland, Lecture
Notes in Computer Science, vol 3447, pp 120–131, URL http://www.cs.bgu.
ac.il/˜sipper/papabs/eurogpchess-final.pdf

136. Hauptman A, Sipper M (2007) Evolution of an efficient search algorithm for
the mate-in-N problem in chess. In: Ebner M, O’Neill M, Ekárt A, Vanneschi
L, Esparcia-Alcázar AI (eds) Proceedings of the 10th European Conference on
Genetic Programming, Springer, Valencia, Spain, Lecture Notes in Computer
Science, vol 4445, pp 78–89, DOI doi:10.1007/978-3-540-71605-1 8

137. Haynes T, Wainwright R, Sen S, Schoenefeld D (1995) Strongly typed
genetic programming in evolving cooperation strategies. In: Eshelman L
(ed) Genetic Algorithms: Proceedings of the Sixth International Conference
(ICGA95), Morgan Kaufmann, Pittsburgh, PA, USA, pp 271–278, URL http://
www.mcs.utulsa.edu/˜rogerw/papers/Haynes-icga95.pdf

138. Haynes TD, Schoenefeld DA, Wainwright RL (1996) Type inheritance in
strongly typed genetic programming. In: Angeline PJ, Kinnear, Jr KE
(eds) Advances in Genetic Programming 2, MIT Press, Cambridge, MA,
USA, chap 18, pp 359–376, URL http://www.mcs.utulsa.edu/˜rogerw/papers/
Haynes-hier.pdf

139. Heidema AG, Boer JMA, Nagelkerke N, Mariman ECM, van der A DL,
Feskens EJM (2006) The challenge for genetic epidemiologists: how to ana-
lyze large numbers of SNPs in relation to complex diseases. BMC Genet-
ics 7(23), DOI doi:10.1186/1471-2156-7-23, URL http://www.biomedcentral.
com/content/pdf/1471-2156-7-23.pdf

140. Hillis WD (1992) Co-evolving parasites improve simulated evolution as an opti-
mization procedure. In: Langton CG, Taylor CE, Farmer JD, Rasmussen S
(eds) Artificial Life II, Santa Fe Institute Studies in the Sciences of Complexity,
vol X, Addison-Wesley, Santa Fe Institute, New Mexico, USA, pp 313–324

141. Hinchliffe MP, Willis MJ (2003) Dynamic systems modeling using
genetic programming. Computers & Chemical Engineering 27(12):1841–1854,
URL http://www.sciencedirect.com/science/article/B6TFT-49MDYGW-2/2/
742bcc7f22240c7a0381027aa5ff7e73

142. Ho SY, Hsieh CH, Chen HM, Huang HL (2006) Interpretable gene expression
classifier with an accurate and compact fuzzy rule base for microarray data
analysis. Biosystems 85(3):165–176, DOI doi:10.1016/j.biosystems.2006.01.002

143. Hoai NX, McKay RI, Abbass HA (2003) Tree adjoining grammars, language
bias, and genetic programming. In: Ryan C, Soule T, Keijzer M, Tsang E,
Poli R, Costa E (eds) Genetic Programming, Proceedings of EuroGP’2003,
Springer-Verlag, Essex, LNCS, vol 2610, pp 335–344, URL http://www.cs.adfa.
edu.au/˜abbass/publications/hardcopies/TAG3P-EuroGp-03.pdf

144. Hoai NX, McKay RIB, Essam D (2006) Representation and structural dif-
ficulty in genetic programming. IEEE Transactions on Evolutionary Com-
putation 10(2):157–166, DOI doi:10.1109/TEVC.2006.871252, URL http://
sc.snu.ac.kr/courses/2006/fall/pg/aai/GP/nguyen/Structdiff.pdf

145. Holland J (1975) Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, USA

1002 W.B. Langdon et al.

146. Holland JH (1992) Adaptation in Natural and Artificial Systems: An Introduc-
tory Analysis with Applications to Biology, Control and Artificial Intelligence.
MIT Press, first Published by University of Michigan Press 1975

147. Hong JH, Cho SB (2006) The classification of cancer based on DNA microarray
data that uses diverse ensemble genetic programming. Artificial Intelligence In
Medicine 36(1):43–58, DOI doi:10.1016/j.artmed.2005.06.002

148. Howard D, Roberts SC (2004) Incident detection on highways. In: O’Reilly UM,
Yu T, Riolo RL, Worzel B (eds) Genetic Programming Theory and Practice
II, Springer, Ann Arbor, chap 16, pp 263–282

149. Howard D, Roberts SC, Brankin R (1999) Target detection in imagery
by genetic programming. Advances in Engineering Software 30(5):303–
311, URL http://www.sciencedirect.com/science/article/B6V1P-3W1XV4H-
1/1/6e7aee809f33757d0326c62a21824411

150. Howard D, Roberts SC, Ryan C (2006) Pragmatic genetic programming strat-
egy for the problem of vehicle detection in airborne reconnaissance. Pattern
Recognition Letters 27(11):1275–1288, DOI doi:10.1016/j.patrec.2005.07.025,
evolutionary Computer Vision and Image Understanding

151. Iba H (1996) Genetic Programming. Tokyo Denki University Press
152. Iba H, de Garis H, Sato T (1994) Genetic programming using a minimum

description length principle. In: Kinnear, Jr KE (ed) Advances in Genetic Pro-
gramming, MIT Press, chap 12, pp 265–284, URL http://citeseer.ist.psu.edu/
327857.html

153. Inagaki Y (2002) On synchronized evolution of the network of automata.
IEEE Transactions on Evolutionary Computation 6(2):147–158, URL http://
ieeexplore.ieee.org/iel5/4235/21497/00996014.pdf?tp=&arnumber=996014&
isnumber=21497&arSt=147&ared=158&arAuthor=Inagaki%2C+Y.%3B

154. Jacob C (1997) Principia Evolvica – Simulierte Evolution mit Mathematica.
dpunkt.verlag, Heidelberg, Germany

155. Jacob C (2000) The art of genetic programming. IEEE Intelligent Systems
15(3):83–84, URL http://ieeexplore.ieee.org/iel5/5254/18363/00846288.pdf

156. Jacob C (2001) Illustrating Evolutionary Computation with Mathemat-
ica. Morgan Kaufmann, URL http://www.mkp.com/books catalog/catalog.
asp?ISBN=1-55860-637-8

157. Jeong KS, Kim DK, Whigham P, Joo GJ (2003) Modeling microcystis aerugi-
nosa bloom dynamics in the nakdong river by means of evolutionary computa-
tion and statistical approach. Ecological Modeling 161(1–2):67–78, DOI doi:10.
1016/S0304-3800(02)00280-6, URL http://www.business.otago.ac.nz/infosci/
SIRC/PeterW/Publications/Jeong EcolMod V161 Is 1 2 pg67 78.pdf

158. Jin N, Tsang E (2006) Co-adaptive strategies for sequential bargaining
problems with discount factors and outside options. In: Proceedings of the
2006 IEEE Congress on Evolutionary Computation, IEEE Press, Vancouver,
pp 7913–7920

159. Johnson HE, Gilbert RJ, Winson MK, Goodacre R, Smith AR, Rowland
JJ, Hall MA, Kell DB (2000) Explanatory analysis of the metabolome using
genetic programming of simple, interpretable rules. Genetic Programming and
Evolvable Machines 1(3):243–258, DOI doi:10.1023/A:1010014314078

160. Jones A, Young D, Taylor J, Kell DB, Rowland JJ (1998) Quantification of
microbial productivity via multi-angle light scattering and supervised learning.
Biotechnology and Bioengineering 59(2):131–143

Genetic Programming: An Introduction and Tutorial 1003

161. Jordaan E, Kordon A, Chiang L, Smits G (2004) Robust inferential sensors
based on ensemble of predictors generated by genetic programming. In: Yao
X, Burke E, Lozano JA, Smith J, Merelo-Guervós JJ, Bullinaria JA, Rowe J,
Kabán PTA, Schwefel HP (eds) Parallel Problem Solving from Nature - PPSN
VIII, Springer-Verlag, Birmingham, UK, LNCS, vol 3242, pp 522–531, DOI
doi:10.1007/b100601, URL http://www.springerlink.com/openurl.asp?genre=
article&issn=0302-9743&volume=3242&spage=522

162. Juille H, Pollack JB (1996) Massively parallel genetic programming. In: Ange-
line PJ, Kinnear, Jr KE (eds) Advances in Genetic Programming 2, MIT
Press, Cambridge, MA, USA, chap 17, pp 339–358, URL http://www.demo.
cs.brandeis.edu/papers/gp2.pdf

163. Kaboudan M (1999) A measure of time series predictability using genetic
programming applied to stock returns. Journal of Forecasting 18:345–357

164. Kaboudan M (2005) Extended daily exchange rates forecasts using wavelet
temporal resolutions. New Mathematics and Natural Computing 1:79–107

165. Kaboudan MA (2000) Genetic programming prediction of stock prices.
Computational Economics 6(3):207–236

166. Keijzer M (1996) Efficiently representing populations in genetic programming.
In: Angeline PJ, Kinnear, Jr KE (eds) Advances in Genetic Programming 2,
MIT Press, Cambridge, MA, USA, chap 13, pp 259–278

167. Keijzer M (2004) Scaled symbolic regression. Genetic Programming and Evolv-
able Machines 5(3):259–269, DOI doi:10.1023/B:GENP.0000030195.77571.f9

168. Kell D (2002a) Defence against the flood. Bioinformatics World pp 16–18, URL
http://dbkgroup.org/Papers/biwpp16-18 as publ.pdf

169. Kell DB (2002b) Genotype-phenotype mapping: genes as computer programs.
Trends in Genetics 18(11):555–559, DOI doi:10.1016/S0168-9525(02)02765-8,
URL http://dbkgroup.org/Papers/trends genet 18 (555).pdf

170. Kell DB (2002c) Metabolomics and machine learning: Explanatory analysis
of complex metabolome data using genetic programming to produce simple,
robust rules. Molecular Biology Reports 29(1–2):237–241, DOI doi:10.1023/A:
1020342216314, URL http://dbkgroup.org/Papers/btk2002 dbk.pdf

171. Kell DB, Darby RM, Draper J (2001) Genomic computing. explanatory analy-
sis of plant expression profiling data using machine learning. Plant Physiology
126(3):943–951

172. Keller RE, Poli R (2007a) Cost-benefit investigation of a genetic-programming
hyperheuristic. In: Proceedings of Evolution Artificielle

173. Keller RE, Poli R (2007b) Linear genetic programming of metaheuristics. In:
Thierens D, Beyer HG, Bongard J, Branke J, Clark JA, Cliff D, Congdon CB,
Deb K, Doerr B, Kovacs T, Kumar S, Miller JF, Moore J, Neumann F,
Pelikan M, Poli R, Sastry K, Stanley KO, Stutzle T, Watson RA, Wegener
I (eds) GECCO ’07: Proceedings of the 9th annual conference on Genetic and
evolutionary computation, ACM Press, London, vol 2, pp 1753–1753, URL
http://www.cs.bham.ac.uk/˜wbl/biblio/gecco2007/docs/p1753.pdf

174. Keller RE, Poli R (2007c) Linear genetic programming of parsimonious meta-
heuristics. In: Proceedings of IEEE Congress on Evolutionary Computation
(CEC)

175. KHosraviani B (2003) Organization design optimization using genetic pro-
gramming. In: Koza JR (ed) Genetic Algorithms and Genetic Programming at
Stanford 2003, Stanford Bookstore, Stanford, California, 94305-3079 USA, pp
109–117, URL http://www.genetic-programming.org/sp2003/KHosraviani.pdf

1004 W.B. Langdon et al.

176. KHosraviani B, Levitt RE, Koza JR (2004) Organization design optimization
using genetic programming. In: Keijzer M (ed) Late Breaking Papers at the
2004 Genetic and Evolutionary Computation Conference, Seattle, Washington,
USA, URL http://www.cs.bham.ac.uk/˜wbl/biblio/gecco2004/LBP056.pdf

177. Kibria RH, Li Y (2006) Optimizing the initialization of dynamic decision
heuristics in DPLL SAT solvers using genetic programming. In: Collet P,
Tomassini M, Ebner M, Gustafson S, Ekárt A (eds) Proceedings of the 9th
European Conference on Genetic Programming, Springer, Budapest, Hungary,
Lecture Notes in Computer Science, vol 3905, pp 331–340, URL http://link.
springer.de/link/service/series/0558/papers/3905/39050331.pdf

178. Kinnear, Jr KE (1993) Evolving a sort: Lessons in genetic programming.
In: Proceedings of the 1993 International Conference on Neural Networks,
IEEE Press, San Francisco, USA, vol 2, pp 881–888, DOI doi:10.1109/ICNN.
1993.298674, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/
papers/kinnear.icnn93.ps.Z

179. Kinnear, Jr KE (ed) (1994a) Advances in Genetic Programming. MIT
Press, Cambridge, MA, URL http://mitpress.mit.edu/book-home.tcl?isbn=
0262111888

180. Kinnear, Jr KE (1994b) Fitness landscapes and difficulty in genetic program-
ming. In: Proceedings of the 1994 IEEE World Conference on Computational
Intelligence, IEEE Press, Orlando, Florida, USA, vol 1, pp 142–147, DOI doi:
10.1109/ICEC.1994.350026, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/
ftp/ftp.io.com/papers/kinnear.wcci.ps.Z

181. Kinnear, Jr KE (1994c) A perspective on the work in this book. In: Kinnear,
Jr KE (ed) Advances in Genetic Programming, MIT Press, chap 1, pp 3–19,
URL http://cognet.mit.edu/library/books/view?isbn=0262111888

182. Klassen TJ, Heywood MI (2002) Towards the on-line recognition of arabic
characters. In: Proceedings of the 2002 International Joint Conference on
Neural Networks IJCNN’02, IEEE Press, Hilton Hawaiian Village Hotel, Hon-
olulu, Hawaii, pp 1900–1905, URL http://users.cs.dal.ca/˜mheywood/X-files/
Publications/IEEEarabic.pdf

183. Klein J, Spector L (2007) Unwitting distributed genetic programming via
asynchronous javascript and XML. In: Thierens D, Beyer HG, Bongard J,
Branke J, Clark JA, Cliff D, Congdon CB, Deb K, Doerr B, Kovacs T, Kumar
S, Miller JF, Moore J, Neumann F, Pelikan M, Poli R, Sastry K, Stanley
KO, Stutzle T, Watson RA, Wegener I (eds) GECCO ’07: Proceedings of the
9th annual conference on Genetic and evolutionary computation, ACM Press,
London, vol 2, pp 1628–1635, URL http://www.cs.bham.ac.uk/˜wbl/biblio/
gecco2007/docs/p1628.pdf

184. Kordon A (2006) Evolutionary computation at dow chemical. SIGEVOlution
1(3):4–9, URL http://www.sigevolution.org/2006/03/issue.pdf

185. Kordon A, Castillo F, Smits G, Kotanchek M (2005) Application issues of
genetic programming in industry. In: Yu T, Riolo RL, Worzel B (eds) Genetic
Programming Theory and Practice III, Genetic Programming, vol 9, Springer,
Ann Arbor, chap 16, pp 241–258

186. Kovacic M, Balic J (2003) Evolutionary programming of a CNC cutting
machine. International journal for advanced manufacturing technology
22(1–2):118–124, DOI doi:10.1007/s00170-002-1450-8, URL http://www.
springerlink.com/openurl.asp?genre=article&eissn=1433-3015&volume=22&
issue=1&spage=118

Genetic Programming: An Introduction and Tutorial 1005

187. Koza JR (1990) A genetic approach to econometric modeling. In: Sixth
World Congress of the Econometric Society, Barcelona, Spain, URL http://
www.genetic-programming.com/jkpdf/wces1990.pdf

188. Koza JR (1992) Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA

189. Koza JR (1994a) Genetic Programming II: Automatic Discovery of Reusable
Programs. MIT Press, Cambridge Massachusetts

190. Koza JR (1994b) Genetic Programming II Videotape: The next generation.
MIT Press, 55 Hayward Street, Cambridge, MA, USA

191. Koza JR, Andre D (1996) Classifying protein segments as transmembrane
domains using architecture-altering operations in genetic programming. In:
Angeline PJ, Kinnear, Jr KE (eds) Advances in Genetic Programming 2, MIT
Press, Cambridge, MA, USA, chap 8, pp 155–176, URL http://www.genetic-
programming.com/jkpdf/aigp2aatmjk1996.pdf

192. Koza JR, Poli R (2005) Genetic programming. In: Burke EK, Kendall G (eds)
Search Methodologies: Introductory Tutorials in Optimization and Decision
Support Techniques, Springer, chap 5, URL http://www.springer.com/sgw/
cda/frontpage/0,11855,4-10045-22-67933962-0,00.html

193. Koza JR, Andre D, Bennett III FH, Keane MA (1996a) Use of automatically
defined functions and architecture-altering operations in automated circuit syn-
thesis using genetic programming. In: Koza JR, Goldberg DE, Fogel DB, Riolo
RL (eds) Genetic Programming 1996: Proceedings of the First Annual Con-
ference, MIT Press, Stanford University, CA, USA, pp 132–149, URL http://
www.genetic-programming.com/jkpdf/gp1996adfaa.pdf

194. Koza JR, Bennett III FH, Andre D, Keane MA (1996b) Automated WYWI-
WYG design of both the topology and component values of electrical circuits
using genetic programming. In: Koza JR, Goldberg DE, Fogel DB, Riolo RL
(eds) Genetic Programming 1996: Proceedings of the First Annual Confer-
ence, MIT Press, Stanford University, CA, USA, pp 123–131, URL http://
www.genetic-programming.com/jkpdf/gp1996nielsen.pdf

195. Koza JR, Andre D, Bennett III FH, Keane M (1999a) Genetic Programming
3: Darwinian Invention and Problem Solving. Morgan Kaufman, URL http://
www.genetic-programming.org/gpbook3toc.html

196. Koza JR, Bennett III FH, Stiffelman O (1999b) Genetic programming as a
Darwinian invention machine. In: Poli R, Nordin P, Langdon WB, Fogarty
TC (eds) Genetic Programming, Proceedings of EuroGP’99, Springer-Verlag,
Goteborg, Sweden, LNCS, vol 1598, pp 93–108, URL http://www.genetic-
programming.com/jkpdf/eurogp1999.pdf

197. Koza JR, Keane MA, Streeter MJ, Mydlowec W, Yu J, Lanza G (2003)
Genetic Programming IV: Routine Human-Competitive Machine Intelligence.
Kluwer Academic Publishers, URL http://www.genetic-programming.org/
gpbook4toc.html

198. Koza JR, Al-Sakran SH, Jones LW (2005) Automated re-invention of six
patented optical lens systems using genetic programming. In: Beyer HG,
O’Reilly UM, Arnold DV, Banzhaf W, Blum C, Bonabeau EW, Cantu-Paz
E, Dasgupta D, Deb K, Foster JA, de Jong ED, Lipson H, Llora X, Man-
coridis S, Pelikan M, Raidl GR, Soule T, Tyrrell AM, Watson JP, Zitzler E
(eds) GECCO 2005: Proceedings of the 2005 conference on Genetic and evolu-
tionary computation, ACM Press, Washington DC, USA, vol 2, pp 1953–1960,
URL http://www.cs.bham.ac.uk/˜wbl/biblio/gecco2005/docs/p1953.pdf

1006 W.B. Langdon et al.

199. Krasnogor N (2004) Self generating metaheuristics in bioinformatics: The pro-
teins structure comparison case. Genetic Programming and Evolvable Machines
5(2):181–201, DOI doi:10.1023/B:GENP.0000023687.41210.d7

200. Krawiec K (2004) Evolutionary Feature Programming: Cooperative learning
for knowledge discovery and computer vision. 385, Wydawnictwo Politechniki
Poznanskiej, Poznan University of Technology, Poznan, Poland, URL http://
idss.cs.put.poznan.pl/˜krawiec/pubs/hab/krawiec hab.pdf

201. Langdon WB (1996) A bibliography for genetic programming. In: Angeline
PJ, Kinnear, Jr KE (eds) Advances in Genetic Programming 2, MIT Press,
Cambridge, MA, USA, chap B, pp 507–532, URL http://www.cs.ucl.ac.uk/
staff/W.Langdon/ftp/papers/WBL.aigp2.appx.ps.gz

202. Langdon WB (1998a) The evolution of size in variable length representa-
tions. In: 1998 IEEE International Conference on Evolutionary Computa-
tion, IEEE Press, Anchorage, Alaska, USA, pp 633–638, DOI doi:10.1109/
ICEC.1998.700102, URL http://www.cs.bham.ac.uk/˜wbl/ftp/papers/WBL.
wcci98 bloat.pdf

203. Langdon WB (1998b) Genetic Programming and Data Structures: Genetic Pro-
gramming + Data Structures = Automatic Programming!, Genetic Program-
ming, vol 1. Kluwer, Boston, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/
gpdata

204. Langdon WB (1999a) Scaling of program tree fitness spaces. Evolu-
tionary Computation 7(4):399–428, URL http://www.cs.ucl.ac.uk/staff/W.
Langdon/ftp/papers/WBL.fitnessspaces.pdf

205. Langdon WB (1999b) Size fair and homologous tree genetic programming
crossovers. In: Banzhaf W, Daida J, Eiben AE, Garzon MH, Honavar V,
Jakiela M, Smith RE (eds) Proceedings of the Genetic and Evolutionary
Computation Conference, Morgan Kaufmann, Orlando, Florida, USA, vol 2,
pp 1092–1097, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/
WBL.gecco99.fairxo.ps.gz

206. Langdon WB (2000) Size fair and homologous tree genetic program-
ming crossovers. Genetic Programming and Evolvable Machines 1(1/2):95–
119, DOI doi:10.1023/A:1010024515191, URL http://www.cs.ucl.ac.uk/staff/
W.Langdon/ftp/papers/WBL fairxo.pdf

207. Langdon WB (2002a) Convergence rates for the distribution of program out-
puts. In: Langdon WB, Cantú-Paz E, Mathias K, Roy R, Davis D, Poli R,
Balakrishnan K, Honavar V, Rudolph G, Wegener J, Bull L, Potter MA,
Schultz AC, Miller JF, Burke E, Jonoska N (eds) GECCO 2002: Proceedings
of the Genetic and Evolutionary Computation Conference, Morgan Kauf-
mann Publishers, New York, pp 812–819, URL http://www.cs.ucl.ac.uk/
staff/W.Langdon/ftp/papers/wbl gecco2002.pdf

208. Langdon WB (2002b) How many good programs are there? How long are they?
In: De Jong KA, Poli R, Rowe JE (eds) Foundations of Genetic Algorithms
VII, Morgan Kaufmann, Torremolinos, Spain, pp 183–202, URL http://www.
cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl foga2002.pdf, published 2003

209. Langdon WB (2003a) Convergence of program fitness landscapes. In: Cantú-
Paz E, Foster JA, Deb K, Davis D, Roy R, O’Reilly UM, Beyer HG,
Standish R, Kendall G, Wilson S, Harman M, Wegener J, Dasgupta D, Pot-
ter MA, Schultz AC, Dowsland K, Jonoska N, Miller J (eds) Genetic and
Evolutionary Computation – GECCO-2003, Springer-Verlag, Chicago, LNCS,

Genetic Programming: An Introduction and Tutorial 1007

vol 2724, pp 1702–1714, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/
ftp/papers/wbl gecco2003.pdf

210. Langdon WB (2003b) The distribution of reversible functions is Normal.
In: Riolo RL, Worzel B (eds) Genetic Programming Theory and Practise,
Kluwer, chap 11, pp 173–188, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/
ftp/papers/wbl reversible.pdf

211. Langdon WB (2004) Global distributed evolution of L-systems fractals. In:
Keijzer M, O’Reilly UM, Lucas SM, Costa E, Soule T (eds) Genetic Pro-
gramming, Proceedings of EuroGP’2004, Springer-Verlag, Coimbra, Portugal,
LNCS, vol 3003, pp 349–358, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/
ftp/papers/egp2004 pfeiffer.pdf

212. Langdon WB (2005a) The distribution of amorphous computer outputs. In:
Stepney S, Emmott S (eds) The Grand Challenge in Non-Classical Com-
putation: International Workshop, York, UK, URL http://www.cs.ucl.ac.uk/
staff/W.Langdon/ftp/papers/grand 2005.pdf

213. Langdon WB (2005b) Pfeiffer – A distributed open-ended evolutionary system.
In: Edmonds B, Gilbert N, Gustafson S, Hales D, Krasnogor N (eds) AISB’05:
Proceedings of the Joint Symposium on Socially Inspired Computing (METAS
2005), University of Hertfordshire, Hatfield, UK, pp 7–13, URL http://www.
cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl metas2005.pdf, sSAISB 2005
Convention

214. Langdon WB (2006) Mapping non-conventional extensions of genetic program-
ming. In: Calude CS, Dinneen MJ, Paun G, Rozenberg G, Stepney S (eds)
Unconventional Computing 2006, Springer-Verlag, York, LNCS, vol 4135, pp
166–180, DOI doi:10.1007/11839132 14, URL http://www.cs.ucl.ac.uk/staff/
W.Langdon/ftp/papers/wbl uc2002.pdf

215. Langdon WB, Banzhaf W (2005) Repeated sequences in linear genetic pro-
gramming genomes. Complex Systems 15(4):285–306, URL http://www.cs.ucl.
ac.uk/staff/rW.Langdon/ftp/papers/wbl repeat linear.pdf

216. Langdon WB, Banzhaf W (2007) A SIMD interpreter for genetic programming
on GPU graphics cards. In preparation

217. Langdon WB, Buxton BF (2004) Genetic programming for mining DNA chip
data from cancer patients. Genetic Programming and Evolvable Machines
5(3):251–257, DOI doi:10.1023/B:GENP.0000030196.55525.f7, URL http://
www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl dnachip.pdf

218. Langdon WB, Harrison AP (2008) GP on SPMD parallel graphics hardware
for mega bioinformatics data mining, To appear

219. Langdon WB, Nordin P (2001) Evolving hand-eye coordination for a humanoid
robot with machine code genetic programming. In: Miller JF, Tomassini M,
Lanzi PL, Ryan C, Tettamanzi AGB, Langdon WB (eds) Genetic Program-
ming, Proceedings of EuroGP’2001, Springer-Verlag, Lake Como, Italy, LNCS,
vol 2038, pp 313–324, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/
papers/wbl handeye.ps.gz

220. Langdon WB, Poli R (2008) Mapping non-conventional extensions of genet-
icprogramming. Natural Computing 7:21–43. Invited contribution to special
issue on Unconventional computing

221. Langdon WB, Poli R (1997) Fitness causes bloat. In: Chawdhry PK, Roy R,
Pant RK (eds) Soft Computing in Engineering Design and Manufacturing,
Springer-Verlag London, pp 13–22, URL http://www.rcs.bham.ac.uk/˜wbl/
ftp/papers/WBL.bloat wsc2.ps.gz

1008 W.B. Langdon et al.

222. Langdon WB, Poli R (2002) Foundations of Genetic Programming. Springer-
Verlag, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/FOGP/

223. Langdon WB, Poli R (2006a) The halting probability in von Neumann archi-
tectures. In: Collet P, Tomassini M, Ebner M, Gustafson S, Ekárt A (eds) Pro-
ceedings of the 9th European Conference on Genetic Programming, Springer,
Budapest, Hungary, Lecture Notes in Computer Science, vol 3905, pp 225–237,
URL http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl egp2006.pdf

224. Langdon WB, Poli R (2006b) On turing complete T7 and MISC F–4
program fitness landscapes. In: Arnold DV, Jansen T, Vose MD, Rowe
JE (eds) Theory of Evolutionary Algorithms, Internationales Begegnungs-
und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Ger-
many, Dagstuhl, Germany, no. 06061 in Dagstuhl Seminar Proceed-
ings, URL http://drops.dagstuhl.de/opus/volltexte/2006/595, <http://drops.
dagstuhl.de/opus/volltexte/2006/595> [date of citation: 2006-01-01]

225. Langdon WB, Soule T, Poli R, Foster JA (1999) The evolution of size and
shape. In: Spector L, Langdon WB, O’Reilly UM, Angeline PJ (eds) Advances
in Genetic Programming 3, MIT Press, Cambridge, MA, USA, chap 8, pp 163–
190, URL http://www.cs.bham.ac.uk/˜wbl/aigp3/ch08.pdf

226. Leung KS, Lee KH, Cheang SM (2002) Genetic parallel programming - evolving
linear machine codes on a multiple-ALU processor. In: Yaacob S, Nagarajan R,
Chekima A (eds) Proceedings of International Conference on Artificial Intel-
ligence in Engineering and Technology - ICAIET 2002, Universiti Malaysia
Sabah, pp 207–213

227. Lew TL, Spencer AB, Scarpa F, Worden K, Rutherford A, Hemez F (2006)
Identification of response surface models using genetic programming. Mechani-
cal Systems and Signal Processing 20(8):1819–1831, DOI doi:10.1016/j.ymssp.
2005.12.003

228. Lewin DR, Lachman-Shalem S, Grosman B (2006) The role of process system
engineering (PSE) in integrated circuit (IC) manufacturing. Control Engineer-
ing Practice 15(7):793–802, DOI doi:10.1016/j.conengprac.2006.04.003, special
Issue on Award Winning Applications, 2005 IFAC World Congress

229. Li L, Jiang W, Li X, Moser KL, Guo Z, Du L, Wang Q, Topol EJ, Wang Q,
Rao S (2005) A robust hybrid between genetic algorithm and support vector
machine for extracting an optimal feature gene subset. Genomics 85(1):16–23,
DOI doi:10.1016/j.ygeno.2004.09.007

230. Linden R, Bhaya A (2007) Evolving fuzzy rules to model gene expression.
Biosystems 88(1-2):76–91, DOI doi:10.1016/j.biosystems.2006.04.006

231. Lipson H (2004) How to draw a straight line using a GP: Benchmarking
evolutionary design against 19th century kinematic synthesis. In: Keijzer M
(ed) Late Breaking Papers at the 2004 Genetic and Evolutionary Compu-
tation Conference, Seattle, Washington, USA, URL http://www.cs.bham.ac.
uk/˜wbl/biblio/gecco2004/LBP063.pdf

232. Liu W, Schmidt B (2006) Mapping of hierarchical parallel genetic algo-
rithms for protein folding onto computational grids. IEICE Transactions on
Information and Systems E89-D(2):589–596, DOI doi:10.1093/ietisy/e89-d.2.
589

233. Lohn J, Hornby G, Linden D (2004) Evolutionary antenna design for a
NASA spacecraft. In: O’Reilly UM, Yu T, Riolo RL, Worzel B (eds)
Genetic Programming Theory and Practice II, Springer, Ann Arbor, chap 18,
pp 301–315

Genetic Programming: An Introduction and Tutorial 1009

234. Lohn JD, Hornby GS, Linden DS (2005) Rapid re-evolution of an X-band
antenna for NASA’s space technology 5 mission. In: Yu T, Riolo RL, Worzel B
(eds) Genetic Programming Theory and Practice III, Genetic Programming,
vol 9, Springer, Ann Arbor, chap 5, pp 65–78

235. Louchet J (2001) Using an individual evolution strategy for stereovision.
Genetic Programming and Evolvable Machines 2(2):101–109, DOI doi:10.1023/
A:1011544128842

236. Louchet J, Guyon M, Lesot MJ, Boumaza A (2002) Dynamic flies: a
new pattern recognition tool applied to stereo sequence processing. Pattern
Recognition Letters 23(1–3):335–345, DOI doi:10.1016/S0167-8655(01)00129-5

237. Loviscach J, Meyer-Spradow J (2003) Genetic programming of vertex shaders.
In: Chover M, Hagen H, Tost D (eds) Proceedings of EuroMedia 2003, pp 29–31

238. Luke S (1998) Evolving soccerbots: A retrospective. In: Proceedings of the
12th Annual Conference of the Japanese Society for Artificial Intelligence, URL
http://www.cs.gmu.edu/˜sean/papers/robocupShort.pdf

239. Luke S (2000) Two fast tree-creation algorithms for genetic programming.
IEEE Transactions on Evolutionary Computation 4(3):274–283, URL http://
ieeexplore.ieee.org/iel5/4235/18897/00873237.pdf

240. Lukschandl E, Borgvall H, Nohle L, Nordahl M, Nordin P (2000) Distributed
java bytecode genetic programming. In: Poli R, Banzhaf W, Langdon WB,
Miller JF, Nordin P, Fogarty TC (eds) Genetic Programming, Proceedings of
EuroGP’2000, Springer-Verlag, Edinburgh, LNCS, vol 1802, pp 316–325, URL
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&
volume=1802&spage=316

241. Machado P, Romero J (eds) (2008) The Art of Artificial Evolution. Springer
242. Marenbach P (1998) Using prior knowledge and obtaining process insight in

data based modeling of bioprocesses. System Analysis Modeling Simulation
31:39–59

243. Markose S, Tsang E, Er H, Salhi A (2001) Evolutionary arbitrage for FTSE-
100 index options and futures. In: Proceedings of the 2001 Congress on
Evolutionary Computation CEC2001, IEEE Press, COEX, World Trade Cen-
ter, 159 Samseong-dong, Gangnam-gu, Seoul, Korea, pp 275–282, DOI doi:
10.1109/CEC.2001.934401, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/
ftp/papers/TsangCEE2001.pdf

244. Marney JP, Miller D, Fyfe C, Tarbert HFE (2001) Risk adjusted returns to
technical trading rules: a genetic programming approach. In: 7th International
Conference of Society of Computational Economics, Yale

245. Martin MC (2006) Evolving visual sonar: Depth from monocular images.
Pattern Recognition Letters 27(11):1174–1180, DOI doi:10.1016/j.patrec.
2005.07.015, URL http://martincmartin.com/papers/EvolvingVisualSonar-
PatternRecognitionLetters2006.pdf, evolutionary Computer Vision and Image
Understanding

246. Martin P (2001) A hardware implementation of a genetic programming
system using FPGAs and Handel-C. Genetic Programming and Evolvable
Machines 2(4):317–343, DOI doi:10.1023/A:1012942304464, URL http://www.
naiadhome.com/gpem-d.pdf

247. Massey P, Clark JA, Stepney S (2005) Evolution of a human-competitive quan-
tum fourier transform algorithm using genetic programming. In: Beyer HG,
O’Reilly UM, Arnold DV, Banzhaf W, Blum C, Bonabeau EW, Cantu-Paz E,

1010 W.B. Langdon et al.

Dasgupta D, Deb K, Foster JA, de Jong ED, Lipson H, Llora X, Mancoridis S,
Pelikan M, Raidl GR, Soule T, Tyrrell AM, Watson JP, Zitzler E (eds) GECCO
2005: Proceedings of the 2005 conference on Genetic and evolutionary compu-
tation, ACM Press, Washington DC, USA, vol 2, pp 1657–1663, URL http://
www.cs.bham.ac.uk/˜wbl/biblio/gecco2005/docs/p1657.pdf

248. Maxwell III SR (1994) Experiments with a coroutine model for genetic
programming. In: Proceedings of the 1994 IEEE World Congress on
Computational Intelligence, IEEE Press, Orlando, Florida, USA, vol 1,
pp 413–417a, URL http://ieeexplore.ieee.org/iel2/1125/8059/00349915.pdf?
isNumber=8059

249. McCormack J (2006) New challenges for evolutionary music and art.
SIGEvolution 1(1):5–11, URL http://www.sigevolution.org/2006/01/issue.pdf

250. McGovern AC, Broadhurst D, Taylor J, Kaderbhai N, Winson MK, Small DA,
Rowland JJ, Kell DB, Goodacre R (2002) Monitoring of complex industrial
bioprocesses for metabolite concentrations using modern spectroscopies and
machine learning: Application to gibberellic acid production. Biotechnology
and Bioengineering 78(5):527–538, DOI doi:10.1002/bit.10226, URL http://
dbkgroup.org/Papers/biotechnol bioeng 78 (527).pdf

251. McKay B, Willis M, Searson D, Montague G (2000) Nonlinear continuum
regression: an evolutionary approach. Transactions of the Institute of Mea-
surement and Control 22(2):125–140, doi:10.1177/014233120002200202, URL
http://www.ingentaconnect.com/content/arn/tm/2000/00000022/00000002/
art00007

252. McPhee NF, Miller JD (1995) Accurate replication in genetic programming. In:
Eshelman L (ed) Genetic Algorithms: Proceedings of the Sixth International
Conference (ICGA95), Morgan Kaufmann, Pittsburgh, PA, USA, pp 303–309,
URL http://www.mrs.umn.edu/˜mcphee/Research/Accurate replication.ps

253. McPhee NF, Hopper NJ, Reierson ML (1998) Sutherland: An extensible
object-oriented software framework for evolutionary computation. In: Koza
JR, Banzhaf W, Chellapilla K, Deb K, Dorigo M, Fogel DB, Garzon MH,
Goldberg DE, Iba H, Riolo R (eds) Genetic Programming 1998: Proceedings
of the Third Annual Conference, Morgan Kaufmann, University of Wisconsin,
Madison, Wisconsin, USA, p 241, URL http://www.mrs.umn.edu/˜mcphee/
Research/Sutherland/rsutherland gp98 announcement.ps.gz

254. Mercure PK, Smits GF, Kordon A (2001) Empirical emulators for first
principle models. In: AIChE Fall Annual Meeting, Reno Hilton, URL http://
www.aiche.org/conferences/techprogram/paperdetail.asp?PaperID=2373&
DSN=annual01

255. Meyer-Spradow J, Loviscach J (2003) Evolutionary design of BRDFs. In:
Chover M, Hagen H, Tost D (eds) Eurographics 2003 Short Paper Pro-
ceedings, pp 301–306, URL http://viscg.uni-muenster.de/publications/2003/
ML03/evolutionary web.pdf

256. Miller JF (1999) An empirical study of the efficiency of learning boolean
functions using a cartesian genetic programming approach. In: Banzhaf W,
Daida J, Eiben AE, Garzon MH, Honavar V, Jakiela M, Smith RE (eds) Pro-
ceedings of the Genetic and Evolutionary Computation Conference, Morgan
Kaufmann, Orlando, Florida, USA, vol 2, pp 1135–1142, URL http://citeseer.
ist.psu.edu/153431.html

Genetic Programming: An Introduction and Tutorial 1011

257. Miller JF, Smith SL (2006) Redundancy and computational efficiency in carte-
sian genetic programming. IEEE Transactions on Evolutionary Computation
10(2):167–174, DOI doi:10.1109/TEVC.2006.871253

258. Mitavskiy B, Rowe J (2006) Some results about the markov chains associated
to GPs and to general EAs. Theoretical Computer Science 361(1):72–110, DOI
doi:10.1016/j.tcs.2006.04.006

259. Montana DJ (1995) Strongly typed genetic programming. Evolutionary
Computation 3(2):199–230, URL http://vishnu.bbn.com/papers/stgp.pdf

260. Moore GE (1965) Cramming more components onto integrated circuits.
Electronics 38(8):114–117

261. Moore JH, Parker JS, Olsen NJ, Aune TM (2002) Symbolic discriminant
analysis of microarray data in automimmune disease. Genetic Epidemiology
23:57–69

262. Motsinger AA, Lee SL, Mellick G, Ritchie MD (2006) GPNN: Power stud-
ies and applications of a neural network method for detecting gene-gene
interactions in studies of human disease. BMC bioinformatics [electronic
resource] 7(1):39–39, DOI doi:10.1186/1471-2105-7-39, URL http://www.
biomedcentral.com/1471-2105/7/39

263. Neely CJ (2003) Risk-adjusted, ex ante, optimal technical trading rules in
equity markets. International Review of Economics and Finance 12(1):69–87,
DOI doi:10.1016/S1059-0560(02)00129-6, URL http://research.stlouisfed.org/
wp/1999/1999-015.pdf

264. Neely CJ, Weller PA (1999) Technical trading rules in the european mon-
etary system. Journal of International Money and Finance 18(3):429–458,
DOI doi:10.1016/S0261-5606(99)85005-0, URL http://research.stlouisfed.org/
wp/1997/97-015.pdf

265. Neely CJ, Weller PA (2001a) Predicting exchange rate volatility: Genetic pro-
gramming vs. GARCH and risk metrics. Working Paper 2001-009B, Economic,
Research, Federal Reserve Bank of St. Louis, 411 Locust Street, St. Louis, MO
63102-0442, USA, URL http://research.stlouisfed.org/wp/2001/2001-009.pdf

266. Neely CJ, Weller PA (2001b) Technical analysis and central bank inter-
vention. Journal of International Money and Finance 20(7):949–970, DOI
doi:10.1016/S0261-5606(01)00033-X, URL http://research.stlouisfed.org/wp/
1997/97-002.pdf

267. Neely CJ, Weller PA, Dittmar R (1997) Is technical analysis in the foreign
exchange market profitable? A genetic programming approach. The Journal
of Financial and Quantitative Analysis 32(4):405–426, URL http://links.
jstor.org/sici?sici=0022-1090%28199712%2932%3A4%3C405%3AITAITF%3
E2.0.CO%3B2-T

268. Neely CJ, Weller PA, Ulrich JM (2006) The adaptive markets hypothesis:
evidence from the foreign exchange market. Working Paper 2006-046B, Fed-
eral Reserve Bank of St. Louis, Research Division, P.O. Box 442, St. Louis,
MO 63166, USA, URL http://research.stlouisfed.org/wp/2006/2006-046.pdf,
revised March 2007

269. Nikolaev N, Iba H (2006) Adaptive Learning of Polynomial Networks Genetic
Programming, Backpropagation and Bayesian Methods. No. 4 in Genetic and
Evolutionary Computation, Springer, june

270. Nikolaev NY, Iba H (2002) Genetic programming of polynomial models for
financial forecasting. In: Chen SH (ed) Genetic Algorithms and Genetic

1012 W.B. Langdon et al.

Programming in Computational Finance, Kluwer Academic Press, chap 5,
pp 103–123

271. Nix AE, Vose MD (1992) Modeling genetic algorithms with Markov chains.
Annals of Mathematics and Artificial Intelligence 5:79–88

272. Nordin P (1994) A compiling genetic programming system that directly
manipulates the machine code. In: Kinnear, Jr KE (ed) Advances in Genetic
Programming, MIT Press, chap 14, pp 311–331, URL http://cognet.mit.edu/
library/books/view?isbn=0262111888

273. Nordin P (1997) Evolutionary program induction of binary machine code
and its applications. PhD thesis, der Universitat Dortmund am Fachereich
Informatik

274. Nordin P, Johanna W (2003) Humanoider: Sjavlarande robotar och artificiell
intelligens. Liber

275. Nordin P, Banzhaf W, Francone FD (1999) Efficient evolution of machine code
for CISC architectures using instruction blocks and homologous crossover. In:
Spector L, Langdon WB, O’Reilly UM, Angeline PJ (eds) Advances in Genetic
Programming 3, MIT Press, Cambridge, MA, USA, chap 12, pp 275–299, URL
http://www.aimlearning.com/aigp31.pdf

276. Oakley H (1994) Two scientific applications of genetic programming: Stack
filters and non-linear equation fitting to chaotic data. In: Kinnear, Jr KE (ed)
Advances in Genetic Programming, MIT Press, chap 17, pp 369–389, URL
http://cognet.mit.edu/library/books/view?isbn=0262111888

277. Oltean M (2005) Evolving evolutionary algorithms using linear genetic
programming. Evolutionary Computation 13(3):387–410, DOI doi:10.1162/
1063656054794815, URL http://www.ingentaconnect.com/content/mitpress/
evco/2005/00000013/00000003/art00006

278. Oltean M, Dumitrescu D (2004) Evolving TSP heuristics using multi
expression programming. In: Bubak M, van Albada GD, Sloot PMA,
Dongarra J (eds) Computational Science - ICCS 2004: 4th Interna-
tional Conference, Part II, Springer-Verlag, Krakow, Poland, Lecture
Notes in Computer Science, vol 3037, pp 670–673, DOI doi:10.1007/
b97988, URL http://springerlink.metapress.com/openurl.asp?genre=article&
issn=0302-9743&volume=3037&spage=670

279. O’Neill M, Ryan C (2003) Grammatical Evolution: Evolutionary Automatic
Programming in a Arbitrary Language, Genetic programming, vol 4. Kluwer
Academic Publishers, URL http://www.wkap.nl/prod/b/1-4020-7444-1

280. Openshaw S, Turton I (1994) Building new spatial interaction models
using genetic programming. In: Fogarty TC (ed) Evolutionary Computing,
Springer-Verlag, Leeds, UK, Lecture Notes in Computer Science, URL http://
www.geog.leeds.ac.uk/papers/94-1/94-1.pdf

281. O’Reilly UM (1995) An analysis of genetic programming. PhD thesis, Carleton
University, Ottawa-Carleton Institute for Computer Science, Ottawa, Ontario,
Canada, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/oreilly/
abstract.ps.gz

282. O’Reilly UM, Hemberg M (2007) Integrating generative growth and evolution-
ary computation for form exploration. Genetic Programming and Evolvable
Machines 8(2):163–186, DOI doi:10.1007/s10710-007-9025-y, special issue on
developmental systems

283. O’Reilly UM, Oppacher F (1994) The troubling aspects of a building
block hypothesis for genetic programming. In: Whitley LD, Vose MD (eds)

Genetic Programming: An Introduction and Tutorial 1013

Foundations of Genetic Algorithms 3, Morgan Kaufmann, Estes Park,
Colorado, USA, pp 73–88, URL http://citeseer.ist.psu.edu/cache/papers/cs/
163/http:zSzzSzwww.ai.mit.eduzSzpeoplezSzunamayzSzpaperszSzfoga.pdf/
oreilly92troubling.pdf, published 1995

284. O’Reilly UM, Yu T, Riolo RL, Worzel B (eds) (2004) Genetic Programming
Theory and Practice II, Genetic Programming, vol 8, Springer, Ann Arbor,
MI, USA, URL http://www.springeronline.com/sgw/cda/frontpage/0,11855,
5-40356-22-34954683-0,00.html

285. Oussaidène M, Chopard B, Pictet OV, Tomassini M (1997) Parallel genetic pro-
gramming and its application to trading model induction. Parallel Computing
23(8):1183–1198, URL http://citeseer.ist.psu.edu/cache/papers/cs/166/http:
zSzzSzlslwww.epfl.chzSz marcozSzparcomp.pdf/oussaidene97parallel.pdf

286. Owens JD, David, Govindaraju N, Harris M, Kruger J, Lefohn AE, Purcell
TJ (2007) A survey of general-purpose computation on graphics hardware.
Computer Graphics Forum 26(1):80–113, DOI doi:10.1111/j.1467-8659.2007.
01012.x

287. Parrott D, Li X, Ciesielski V (2005) Multi-objective techniques in genetic pro-
gramming for evolving classifiers. In: Corne D, Michalewicz Z, Dorigo M,
Eiben G, Fogel D, Fonseca C, Greenwood G, Chen TK, Raidl G, Zalzala
A, Lucas S, Paechter B, Willies J, Guervos JJM, Eberbach E, McKay B,
Channon A, Tiwari A, Volkert LG, Ashlock D, Schoenauer M (eds) Pro-
ceedings of the 2005 IEEE Congress on Evolutionary Computation, IEEE
Press, Edinburgh, UK, vol 2, pp 1141–1148, URL http://goanna.cs.rmit.edu.
au/˜xiaodong/publications/183.pdf

288. Perkis T (1994) Stack-based genetic programming. In: Proceedings of the 1994
IEEE World Congress on Computational Intelligence, IEEE Press, Orlando,
Florida, USA, vol 1, pp 148–153, URL http://citeseer.ist.psu.edu/432690.html

289. Pillay N (2003) Evolving solutions to ASCII graphics programming problems in
intelligent programming tutors. In: Akerkar R (ed) International Conference on
Applied Artificial Intelligence (ICAAI’2003), TMRF, Fort Panhala, Kolhapur,
India, pp 236–243

290. Poli R (1996a) Discovery of symbolic, neuro-symbolic and neural networks
with parallel distributed genetic programming. Tech. Rep. CSRP-96-14,
University of Birmingham, School of Computer Science, URL ftp://ftp.cs.
bham.ac.uk/pub/tech-reports/1996/CSRP-96-14.ps.gz, presented at 3rd Inter-
national Conference on Artificial Neural Networks and Genetic Algorithms,
ICANNGA’97

291. Poli R (1996b) Genetic programming for image analysis. In: Koza JR, Goldberg
DE, Fogel DB, Riolo RL (eds) Genetic Programming 1996: Proceedings of the
First Annual Conference, MIT Press, Stanford University, CA, USA, pp 363–
368, URL http://cswww.essex.ac.uk/staff/rpoli/papers/Poli-GP1996.pdf

292. Poli R (1999) Parallel distributed genetic programming. In: Corne D, Dorigo
M, Glover F (eds) New Ideas in Optimization, Advanced Topics in Computer
Science, McGraw-Hill, Maidenhead, Berkshire, England, chap 27, pp 403–431,
URL http://citeseer.ist.psu.edu/328504.html

293. Poli R (2000a) Exact schema theorem and effective fitness for GP with one-
point crossover. In: Whitley D, Goldberg D, Cantu-Paz E, Spector L, Parmee
I, Beyer HG (eds) Proceedings of the Genetic and Evolutionary Computation
Conference, Morgan Kaufmann, Las Vegas, pp 469–476

1014 W.B. Langdon et al.

294. Poli R (2000b) Hyperschema theory for GP with one-point crossover, build-
ing blocks, and some new results in GA theory. In: Poli R, Banzhaf W,
Langdon WB, Miller JF, Nordin P, Fogarty TC (eds) Genetic Programming,
Proceedings of EuroGP’2000, Springer-Verlag, Edinburgh, LNCS, vol 1802,
pp 163–180, URL http://www.springerlink.com/openurl.asp?genre=article&
issn=0302-9743&volume=1802&spage=163

295. Poli R (2001) Exact schema theory for genetic programming and variable-
length genetic algorithms with one-point crossover. Genetic Programming and
Evolvable Machines 2(2):123–163

296. Poli R (2003) A simple but theoretically-motivated method to control bloat
in genetic programming. In: Ryan C, Soule T, Keijzer M, Tsang E, Poli R,
Costa E (eds) Genetic Programming, Proceedings of EuroGP’2003, Springer-
Verlag, Essex, LNCS, vol 2610, pp 204–217, URL http://www.springerlink.
com/openurl.asp?genre=article&issn=0302-9743&volume=2610&spage=204

297. Poli R (2005) Tournament selection, iterated coupon-collection problem, and
backward-chaining evolutionary algorithms. In: Wright AH, Vose MD, De
Jong KA, Schmitt LM (eds) Foundations of Genetic Algorithms 8, Springer-
Verlag, Aizu-Wakamatsu City, Japan, Lecture Notes in Computer Science,
vol 3469, pp 132–155, URL http://www.cs.essex.ac.uk/staff/rpoli/papers/
foga2005 Poli.pdf

298. Poli R, Langdon WB (1997) A new schema theory for genetic programming
with one-point crossover and point mutation. In: Koza JR, Deb K, Dorigo
M, Fogel DB, Garzon M, Iba H, Riolo RL (eds) Genetic Programming 1997:
Proceedings of the Second Annual Conference, Morgan Kaufmann, Stanford
University, CA, USA, pp 278–285, URL http://citeseer.ist.psu.edu/327495.
html

299. Poli R, Langdon WB (1998a) On the search properties of different crossover
operators in genetic programming. In: Koza JR, Banzhaf W, Chellapilla K,
Deb K, Dorigo M, Fogel DB, Garzon MH, Goldberg DE, Iba H, Riolo R (eds)
Genetic Programming 1998: Proceedings of the Third Annual Conference,
Morgan Kaufmann, University of Wisconsin, Madison, Wisconsin, USA, pp
293–301, URL http://www.cs.essex.ac.uk/staff/poli/papers/Poli-GP1998.pdf

300. Poli R, Langdon WB (1998b) Schema theory for genetic programming with
one-point crossover and point mutation. Evolutionary Computation 6(3):231–
252, URL http://cswww.essex.ac.uk/staff/poli/papers/Poli-ECJ1998.pdf

301. Poli R, Langdon WB (2005a) Running genetic programming backward. In:
Riolo RL, Worzel B, Yu T (eds) Genetic Programming Theory and Practice,
Kluwer

302. Poli R, Langdon WB (2005b) Running genetic programming backward. In: Yu
T, Riolo RL, Worzel B (eds) Genetic Programming Theory and Practice III,
Genetic Programming, vol 9, Springer, Ann Arbor, chap 9, pp 125–140, URL
http://www.cs.essex.ac.uk/staff/poli/papers/GPTP2005.pdf

303. Poli R, Langdon WB (2006a) Backward-chaining evolutionary algorithms.
Artificial Intelligence 170(11):953–982, DOI doi:10.1016/j.artint.2006.04.003,
URL http://www.cs.essex.ac.uk/staff/poli/papers/aijournal2006.pdf

304. Poli R, Langdon WB (2006b) Efficient markov chain model of machine code
program execution and halting. In: Riolo RL, Soule T, Worzel B (eds) Genetic
Programming Theory and Practice IV, Genetic and Evolutionary Computa-
tion, vol 5, Springer, Ann Arbor, chap 13, URL http://www.cs.essex.ac.uk/
staff/poli/papers/GPTP2006.pdf

Genetic Programming: An Introduction and Tutorial 1015

305. Poli R, McPhee NF (2003a) General schema theory for genetic programming
with subtree-swapping crossover: Part I. Evolutionary Computation 11(1):53–
66, DOI doi:10.1162/106365603321829005, URL http://cswww.essex.ac.uk/
staff/rpoli/papers/ecj2003partI.pdf

306. Poli R, McPhee NF (2003b) General schema theory for genetic program-
ming with subtree-swapping crossover: Part II. Evolutionary Computation
11(2):169–206, DOI doi:10.1162/106365603766646825, URL http://cswww.
essex.ac.uk/staff/rpoli/papers/ecj2003partII.pdf

307. Poli R, Page J, Langdon WB (1999) Smooth uniform crossover, sub-machine
code GP and demes: A recipe for solving high-order boolean parity problems.
In: Banzhaf W, Daida J, Eiben AE, Garzon MH, Honavar V, Jakiela M, Smith
RE (eds) Proceedings of the Genetic and Evolutionary Computation Confer-
ence, Morgan Kaufmann, Orlando, Florida, USA, vol 2, pp 1162–1169, URL
http://www.cs.bham.ac.uk/˜wbl/biblio/gecco1999/GP-466.pdf

308. Poli R, Rowe JE, McPhee NF (2001) Markov chain models for GP and variable-
length GAs with homologous crossover. In: Spector L, Goodman ED, Wu A,
Langdon WB, Voigt HM, Gen M, Sen S, Dorigo M, Pezeshk S, Garzon MH,
Burke E (eds) Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO-2001), Morgan Kaufmann, San Francisco, California, USA,
pp 112–119, URL http://www.cs.bham.ac.uk/˜wbl/biblio/gecco2001/d01.pdf

309. Poli R, McPhee NF, Rowe JE (2004) Exact schema theory and markov chain
models for genetic programming and variable-length genetic algorithms with
homologous crossover. Genetic Programming and Evolvable Machines 5(1):31–
70, DOI doi:10.1023/B:GENP.0000017010.41337.a7, URL http://cswww.essex.
ac.uk/staff/rpoli/papers/GPEM2004.pdf

310. Poli R, Di Chio C, Langdon WB (2005a) Exploring extended particle swarms:
a genetic programming approach. In: Beyer HG, O’Reilly UM, Arnold DV,
Banzhaf W, Blum C, Bonabeau EW, Cantu-Paz E, Dasgupta D, Deb K, Foster
JA, de Jong ED, Lipson H, Llora X, Mancoridis S, Pelikan M, Raidl GR,
Soule T, Tyrrell AM, Watson JP, Zitzler E (eds) GECCO 2005: Proceedings
of the 2005 conference on Genetic and evolutionary computation, ACM Press,
Washington DC, USA, vol 1, pp 169–176, URL http://www.cs.essex.ac.uk/
staff/poli/papers/geccopso2005.pdf

311. Poli R, Langdon WB, Holland O (2005b) Extending particle swarm optimi-
sation via genetic programming. In: Keijzer M, Tettamanzi A, Collet P, van
Hemert JI, Tomassini M (eds) Proceedings of the 8th European Conference
on Genetic Programming, Springer, Lausanne, Switzerland, Lecture Notes in
Computer Science, vol 3447, pp 291–300, URL http://www.cs.essex.ac.uk/
staff/poli/papers/eurogpPSO2005.pdf

312. Poli R, Langdon WB, Dignum S (2007a) On the limiting distribution of
program sizes in tree-based genetic programming. In: Ebner M, O’Neill M,
Ekárt A, Vanneschi L, Esparcia-Alcázar AI (eds) Proceedings of the 10th
European Conference on Genetic Programming, Springer, Valencia, Spain,
Lecture Notes in Computer Science, vol 4445, pp 193–204, DOI doi:10.1007/
978-3-540-71605-1 18

313. Poli R, Woodward J, Burke E (2007b) A histogram-matching approach to the
evolution of bin-packing strategies. In: Proceedings of the IEEE Congress on
Evolutionary Computation, Singapore, accepted

1016 W.B. Langdon et al.

314. Potter MA (1997) The design and analysis of a computational model of coop-
erative coevolution. PhD thesis, George Mason University, Washington, DC,
URL http://www.cs.gmu.edu/˜mpotter/dissertation.html

315. Priesterjahn S, Kramer O, Weimer A, Goebels A (2006) Evolution of human-
competitive agents in modern computer games. In: Yen GG, Lucas SM, Fogel
G, Kendall G, Salomon R, Zhang BT, Coello CAC, Runarsson TP (eds) Pro-
ceedings of the 2006 IEEE Congress on Evolutionary Computation, IEEE
Press, Vancouver, BC, Canada, pp 777–784, URL http://ieeexplore.ieee.org/
servlet/opac?punumber=11108

316. Prügel-Bennett A, Shapiro JL (1994) An analysis of genetic algorithms using
statistical mechanics. Physical Review Letters 72:1305–1309

317. Quintana MI, Poli R, Claridge E (2006) Morphological algorithm design for
binary images using genetic programming. Genetic Programming and Evolv-
able Machines 7(1):81–102, DOI doi:10.1007/s10710-006-7012-3, URL http://
cswww.essex.ac.uk/staff/rpoli/papers/gpem2005.pdf

318. Ratle A, Sebag M (2000) Genetic programming and domain knowledge: Beyond
the limitations of grammar-guided machine discovery. In: Schoenauer M, Deb
K, Rudolph G, Yao X, Lutton E, Merelo JJ, Schwefel HP (eds) Parallel Problem
Solving from Nature - PPSN VI 6th International Conference, Springer Verlag,
Paris, France, LNCS, vol 1917, pp 211–220, URL http://www.lri.fr/˜sebag/
REF/PPSN00.ps

319. Reggia J, Tagamets M, Contreras-Vidal J, Jacobs D, Weems S, Naqvi W,
Winder R, Chabuk T, Jung J, Yang C (2006) Development of a large-scale
integrated neurocognitive architecture - part 2: Design and architecture. Tech.
Rep. TR-CS-4827, UMIACS-TR-2006-43, University of Maryland, USA, URL
https://drum.umd.edu/dspace/bitstream/1903/3957/1/MarylandPart2.pdf

320. Reif DM, White BC, Moore JH (2004) Integrated analysis of genetic, genomic,
and proteomic data. Expert Review of Proteomics 1(1):67–75, DOI doi:10.
1586/14789450.1.1.67, URL http://www.future-drugs.com/doi/abs/10.1586/
14789450.1.1.67

321. Reynolds CW (1987) Flocks, herds, and schools: A distributed behavioral
model. SIGGRAPH Computer Graphics 21(4):25–34, URL http://www.red3d.
com/cwr/papers/1987/boids.html

322. Riolo RL, Worzel B (2003) Genetic Programming Theory and Practice, Genetic
Programming, vol 6. Kluwer, Boston, MA, USA, URL http://www.wkap.nl/
prod/b/1-4020-7581-2, series Editor - John Koza

323. Riolo RL, Soule T, Worzel B (eds) (2007a) Genetic Programming The-
ory and Practice IV, Genetic and Evolutionary Computation, vol 5,
Springer, Ann Arbor, URL http://www.springer.com/west/home/computer/
foundations?SGWID=%4-156-22-173660377-0

324. Riolo RL, Soule T, Worzel B (eds) (2007b) Genetic Programming Theory and
Practice V, Genetic and Evolutionary Computation, Springer, Ann Arbor

325. Ritchie MD, White BC, Parker JS, Hahn LW, Moore JH (2003) Optimization
of neural network architecture using genetic programming improves detec-
tion and modeling of gene-gene interactions in studies of human diseases.
BMC Bioinformatics 4(28), DOI doi:10.1186/1471-2105-4-28, URL http://
www.biomedcentral.com/1471-2105/4/28

326. Ritchie MD, Motsinger AA, Bush WS, Coffey CS, Moore JH (2007) Genetic
programming neural networks: A powerful bioinformatics tool for human

Genetic Programming: An Introduction and Tutorial 1017

genetics. Applied Soft Computing 7(1):471–479, DOI doi:10.1016/j.asoc.2006.
01.013

327. Rivero D, nal JRR, Dorado J, Pazos A (2004) Using genetic programming
for character discrimination in damaged documents. In: Raidl GR, Cagnoni
S, Branke J, Corne DW, Drechsler R, Jin Y, Johnson CR, Machado P,
Marchiori E, Rothlauf F, Smith GD, Squillero G (eds) Applications of Evolu-
tionary Computing, EvoWorkshops2004: EvoBIO, EvoCOMNET, EvoHOT,
EvoIASP, EvoMUSART, EvoSTOC, Springer Verlag, Coimbra, Portugal,
LNCS, vol 3005, pp 349–358

328. Robinson A, Spector L (2002) Using genetic programming with multiple data
types and automatic modularization to evolve decentralized and coordinated
navigation in multi-agent systems. In: Cantú-Paz E (ed) Late Breaking Papers
at the Genetic and Evolutionary Computation Conference (GECCO-2002),
AAAI, New York, NY, pp 391–396

329. Rodriguez-Vazquez K, Fonseca CM, Fleming PJ (2004) Identifying the struc-
ture of nonlinear dynamic systems using multiobjective genetic programming.
IEEE Transactions on Systems, Man and Cybernetics, Part A 34(4):531–545

330. Rosca JP (1997) Analysis of complexity drift in genetic programming. In:
Koza JR, Deb K, Dorigo M, Fogel DB, Garzon M, Iba H, Riolo RL (eds)
Genetic Programming 1997: Proceedings of the Second Annual Conference,
Morgan Kaufmann, Stanford University, CA, USA, pp 286–294, URL ftp://
ftp.cs.rochester.edu/pub/u/rosca/gp/97.gp.ps.gz

331. Rosca JP, Ballard DH (1996) Discovery of subroutines in genetic programming.
In: Angeline PJ, Kinnear, Jr KE (eds) Advances in Genetic Programming
2, MIT Press, Cambridge, MA, USA, chap 9, pp 177–202, URL ftp://ftp.cs.
rochester.edu/pub/u/rosca/gp/96.aigp2.dsgp.ps.gz

332. Ross BJ, Gualtieri AG, Fueten F, Budkewitsch P (2005) Hyperspectral image
analysis using genetic programming. Applied Soft Computing 5(2):147–156,
DOI doi:10.1016/j.asoc.2004.06.003, URL http://www.cosc.brocku.ca/˜bross/
research/gp hyper.pdf

333. Rothlauf F (2006) Representations for genetic and evolutionary algorithms, 2nd
edn. Springer-Verlag, pub-SV:adr, URL http://download-ebook.org/index.
php?target=desc&ebookid=5771, first published 2002, 2nd edition available
electronically

334. Ryan C (1999) Automatic Re-engineering of Software Using Genetic Program-
ming, Genetic Programming, vol 2. Kluwer Academic Publishers, URL http://
www.wkap.nl/book.htm/0-7923-8653-1

335. Ryan C, Ivan L (1999) An automatice software re-engineering tool based on
genetic programming. In: Spector L, Langdon WB, O’Reilly UM, Angeline PJ
(eds) Advances in Genetic Programming 3, MIT Press, Cambridge, MA, USA,
Ann Arbor, URL http://www.cs.bham.ac.uk/˜wbl/aigp3/ch02.pdf

336. Ryan C, Collins JJ, O’Neill M (1998) Grammatical evolution: Evolving pro-
grams for an arbitrary language. In: Banzhaf W, Poli R, Schoenauer M, Fogarty
TC (eds) Proceedings of the First European Workshop on Genetic Program-
ming, Springer-Verlag, Paris, LNCS, vol 1391, pp 83–95, URL http://www.
lania.mx/˜ccoello/eurogp98.ps.gz

337. Samuel AL (1983) AI, where it has been and where it is going. In: IJCAI,
pp 1152–1157

1018 W.B. Langdon et al.

338. Schmidt MD, Lipson H (2006) Co-evolving fitness predictors for accelerating
and reducing evaluations. In: Riolo RL, Soule T, Worzel B (eds) Genetic Pro-
gramming Theory and Practice IV, Genetic and Evolutionary Computation,
vol 5, Springer, Ann Arbor

339. Schoenauer M, Sebag M (2001) Using domain knowledge in evolutionary sys-
tem identification. In: Giannakoglou KC, Tsahalis D, Periaux J, Papailiou K,
Fogarty TC (eds) Evolutionary Methods for Design, Optimization and Control
with Applications to Industrial Problems, Athens

340. Schoenauer M, Lamy B, Jouve F (1995) Identification of mechanical behav-
ior by genetic programming part II: Energy formulation. Tech. rep., Ecole
Polytechnique, 91128 Palaiseau, France

341. Schoenauer M, Sebag M, Jouve F, Lamy B, Maitournam H (1996) Evolution-
ary identification of macro-mechanical models. In: Angeline PJ, Kinnear, Jr
KE (eds) Advances in Genetic Programming 2, MIT Press, Cambridge, MA,
USA, chap 23, pp 467–488, URL http://citeseer.ist.psu.edu/cache/papers/cs/
902/http:zSzzSzwww.eeaax.polytechnique.frzSzpaperszSzmarczSzAGP2.pdf/
schoenauer96evolutionary.pdf

342. Searson DP, Montague GA, Willis MJ (1998) Evolutionary design of process
controllers. In: In Proceedings of the 1998 United Kingdom Automatic Control
Council International Conference on Control (UKACC International Confer-
ence on Control ’98), Institution of Electrical Engineers (IEE), University of
Wales, Swansea, UK, IEE Conference Publications, vol 455, URL http://www.
staff.ncl.ac.uk/d.p.searson/docs/Searsoncontrol98.pdf

343. Sekanina L (2003) Evolvable Components: From Theory to Hardware Imple-
mentations. Natural Computing, Springer-Verlag, URL http://www.fit.vutbr.
cz/˜sekanina/rehw/books.html.en

344. Setzkorn C (2005) On the use of multi-objective evolutionary algorithms for
classification rule induction. PhD thesis, University of Liverpool, UK

345. Shah SC, Kusiak A (2004) Data mining and genetic algorithm based gene/SNP
selection. Artificial Intelligence in Medicine 31(3):183–196, DOI doi:10.1016/
j.artmed.2004.04.002, URL http://www.icaen.uiowa.edu/˜ankusiak/Journal-
papers/Gen Shital.pdf

346. Sharabi S, Sipper M (2006) GP-sumo: Using genetic programming to evolve
sumobots. Genetic Programming and Evolvable Machines 7(3):211–230, DOI
doi:10.1007/s10710-006-9006-6

347. Sharman KC, Esparcia-Alcazar AI (1993) Genetic evolution of symbolic signal
models. In: Proceedings of the Second International Conference on Natural
Algorithms in Signal Processing, NASP’93, Essex University, UK, URL http://
www.iti.upv.es/˜anna/papers/natalg93.ps

348. Sharman KC, Esparcia Alcazar AI, Li Y (1995) Evolving signal processing
algorithms by genetic programming. In: Zalzala AMS (ed) First International
Conference on Genetic Algorithms in Engineering Systems: Innovations and
Applications, GALESIA, IEE, Sheffield, UK, vol 414, pp 473–480, URL http://
www.iti.upv.es/˜anna/papers/galesi95.ps

349. Shaw AD, Winson MK, Woodward AM, McGovern AC, Davey HM, Kaderb-
hai N, Broadhurst D, Gilbert RJ, Taylor J, Timmins EM, Goodacre R, Kell
DB, Alsberg BK, Rowland JJ (2000) Bioanalysis and biosensors for bioprocess
monitoring rapid analysis of high-dimensional bioprocesses using multivari-
ate spectroscopies and advanced chemometrics. Advances in Biochemical

Genetic Programming: An Introduction and Tutorial 1019

Engineering/Biotechnology 66:83–113, URL http://www.springerlink.com/
link.asp?id=t8b4ya0bl42jnjj3

350. Shichel Y, Ziserman E, Sipper M (2005) GP-robocode: Using genetic pro-
gramming to evolve robocode players. In: Keijzer M, Tettamanzi A, Collet
P, van Hemert JI, Tomassini M (eds) Proceedings of the 8th European Con-
ference on Genetic Programming, Springer, Lausanne, Switzerland, Lecture
Notes in Computer Science, vol 3447, pp 143–154, URL http://www.cs.bgu.
ac.il/˜sipper/papabs/eurogprobo-final.pdf

351. Si HZ, Wang T, Zhang KJ, Hu ZD, Fan BT (2006) QSAR study of 1,4-
dihydropyridine calcium channel antagonists based on gene expression pro-
gramming. Bioorganic & Medicinal Chemistry 14(14):4834–4841, DOI doi:
10.1016/j.bmc.2006.03.019

352. Siegel EV (1994) Competitively evolving decision trees against fixed training
cases for natural language processing. In: Kinnear, Jr KE (ed) Advances in
Genetic Programming, MIT Press, chap 19, pp 409–423, URL http://www1.
cs.columbia.edu/nlp/papers/1994/siegel 94.pdf

353. Sims K (1991) Artificial evolution for computer graphics. ACM Com-
puter Graphics 25(4):319–328, URL http://delivery.acm.org/10.1145/130000/
122752/p319-sims.pdf, sIGGRAPH ’91 Proceedings

354. Smart W, Zhang M (2004) Applying online gradient descent search to genetic
programming for object recognition. In: Hogan J, Montague P, Purvis M, Steke-
tee C (eds) CRPIT ’04: Proceedings of the second workshop on Australasian
information security, Data Mining and Web Intelligence, and Software Interna-
tionalisation, Australian Computer Society, Inc., Dunedin, New Zealand, vol 32
no. 7, pp 133–138, URL http://crpit.com/confpapers/CRPITV32Smart.pdf

355. Soule T, Foster JA (1998a) Effects of code growth and parsimony pressure on
populations in genetic programming. Evolutionary Computation 6(4):293–309,
URL http://mitpress.mit.edu/journals/EVCO/Soule.pdf

356. Soule T, Foster JA (1998b) Removal bias: a new cause of code growth in tree
based evolutionary programming. In: 1998 IEEE International Conference on
Evolutionary Computation, IEEE Press, Anchorage, Alaska, USA, pp 781–186,
URL http://citeseer.ist.psu.edu/313655.html

357. Spector L (2001) Autoconstructive evolution: Push, pushGP, and pushpop.
In: Spector L, Goodman ED, Wu A, Langdon WB, Voigt HM, Gen M, Sen S,
Dorigo M, Pezeshk S, Garzon MH, Burke E (eds) Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-2001), Morgan Kauf-
mann, San Francisco, California, USA, pp 137–146, URL http://hampshire.
edu/lspector/pubs/ace.pdf

358. Spector L (2004) Automatic Quantum Computer Programming: A Genetic
Programming Approach, Genetic Programming, vol 7. Kluwer Academic
Publishers, Boston/Dordrecht/New York/London, URL http://www.wkap.nl/
prod/b/1-4020-7894-3

359. Spector L, Alpern A (1994) Criticism, culture, and the automatic genera-
tion of artworks. In: Proceedings of Twelfth National Conference on Artificial
Intelligence, AAAI Press/MIT Press, Seattle, Washington, USA, pp 3–8

360. Spector L, Alpern A (1995) Induction and recapitulation of deep musical
structure. In: Proceedings of International Joint Conference on Artificial Intel-
ligence, IJCAI’95 Workshop on Music and AI, Montreal, Quebec, Canada, URL
http://hampshire.edu/lspector/pubs/IJCAI95mus-toappear.ps

1020 W.B. Langdon et al.

361. Spector L, Barnum H, Bernstein HJ (1998) Genetic programming for quan-
tum computers. In: Koza JR, Banzhaf W, Chellapilla K, Deb K, Dorigo M,
Fogel DB, Garzon MH, Goldberg DE, Iba H, Riolo R (eds) Genetic Program-
ming 1998: Proceedings of the Third Annual Conference, Morgan Kaufmann,
University of Wisconsin, Madison, Wisconsin, USA, pp 365–373

362. Spector L, Barnum H, Bernstein HJ, Swamy N (1999a) Finding a better-
than-classical quantum AND/OR algorithm using genetic programming. In:
Angeline PJ, Michalewicz Z, Schoenauer M, Yao X, Zalzala A (eds) Proceed-
ings of the Congress on Evolutionary Computation, IEEE Press, Mayflower
Hotel, Washington D.C., USA, vol 3, pp 2239–2246, URL http://hampshire.
edu/˜lasCCS/pubs/spector-cec99.ps

363. Spector L, Langdon WB, O’Reilly UM, Angeline PJ (eds) (1999b) Advances
in Genetic Programming 3. MIT Press, Cambridge, MA, USA, URL http://
www.cs.bham.ac.uk/˜wbl/aigp3

364. Spector L, Klein J, Keijzer M (2005) The push3 execution stack and the evo-
lution of control. In: Beyer HG, O’Reilly UM, Arnold DV, Banzhaf W, Blum
C, Bonabeau EW, Cantu-Paz E, Dasgupta D, Deb K, Foster JA, de Jong ED,
Lipson H, Llora X, Mancoridis S, Pelikan M, Raidl GR, Soule T, Tyrrell AM,
Watson JP, Zitzler E (eds) GECCO 2005: Proceedings of the 2005 conference
on Genetic and evolutionary computation, ACM Press, Washington DC, USA,
vol 2, pp 1689–1696, URL http://www.cs.bham.ac.uk/˜wbl/biblio/gecco2005/
docs/p1689.pdf

365. Stender J (ed) (1993) Parallel Genetic Algorithms: Theory and Applications.
IOS press

366. Stephens CR, Waelbroeck H (1997) Effective degrees of freedom in genetic
algorithms and the block hypothesis. In: Bäck T (ed) Proceedings of the
Seventh International Conference on Genetic Algorithms (ICGA97), Morgan
Kaufmann, East Lansing, pp 34–40

367. Stephens CR, Waelbroeck H (1999) Schemata evolution and building blocks.
Evolutionary Computation 7(2):109–124

368. Sterling T (1998) Beowulf-class clustered computing: Harnessing the power
of parallelism in a pile of PCs. In: Koza JR, Banzhaf W, Chellapilla K, Deb
K, Dorigo M, Fogel DB, Garzon MH, Goldberg DE, Iba H, Riolo R (eds)
Genetic Programming 1998: Proceedings of the Third Annual Conference, Mor-
gan Kaufmann, University of Wisconsin, Madison, Wisconsin, USA, p 883,
invited talk

369. Szymanski JJ, Brumby SP, Pope P, Eads D, Esch-Mosher D, Galassi M,
Harvey NR, McCulloch HDW, Perkins SJ, Porter R, Theiler J, Young AC,
Bloch JJ, David N (2002) Feature extraction from multiple data sources using
genetic programming. In: Shen SS, Lewis PE (eds) Algorithms and Tech-
nologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII,
SPIE, vol 4725, pp 338–345, URL http://www.cs.rit.edu/˜dre9227/papers/
szymanskiSPIE4725.pdf

370. Tackett WA (1993) Genetic generation of “dendritic” trees for image
classification. In: Proceedings of WCNN93, IEEE Press, pp IV 646–
649, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/
GP.feature.discovery.ps.Z

371. Takagi H (2001) Interactive evolutionary computation: Fusion of the capa-
bilities of EC optimization and human evaluation. Proceedings of the IEEE
89(9):1275–1296, invited Paper

Genetic Programming: An Introduction and Tutorial 1021

372. Tanev I, Uozumi T, Akhmetov D (2004) Component object based single
system image for dependable implementation of genetic programming on
clusters. Cluster Computing Journal 7(4):347–356, DOI doi:10.1023/B:CLUS.
0000039494.39217.c1, URL http://www.kluweronline.com/issn/1386-7857

373. Taylor J, Goodacre R, Wade WG, Rowland JJ, Kell DB (1998) The decon-
volution of pyrolysis mass spectra using genetic programming: application to
the identification of some eubacterium species. FEMS Microbiology Letters
160:237–246, DOI doi:10.1016/S0378-1097(98)00038-X

374. Teller A (1994) Genetic programming, indexed memory, the halting problem,
and other curiosities. In: Proceedings of the 7th annual Florida Artificial Intelli-
gence Research Symposium, IEEE Press, Pensacola, Florida, USA, pp 270–274,
URL http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/Curiosities.ps

375. Teller A (1996) Evolving programmers: The co-evolution of intelligent recombi-
nation operators. In: Angeline PJ, Kinnear, Jr KE (eds) Advances in Genetic
Programming 2, MIT Press, Cambridge, MA, USA, chap 3, pp 45–68, URL
http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/AiGPII.ps

376. Teller A, Andre D (1997) Automatically choosing the number of fitness cases:
The rational allocation of trials. In: Koza JR, Deb K, Dorigo M, Fogel DB,
Garzon M, Iba H, Riolo RL (eds) Genetic Programming 1997: Proceedings
of the Second Annual Conference, Morgan Kaufmann, Stanford University,
CA, USA, pp 321–328, URL http://www.cs.cmu.edu/afs/cs/usr/astro/public/
papers/GR.ps

377. Teredesai A, Govindaraju V (2005) GP-based secondary classifiers. Pattern
Recognition 38(4):505–512, DOI doi:10.1016/j.patcog.2004.06.010

378. Theiler JP, Harvey NR, Brumby SP, Szymanski JJ, Alferink S, Perkins SJ,
Porter RB, Bloch JJ (1999) Evolving retrieval algorithms with a genetic pro-
gramming scheme. In: Descour MR, Shen SS (eds) Proceedings of SPIE 3753
Imaging Spectrometry V, pp 416–425, URL http://public.lanl.gov/jt/Papers/
ga-spie.ps

379. Todd PM, Werner GM (1999) Frankensteinian approaches to evo-
lutionary music composition. In: Griffith N, Todd PM (eds) Musi-
cal Networks: Parallel Distributed Perception and Performance, MIT
Press, pp 313–340, URL http://www-abc.mpib-berlin.mpg.de/users/ptodd/
publications/99evmus/99evmus.pdf

380. Tomassini M, Luthi L, Giacobini M, Langdon WB (2007) The structure of
the genetic programming collaboration network. Genetic Programming and
Evolvable Machines 8(1):97–103, DOI doi:10.1007/s10710-006-9018-2

381. Trujillo L, Olague G (2006a) Synthesis of interest point detectors through
genetic programming. In: Keijzer M, Cattolico M, Arnold D, Babovic V, Blum
C, Bosman P, Butz MV, Coello Coello C, Dasgupta D, Ficici SG, Foster J,
Hernandez-Aguirre A, Hornby G, Lipson H, McMinn P, Moore J, Raidl G,
Rothlauf F, Ryan C, Thierens D (eds) GECCO 2006: Proceedings of the 8th
annual conference on Genetic and evolutionary computation, ACM Press, Seat-
tle, Washington, USA, vol 1, pp 887–894, DOI doi:10.1145/1143997.1144151,
URL http://www.cs.bham.ac.uk/˜wbl/biblio/gecco2006/docs/p887.pdf

382. Trujillo L, Olague G (2006b) Using evolution to learn how to perform interest
point detection. In: et al XYT (ed) ICPR 2006 18th International Conference
on Pattern Recognition, IEEE, vol 1, pp 211–214, DOI doi:10.1109/ICPR.
2006.1153, URL http://www.genetic-programming.org/hc2006/Olague-Paper-
2-ICPR%-2006.pdf

1022 W.B. Langdon et al.

383. Tsang EPK, Li J, Butler JM (1998) EDDIE beats the bookies.
Software: Practice and Experience 28(10):1033–1043, DOI doi:10.1002/
(SICI)1097-024X(199808)28:10〈1033::AID-SPE198〉3.0.CO;2--1, URL http://
cswww.essex.ac.uk/CSP/finance/papers/TsBuLi-Eddie-Software98.pdf

384. Turing AM (1948) Intelligent machinery, report for National Physical Labora-
tory. Reprinted in Ince, D. C. (editor). 1992. Mechanical Intelligence: Collected
Works of A. M. Turing. Amsterdam: North Holland. Pages 107127. Also
reprinted in Meltzer, B. and Michie, D. (editors). 1969. Machine Intelligence r5.
Edinburgh: Edinburgh University Press

385. Turing AM (1950) Computing machinery and intelligence. Mind 49:433–460,
URL http://www.cs.umbc.edu/471/papers/turing.pdf

386. Usman I, Khan A, Chamlawi R, Majid A (2007) Image authenticity and
perceptual optimization via genetic algorithm and a dependence neighbor-
hood. International Journal of Applied Mathematics and Computer Sciences
4(1):615–620, URL http://www.waset.org/ijamcs/v4/v4-1-7.pdf

387. Vaidyanathan S, Broadhurst DI, Kell DB, Goodacre R (2003) Explana-
tory optimization of protein mass spectrometry via genetic search. Analyt-
ical Chemistry 75(23):6679–6686, DOI doi:10.1021/ac034669a, URL http://
dbkgroup.org/Papers/AnalChem75(6679-6686).pdf

388. Venkatraman V, Dalby AR, Yang ZR (2004) Evaluation of mutual information
and genetic programming for feature selection in QSAR. Journal of Chemical
Information and Modeling 44(5):1686–1692, DOI doi:10.1021/ci049933v

389. Vowk B, Wait AS, Schmidt C (2004) An evolutionary approach generates
human competitive coreware programs. In: Bedau M, Husbands P, Hutton
T, Kumar S, Sizuki H (eds) Workshop and Tutorial Proceedings Ninth Inter-
national Conference on the Simulation and Synthesis of Living Systems(Alife
XI), Boston, Massachusetts, pp 33–36, artificial Chemistry and its applications
workshop

390. Vukusic I, Grellscheid SN, Wiehe T (2007) Applying genetic programming to
the prediction of alternative mRNA splice variants. Genomics 89(4):471–479,
DOI doi:10.1016/j.ygeno.2007.01.001

391. Walker RL (2001) Search engine case study: searching the web using genetic
programming and MPI. Parallel Computing 27(1–2):71–89, URL http://www.
sciencedirect.com/science/article/B6V12-42K5HNX-4/1/57eb870c72fb7768
bb7d824557444b72

392. Walsh P, Ryan C (1996) Paragen: A novel technique for the autoparallelisation
of sequential programs using genetic programming. In: Koza JR, Goldberg DE,
Fogel DB, Riolo RL (eds) Genetic Programming 1996: Proceedings of the First
Annual Conference, MIT Press, Stanford University, CA, USA, pp 406–409,
URL http://cognet.mit.edu/library/books/view?isbn=0262611279

393. Weaver DC (2004) Applying data mining techniques to library design, lead gen-
eration and lead optimization. Current Opinion in Chemical Biology 8(3):264–
270, DOI doi:10.1016/j.cbpa.2004.04.005, URL http://www.sciencedirect.com/
science/article/B6VRX-4CB69R1-2/2/84a354cec9064ed07baab6a07998c942

394. Whigham PA (1995) A schema theorem for context-free grammars. In: 1995
IEEE Conference on Evolutionary Computation, IEEE Press, Perth, Australia,
vol 1, pp 178–181

395. Whigham PA (1996) Search bias, language bias, and genetic programming. In:
Koza JR, Goldberg DE, Fogel DB, Riolo RL (eds) Genetic Programming 1996:

Genetic Programming: An Introduction and Tutorial 1023

Proceedings of the First Annual Conference, MIT Press, Stanford University,
CA, USA, pp 230–237

396. Whitley D (2001) An overview of evolutionary algorithms: practical issues
and common pitfalls. Information and Software Technology 43(14):817–
831, DOI doi:10.1016/S0950-5849(01)00188-4, URL http://www.cs.colostate.
edu/˜genitor/2001/overview.pdf

397. Whitley LD (1994) A Genetic Algorithm Tutorial. Statistics and Computing
4:65–85

398. Willis M, Hiden H, Marenbach P, McKay B, Montague GA (1997a) Genetic
programming: An introduction and survey of applications. In: Zalzala A
(ed) Second International Conference on Genetic Algorithms in Engineering
Systems: Innovations and Applications, GALESIA, Institution of Electrical
Engineers, University of Strathclyde, Glasgow, UK, URL http://www.staff.
ncl.ac.uk/d.p.searson/docs/galesia97surveyofGP.pdf

399. Willis MJ, Hiden HG, Montague GA (1997b) Developing inferential estima-
tion algorithms using genetic programming. In: IFAC/ADCHEM International
Symposium on Advanced Control of Chemical Processes, Banaff, Canada,
pp 219–224

400. Wilson G, Heywood M (2007) Introducing probabilistic adaptive map-
ping developmental genetic programming with redundant mappings. Genetic
Programming and Evolvable Machines 8(2):187–220, DOI doi:10.1007/
s10710-007-9027-9, special issue on developmental systems

401. Wong ML (1998) An adaptive knowledge-acquisition system using generic
genetic programming. Expert Systems with Applications 15(1):47–58, URL
http://cptra.ln.edu.hk/˜mlwong/journal/esa1998.pdf

402. Wong ML (2005) Evolving recursive programs by using adaptive grammar
based genetic programming. Genetic Programming and Evolvable Machines
6(4):421–455, DOI doi:10.1007/s10710-005-4805-8, URL http://cptra.ln.edu.
hk/˜mlwong/journal/gpem2005.pdf

403. Wong ML, Leung KS (1995) Inducing logic programs with genetic algo-
rithms: the genetic logicprogramming system genetic logic programming and
applications. IEEE Expert 10(5):68–76, DOI doi:10.1109/64.464935

404. Wong ML, Leung KS (1996) Evolving recursive functions for the even-parity
problem using genetic programming. In: Angeline PJ, Kinnear, Jr KE (eds)
Advances in Genetic Programming 2, MIT Press, Cambridge, MA, USA,
chap 11, pp 221–240

405. Wong ML, Leung KS (2000) Data Mining Using Grammar Based Genetic Pro-
gramming and Applications, Genetic Programming, vol 3. Kluwer Academic
Publishers

406. Wong ML, Wong TT, Fok KL (2005) Parallel evolutionary algorithms on
graphics processing unit. In: Corne D, Michalewicz Z, McKay B, Eiben G,
Fogel D, Fonseca C, Greenwood G, Raidl G, Tan KC, Zalzala A (eds) Proceed-
ings of the 2005 IEEE Congress on Evolutionary Computation, IEEE Press,
Edinburgh, Scotland, UK, vol 3, pp 2286–2293, URL http://ieeexplore.ieee.
org/servlet/opac?punumber=10417&isvol=3

407. Woodward AM, Gilbert RJ, Kell DB (1999) Genetic programming as an
analytical tool for non-linear dielectric spectroscopy. Bioelectrochemistry and
Bioenergetics 48(2):389–396, DOI doi:doi:10.1016/S0302-4598(99)00022-7,
URL http://www.sciencedirect.com/science/article/B6TF7-3WJ72RJ-T/2/
19fd01a6eb6ae0b8e12b2bb2218fb6e9

1024 W.B. Langdon et al.

408. Wright S (1932) The roles of mutation, inbreeding, crossbreeding and selection
in evolution. In: Jones DF (ed) Proceedings of the Sixth International Congress
on Genetics, vol 1, pp 356–366

409. Xie H, Zhang M, Andreae P (2006) Genetic programming for automatic stress
detection in spoken english. In: Rothlauf F, Branke J, Cagnoni S, Costa E,
Cotta C, Drechsler R, Lutton E, Machado P, Moore JH, Romero J, Smith
GD, Squillero G, Takagi H (eds) Applications of Evolutionary Computing,
EvoWorkshops2006: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoInter-
action, EvoMUSART, EvoSTOC, Springer Verlag, Budapest, LNCS, vol 3907,
pp 460–471, DOI doi:10.1007/11732242 41, URL http://www.springerlink.
com/openurl.asp?genre=article&issn=0302-9743&volume=3907&spage=460

410. Yangiya M (1995) Efficient genetic programming based on binary decision dia-
grams. In: 1995 IEEE Conference on Evolutionary Computation, IEEE Press,
Perth, Australia, vol 1, pp 234–239

411. Yu J, Bhanu B (2006) Evolutionary feature synthesis for facial expression
recognition. Pattern Recognition Letters 27(11):1289–1298, DOI doi:10.1016/
j.patrec.2005.07.026, evolutionary Computer Vision and Image Understanding

412. Yu J, Yu J, Almal AA, Dhanasekaran SM, Ghosh D, Worzel WP, Chinnaiyan
AM (2007) Feature selection and molecular classification of cancer using genetic
programming. Neoplasia 9(4):292–303, DOI doi:10.1593/neo.07121

413. Yu T (2001) Hierachical processing for evolving recursive and modular
programs using higher order functions and lambda abstractions. Genetic
Programming and Evolvable Machines 2(4):345–380, DOI doi:10.1023/A:
1012926821302

414. Yu T, Chen SH (2004) Using genetic programming with lambda abstraction
to find technical trading rules. In: Computing in Economics and Finance,
University of Amsterdam

415. Yu T, Riolo RL, Worzel B (eds) (2005) Genetic Programming Theory and
Practice III, Genetic Programming, vol 9, Springer, Ann Arbor

416. Zhang BT, Mühlenbein H (1993) Evolving optimal neural networks using
genetic algorithms with Occam’s razor. Complex Systems 7:199–220, URL
http://citeseer.ist.psu.edu/zhang93evolving.html

417. Zhang BT, Mühlenbein H (1995) Balancing accuracy and parsimony in
genetic programming. Evolutionary Computation 3(1):17–38, URL http://
www.ais.fraunhofer.de/˜muehlen/publications/gmd as ga-94 09.ps

418. Zhang BT, Ohm P, Mühlenbein H (1997) Evolutionary induction of
sparse neural trees. Evolutionary Computation 5(2):213–236, URL http://
bi.snu.ac.kr/Publications/Journals/International/EC5-2.ps

419. Zhang M, Smart W (2006) Using gaussian distribution to construct fitness
functions in genetic programming for multiclass object classification. Pattern
Recognition Letters 27(11):1266–1274, DOI doi:10.1016/j.patrec.2005.07.024,
evolutionary Computer Vision and Image Understanding

420. Zhang Y, Rockett PI (2006) Feature extraction using multi-objective genetic
programming. In: Jin Y (ed) Multi-Objective Machine Learning, Studies in
Computational Intelligence, vol 16, Springer, chap 4, pp 79–106, invited chapter

Resources

Following the publication of [188], the field of GP took off in about 1990
with a period of exponential growth common in the initial stages of successful
technologies. Many influential initial papers from that period can be found in
the proceedings of the Intl. Conf. Genetic Algorithms (ICGA-93, ICGA-95),
the IEEE Confs. on Evolutionary Computation (EC-1994), and the Evolu-
tionary Programming Conference. A surprisingly large number of these are
now available online. After almost twenty years, GP has matured and is used
in a wondrous array of applications. From banking [265] to betting [383],
from bomb detection [102] to architecture [282], from the steel industry to the
environment [157], from space [234] to biology [159], and many others (as we
have seen in Sect. 7). In 1996 it was possible to list (almost all) GP applica-
tions [201], but today the range is far too great, so here we simply list some
GP resources, which, we hope, will guide readers towards their goals.

1 Key Books

There are today more than 31 books written in English principally on GP
or its applications, with more being written. These start with John Koza’s
1992 Genetic Programming (often referred to as ‘Jaws’). Koza has published
four books on GP: Genetic Programming II: Automatic Discovery of Reusable
Programs (1994) deals with ADFs; Genetic Programming 3 (1999) covers, in
particular, the evolution of analogue circuits; Genetic Programming 4 (2003)
uses GP for automatic invention.

MIT Press published three volumes in the series Advances in Genetic Pro-
gramming (1994, 1996, 1999).

The joint GP/genetic algorithms Kluwer book series edited by Koza and
Goldberg now contains 14 books, starting with Genetic Programming and

1026 W.B. Langdon et al.

Data Structures [203]. Apart from ‘Jaws’, these tend to be for the GP special-
ist.

1997 saw the introduction of the first textbook dedicated to GP [25].

Eiben [87] and Goldberg [115] provide general treatment on evolutionary algo-
rithms.

Other titles include: Principia Evolvica – Simulierte Evolution mit Mathemat-
ica (in German) [154] (English version [156]), Data Mining Using Grammar
Based Genetic Programming and Applications [405], Genetic Programming (in
Japanese) [151], and Humanoider: Sjavlarande robotar och artificiell intelli-
gens (in Swedish) [274].

Readers interested in mathematical and empirical analyses of GP behavior
may find Foundations of Genetic Programming [222] useful.

2 Videos

Each of Koza’s four books has an accompanying illustrative video. These are
now available in DVD format. Furthermore, a small set of videos on specific
GP techniques and applications is available from Google Video and YouTube.

3 Key Journals

In addition to GP’s own Genetic Programming and Evolvable Machines
journal (Kluwer), Evolutionary Computation, the IEEE Trans. Evolutionary
Computation, Complex Systems (Complex Systems Publication, Inc.), and
many others publish GP articles. The GP bibliography (http://www.cs.bham.
ac.uk/˜wbl/biblio/) lists a further 375 different journals worldwide that have
published articles related to GP.

4 Key International Conferences/Workshops

EuroGP has been held every year since 1998. All EuroGP papers are available
on line as part of Springer’s LNCS series. The original annual Genetic Pro-
gramming conference was hosted by Koza in 1996 at Stanford. Since 1999 it has
been combined with the Intl. Conf. Genetic Algorithms to form GECCO; 98%
of GECCO papers are available online. The Michigan-based Genetic Program-
ming Theory and Practice Workshop [284,322,323,415] will shortly publish its
fifth proceedings [324]. Other EC conferences, such as CEC, PPSN, Evolution
Artificielle, and WSC, also regularly contain GP papers.

Genetic Programming: An Introduction and Tutorial 1027

5 Online Resources

One of the reasons behind the success of GP is that it is easy to implement
your own version. People have coded GP in a huge range of different languages,
such as Lisp, C, C++, Java, JavaScript, Perl, Prolog, Mathematica, Pop-11,
MATLAB, Fortran, Occam and Haskell. Typically these evolve code which
looks like a very cut down version of Lisp. However, admirers of grammars
claim the evolved language can be arbitrarily complex, and certainly programs
in functional and other high level languages have been automatically evolved.
Conversely, many successful programs in machine code or low-level languages
have also climbed from the primordial ooze of initial randomness.

Many GP implementations can be freely downloaded. Two that have been
available for a long time and remain popular are: Sean Luke’s ECJ (in Java),
and Douglas Zonger’s ‘little GP’ lilGP (in C). A number of older (unsup-
ported) tools can be found at ftp://cs.ucl.ac.uk/genetic/ftp.io.com/. The most
prominent commercial implementation remains Discipulus [99].

There is a lot of information available on the the world wide web, although,
unfortunately, Internet addresses (URLs) change rapidly. Therefore we sim-
ply name useful pages here (rather than give their URL). A web search will
usually quickly locate them.

At the time of writing, the GP bibliography contains about 5000 GP entries.
About half the entries can be downloaded immediately. There are a variety of
interfaces including a graphical representation of GP’s collaborative network
(see Fig. 1). The HTML pages are perhaps the easiest to use. They allow quick
jumps between papers linked by authors, show paper concentrations and in
many cases direct paper downloads. The collection of computer sciences bibli-
ographies provides a comprehensive Lucene syntax search engine. Bibtex and
Refer files can also be searched but are primarily intended for direct inclusion
of bibliographic references in papers written in LaTeX and Microsoft Word,
respectively.

Almost since the beginning there has been an open active email discussion
list: the GP discussion group, which is hosted by Yahoo! For more reflective
discussions, the EC-Digest comes out once a fortnight and often contains GP
related announcements, while the organization behind GECCO also runs a
quarterly SIGEvolution newsletter.

Koza’s http://www.genetic-programming.org/ contains a ton of useful infor-
mation for the novice, including a short tutorial on ‘What is Genetic Pro-
gramming’, as well as LISP code for implementing GP, as in [188].

1028 W.B. Langdon et al.

Fig. 1. Co-author connections within GP. Each of the 1141 dots indicates an author.
The lines link people who have co-authored one or more papers. (To reduce clutter
only links to first authors are shown.) The online version is annotated by JavaScript
and contains hyperlinks to authors and their GP papers. The graph was created by
GraphViz twopi, which tries to place strongly connected people close together. It is
the ‘centrally connected component’ [380] and contains approximately half of all GP
papers. The remaining papers are not linked by co-authorship to this graph. Several
of the larger unconnected graphs are also available online via the gp-bibliography
web pages

