
Finding User Navigation Patterns to Improve
Website Usability

Nariman Farsad
nariman@cse.yorku.ca

April 21, 2010

Abstract

In the past two decades Internet has grown exponentially. As the result the demand for making
more user friendly websites has also grown. Huge amount of data about user navigation patterns
are available in server log files. These data need to be mined in order to extract useful patterns that
can be used to improve user experience. In this paper we look at different methods of extracting
user navigation patters from web server log files. In particular we compare the performance of
GSP, WAP-Tree, Pre-Order WAP-Tree, and HPG algorithms using a real website, called music
sheet exchange. Our experimental results show that HPG is a better mining algorithm for user
navigation pattern compared to the other algorithms.

1 Introduction

The Internet has evolved significantly over the past few decades. With higher bandwidths available
due to improvements in telecommunication and widespread availability of Internet, concepts such
as cloud computing and web based applications are now a reality. For example, Google Inc. has
introduced its own set of web-based applications such as a word processor and a spreadsheet program.
With the grows of web-based applications and Internet in general, the design of web-based user
interface is becoming extremely important.

One of the greatest advantages of designing web-based user interfaces over traditional user inter-
faces is the ability to keep track of user interactions with the site. Thanks to the simple (yet extremely
useful) concept of server log files, users’ interaction with a website is kept in a raw format that can
be easily processed by automated tools. This information is stored on most web servers by default.
Additionally, Unix-based web servers already include all the tools needed to extract the information
from these raw log files. The extracted information can then be used for finding user navigation
patterns.

By finding frequent user navigation sequences or user navigation sessions from server logs, we can
compare actual user navigation trails with the designer’s expected navigation trails and try to improve
the interface of the site accordingly. This involves: (1) pre-processing the log files and converting it
to sequential data and (2) finding user navigation patterns from the sequential data using different
pattern finding algorithms.

In this paper we find user navigation patterns of a music sheet sharing service called Sheet Exchange
(the website’s address is sheetexchange.com). The raw log files from the Apache web server on which
the Sheet Exchange website resides are first simplified and converted into sequential data. Then

1

a number of pattern finding algorithms, namely Generalized Sequential Pattern (GSP) [1], Web
Access Pattern tree (WAP-Tree) [2], Pre-order Linked WAP-Tree (PLWAP) [3] as well as Hypertext
Probabilistic Grammars (HPG) [4], an algorithm designed specifically for mining user navigation
patterns, are applied to this sequential data and the results are compared. Finally a few examples of
resulting patterns is examined and the benefits of our finding to usability improvements is discussed.

To compare these algorithms we use two measuring factors. First, we consider the number of
patters that are found using each algorithm. Since, the number of patterns do not indicate the
quality, we also consider the inputs from the owner of the website as a second measure for quality.
The owner is asked to look at the different results form different algorithms and decide which algorithm
found more meaningful and non-trivial patterns. Based on our results HPG is a superior algorithm
and can find more meaningful patterns.

The remainder of this paper is organized as follows. In Section 2, we present the raw log file
structure and discuss the preprocessing step required for conversion to sequential data. The pattern
finding algorithms are then discussed in Section 3. In Section 4 and the Appendix B and C we discuss
the implementation of the algorithms. The results are presented and discussed in Section 5. Finally
we conclude the report in Section 6.

2 Preprocessing

We use real logs from a music sheet exchange service website (http://www.SheetExchange.com). This
website allows musicians to share information regarding the music sheets (notes) that they own and
would like to share. Users are able to browse or search for sheets shared by other users using different
criteria and if they find a sheet they are looking for, they can contact the owner of the sheet to arrange
an exchange. Similarly the site keeps track of the sheets that are requested by a user to arrange for
a better exchange.

In order to allow certain pages and commands to be bookmarked the site uses GET arguments
in the URLs. This will require a great deal of pre-processing on the data before the raw log data
can be converted into sequential data. First, the log file is purified and all the irrelevant lines are
removed. We then simplify the URLs. Since our goal is to extract information related to the structure
of the site, we need to generalize arguments passed to URLs that are too specific. For example, if an
argument-value pair such as sheet id=20 is passed to the page, we need to filter the values to get the
same URL regardless of the ID number of a sheet. One easy solution is to simply delete all arguments
and use page names only. However, since for this specific dataset file names are passed as modules
(e.g. index.php?m=search instead of search.php), we need to convert these module arguments to file
names. Additionally, some arguments could potentially be important because they specify through
which link the page was accessed.

Once the log file is in its purest form, we need to find a good criteria such as the referring page or
time threshold to cluster page requests into user sessions. Note that in a log file users are identified
only by their IP address and since the IP addresses might change between sessions, we can only
extract one visitor session. In other words we can’t accurately attach these sessions to an actual user
of the site or track returning users accurately.

Converting logs to sequential data can be done manually, using web-log analyzer or data mining
software. In the next section we describe the details of preprocessing step.

2

2.1 Detailed Explanation

The target site uses GET arguments and modules are passed to a single page (index.php) as GET
arguments (e.g. index.php?m=search loads the search module). Our goal is to extract the navigation
pattern related to the interface of the site so we need to consider users’ navigation between these
modules (pages). There is a large number of arguments passed to some pages. Some arguments are
very useful because they tell us how a page is accessed by the users and some are ignorable. If we
keep all argument-value pairs, similar pages would be identified as different items just because they
have a different value passed to them.

We use a Linux scripts along with a web data mining software called WUM [5] for preprocessing.
First, WUM is used to remove the irrelevant lines. These include lines that are not related to the
target website, all lines that are not web pages (images, css files, javascript files, web icons, etc.).
Invalid requests passed by bots (or hackers) are also removed. Since, web URLs use %20 instead of
space, all %20 are converted to space.

Since the website uses GET arguments and modules, we remove either values of arguments or
complete argument-value pairs as necessary. For some arguments (for example user id) we needed to
know the argument that was passed but not the actual value of the arguments. For example, when
a user id is passed to sheets.php, it shows sheets specific to a user. This is different from calling
sheets.php without this argument which shows the latest added sheets sorted in reverse chronological
order. Thus, it is important to keep the argument itself. However, if the value of user id is kept,
two similar requests with different user id values would be considered two different items. Since we
don’t want that we remove the value to make the items similar. Some arguments-value pairs are
completely unnecessary and are removed. For example sheet title is a redundant argument (perhaps
for efficiency) because whenever sheet title was passed to a page another argument (sheet id) was also
passed: sheet id is the unique identifier of a sheet while sheet title is the user friendly name of that
sheet. We further simplify the results by converting module arguments to page names. For example,
index.php?m=sheets was changed to sheets.php.

All the modifications described in the previous two paragraphs are made using Linux scripts
followed by WUM software. The resulting output is a comma separated sequence of web pages
visited in one user session. We enabled the option in WUM to use referring URL in addition to the
default IP address and time threshold pair to extract user sessions. We used a time threshold of
30 minutes for each session and converted the simplified log (over 18000 lines) to 3415 user session
sequences. In the final output file, WUM stores a sequence ID and one user session per line. In order
to make this file readable by different pattern finding algorithms we also created a simple Linux script
that would include a sequence ID and the number of items in the sequence followed by a tab-delimited
user session per line.

An example of each step of the preprocessing procedure is presented Appendix A at the end of the
report.

3 Pattern Finding Algorithms

In this section we will consider four pattern finding algorithms that are applicable to user navigation
patter mining. These algorithms are GSP [1], WAP-Tree [2], Pre-order Linked WAP-Tree [3] and
Hypertext Probabilistic Grammars (HPG) [4].

The first algorithm we will use is the Generalized Sequential Pattern (GSP) mining algorithm.
Since GSP is a well known algorithm in sequential mining, we skip the detailed description of this

3

algorithm. In the next sub sections we describe the other three pattern finding algorithms in details.

3.1 WAP-Tree

The GSP algorithm was one of the first sequential patter mining algorithms developed. It uses Apriori
like algorithm to find frequent sequences. However just like Apriori algorithm GSP has the problem
of generating a lot of candidates. It also requires multiple scans of the database. To solve these issues
Pei and et al. [2] have proposed a new method very similar to FP-grow [6] algorithm that needs to
scan the dataset twice. The following is a brief description of how the algorithm works.

The database is scanned once to find frequent 1-element sequences, then a second time to construct
the WAP-tree structure. For example given the sequential data in Table 1 we can construct the WAP-
tree structure in Figure 1.

Table 1: A database of web access sequences.
TID Web access sequence Frequent subsequence

100 abdac abac
200 eaebcac abcac
300 babfaec babac
400 afbacfc abacc

Figure 1: Construction of WAP Tree.

WAP-tree is constructed by scanning the frequent subsequences and adding a new node to the
tree if a path with the same subsequence does not exist. Finding the frequent sequences can also be
achieved by using conditional WAP-tree just like the FP-grow algorithm. Figure 2 shows example of
conditional WAP-trees.

3.2 Pre-order Linked WAP-Tree

As shown in the previous section, the weakness of WAP-Tree algorithm is in the mining step where
multiple conditional WAP trees need to be generated. This could be costly when dealing with large

4

Figure 2: Conditional WAP Trees.

databases. As the result Ezeife and et al. [3] propose a new method similar to that of WAP that
does not require multiple conditional WAP-tree constructions. They add a new variable to each node
called the position. The position variable is a binary position code that will uniquely identifies each
node. It can also be used to relate the position of a node relative to another node. The construction
of this new WAP-tree is the same as the one shown in section 3.1 with the addition of position codes.
Notice that the order of the links are also different in Pre-order Linked WAP-Tree (PLWAP). Figure
3 shows the construction of PLWAP tree using the dataset given in Table 1.

Figure 3: Construction of PLWAP Tree.

5

The mining step for PLWAP tree is also different. Instead of starting from least frequent header and
using conditional suffix, PLWAP uses the most frequent and conditional prefix to mine the frequent
sequences. Figure 4 shows how the PLWAP tree can be used to find the frequent sequence starting
with aa.

Figure 4: Finding frequent sequence starting with aa.

3.3 HPG

None of the previously mentioned algorithms is designed specifically for finding user navigation pat-
terns. In fact, they can be thought of as general sequential mining algorithms. As the result, Borges
and et al. [4] proposed a method for finding user navigation patterns based on the hypertext probabilis-
tic grammar (HPG). In this scheme user navigation sessions are modelled as a hypertext probabilistic
language generated by a hypertext probabilistic grammar. HPG is a probabilistic regular grammar
which has a one-to-one mapping between the set of non-terminal symbols, representing different pages
in the website and a set of terminal symbols. Two other states, S and F, indicate the beginning and
the end of a user navigation session. In HPG a production rule corresponds to a link between pages.

Formally, HPG can be defined as a four-tuple < V, Σ, S, P > where V = {S,A1, · · · , Ak, F} is
the set of non-terminal symbols, Σ = {a1, · · · , ak} is the set of terminal symbols, S is a unique start
symbol and P is the set of production rules. Here, the pages in the website are represented by A1 to
Ak as non-terminal symbols and again by a1 to ak as terminal symbols.

The production rules can then be broken down in to three parts. Productions with S on the

6

left-hand side are calculated as

p(S → aiAi) = α
number of times page Ai is visited

total number of pages visited
+(1−α)

number of times Ai is the first page visited
total number of user sessions

(3.1)
where α is used to give proper weight to a page being the first page in the user navigation pattern.
The second set of productions are calculated as

p(Ai → ajAj) =
number of times page Ai is visited followed by page Aj

total number of times page Ai is visited
. (3.2)

The third and the final set of productions with state F on the right hand side is calculated as

p(Ai → F) =
number of times Ai is the last visited page
total number of times page Ai is visited

. (3.3)

Table 2 shows an example of set of user navigation sessions. In this example, there are 6 user
sessions with a total of 24 page requests. As an example we show the calculation of productions
involving page A4. The page A4 is visited 4 times. It is once the start state and once the end state.
The productions involving A4, using α = 0.5, are calculated as follows

p(S → a4A4) = 0.5
4
24

+ (1 − 0.5)
1
6

= 0.17

p(A4 → a1A1) =
2
4

= 0.5

p(A4 → a6A6) =
1
4

= 0.25

p(A4 → F) =
1
4

= 0.25

Table 2: An example of user navigation sessions.
Session ID User trail

1 A1 → A2 → A3 → A4

2 A1 → A5 → A3 → A4 → A1

3 A5 → A2 → A4 → A6

4 A5 → A2 → A3

5 A5 → A2 → A3 → A6

6 A4 → A1 → A5 → A3

Similarly the production for all the other pages can be calculated. HPG can be represented using
a finite state automaton (FSA) where the states are the pages in the website and the edges represent
the production probabilities. Figure 5 shows the resulting FSA for the user sessions given in Table 2.

In a HPG the probability of the first derivation step of a string is evaluate against the support
threshold, θ, and is not factored into the derivation probability. Thus, the support threshold is used
to prune out the strings which may otherwise have high probability but correspond to a subset of
the hypertext system rarely visited. Moreover, a string is included in the grammar’s language if its
derivation probability is above the cut-point, λ, where the cut-point corresponds to the grammar
confidence threshold. The values of the support and confidence thresholds give the user control over
the quantity and quality of the trails to be included in the rule set. The strings generated by the

7

Figure 5: The hypertext grammer for N=1 and α = 0.5.

grammar correspond to user navigation trails, and the aim is to identify the subset of these strings
that best characterise the user behaviour when visiting the site.

The algorithm used to mine rules having confidence and support above the specified thresholds is
a special case of a directed graph Depth-First Search which performs an exhaustive search of all the
strings with the required characteristics. Figure 6 shows the rules obtained using this algorithm for
various values of θ and lambda based on the graph given in Figure 5.

Figure 6: The rules obtained with various model configurations.

HPG algorithm can be extended to an N -gram model. In this case the N -gram concept is used to
determine the assumed user memory when navigating within the site where N is the history depth
(N ≥ 1). For a given N , it is assumed only the last N pages visited influence user’s choice of the next

8

page. For the purpose of this project we will use a simplified version of the algorithm where N = 1.
However this is an important feature of the algorithm since we would like to study user behaviour
and needs to be implemented in future expansions of this work.

4 Implementation

In this section we will discuss the algorithm implementations. We spent a long time looking for
existing sequential mining software, however the few implementations that we found did not do a
good job. For example WUM was a full data mining software but it only represented the resulting
sequences as graphs, so we only used it to convert the log to sequential data. For GSP, WAP Tree
and Pre-order Linked WAP Tree we found existing C++ implementations on the web [7]. However
the implementations only worked on sequences of numbers, so the code was slightly modified to use
URLs instead. We implemented a simple version of the HPG algorithm in Java. We discuss HPG in
greater details next.

Since we needed to create a directed graph representing the HPG we used the JGraphT [8], a
free Java graph library. Using this graph library for each page a graph node is generated. A start
node (S) and an end (F) are also generated. The values on the edges (probabilities) are calculated
using Equations (3.1), (3.2), and (3.3), respectively. The code written for this part of the project is
presented in Appendix C at the end of the report.

5 Results

We ran all four algorithms on the final formatted sequential data based on the sequences WUM
created from our simplified log. While we did not formally study execution time, we noticed GSP ran
much slower than the other three algorithms almost by 10 times. We ran the algorithms using five
different support thresholds (2% to 10%). For the HPG algorithm, we tried two values for each of α
and λ. For α we used 1 to distribute the weights regardless of whether the state was the first state
and 0.5 to distribute the weight proportionally between all states and states that were the first state.
For the confidence (λ) of HPG we used 1% and 2% values. Figure 7 shows the relationship between
the number of sequences mined and the support threshold for each algorithm. Note that GSP, WAP
Tree and Pre-order Linked WAP Tree all returned the same number of sequences and thus the graph
overlaps for them.

By increasing the support threshold, the number of sequences mined decreases more rapidly for
sequential algorithms than HPG. It is interesting to note that for a given support (θ) and confidence
(λ) threshold, decreasing α (giving more weight to pages that were the first state), increases the
number of sequences mined up to a certain threshold and then decreases them (comparing to α = 1
where all states are weighted equally).

To study the effect of the confidence threshold on the number of sequences mined using the HPG
algorithm, we ran the algorithm with fixed a support threshold (θ) of 1% and variable confidence
thresholds (λ) from 2% to 20%. The results presented in Figure 8 show an exponential decrease in
the number of rules as confidence threshold increases.

9

Figure 7: the relationship between the number of sequences mined and the support thresholds.

Figure 8: Number of sequences mined vs confidence thresholds.

10

5.1 Quality of results

We found that with support thresholds of higher than 4% not many useful sequences were returned
using the sequential mining algorithms. This is because the most frequent sequences (top 30) returned
were generally the most visited pages of the site or generally sequences with only one or at most two
items. Although this information is useful, we could already get this information with simple web
log analyzers. Thus, longer sequences are of more interest to us. On the other hand while for small
support thresholds HPG returned less results than the other algorithms, it returned more interesting
results even with higher support thresholds. For example with θ = 10%, λ = 2% and α = 0.5, 13
sequences were returned that included some interesting sequences up to 3 items long.

5.2 Usefulness

To check the /quality and the usefulness of the results we consulted the owner of the website. Based on
his comments the sequences we found (especially those found using HPG) did in fact gave very useful
information regarding the usability of the site. These are a few examples of the frequent sequences
found, their description and their application to web site usability.

• "/home.php" "/search.php"

"/search.php&search_by=title&query=&category_id=&submit"

The first page is the home page (first page after users log in), followed by the search page and
a ”search by title” request where a category is selected to filter the search results. This tells
us the search feature is used frequently and that most are done by the title. More importantly
it tells us when searching, a large number of users limit their search to a specific category of
music, thus it is important to inform users to select a correct category when adding sheets.

• "/login.php" "/error.php&error_code=15"

An error page (error code 15 means the account is not active) is shown after the user tries to
login. This means users try to login without activating their account using the activation email.
We need a better way of informing the users that they need to activate their account before they
can log in.

• "/register.php" "/activation.php&username=&activation_id=" "/login.php"

"/home.php"

This sequence shows registration, followed by activation, followed by a successful login. This
is one of the most frequent sequences (top 20). This is good news. It means users receive the
activation email sent by us, activate their accounts and login. Most importantly it means the
activation email is not lost in users’ SPAM folder and they do not forget to come back and
complete the registration

• "/activation.php&username=&activation_id=" "/login.php"

"/error.php&error_code=15"

This sequence indicates that the users visited the activation page to log in, however the error
page told them that their account was not active yet. This could be an error in the site.
Although some users have already visited the activation page, their account is not activated.
This could potentially mean that some bots or hackers are sending invalid code to the activation
page to hack it and auto-create user accounts to SPAM the site or add links to improve their
own website’s rank.

11

• "/error.php&error_code=13" "/register.php"

This sequence indicates error code 13 (invalid username or password) followed by the registration
page. This means some users try to re-register when their password does not work. We have a
module that resets the passwords but according to this some people do not use it. Interesting
enough, the link to this module on the site is right next to the link to register (although the
link to register a new account is in bold).

• "/sheets.php" "/user.php&user_id=&show_requests=1"

"/user.php&user_id=&sheet_id=&request_id="

This sequence indicates that the page with the list of sheets is followed by a page showing the
music sheets that are requested by a user. The last page opens up a message box to contact
a user with the given user id to arrange an exchange of the sheet with the given sheet id and
request id. This is also good news. It means when user A tried to ask for a sheet that user B
owned, instead of just asking for the sheet with nothing in return (aka leeching), he or she looks
at the list of sheets that user B is looking for and offers them to user B. It is also important that
users noticed and used the ”requests” feature since this feature was also recently integrated into
the site.

• /tell_friends.php&sheet_id=

This page allows users to email or recommend a sheet to others. This is one of the most frequent
sequences (top 20), which means the recommendation feature is used frequently. This is free
advertisement for the site, so it’s good news for the site’s owner.

6 Conclusion

We extracted raw server logs from a music sheet exchange website. Due to the structure of the site
a great deal of pre-processing work was applied to the log file which cut the size of the file in almost
half and simplified the URLs to a format best describing general user interaction with the site. The
resulting log file was converted to sequential user navigation sessions using the IP addresses of the
users, a time threshold of 30 minutes per session and the referring URL information from the log file.

We implemented and applied four data mining algorithms. The general GSP algorithm for se-
quential pattern mining and three algorithms designed specifically for web logs: WAP Tree, Pre-order
Linked WAP Tree and Hypertext Probabilistic Grammar. We found while HPG returned a smaller
number of sequences for smaller thresholds than the other algorithms (which all returned the same
sequences), the sequences mined using HPG were of more interest for our specific purpose of mining
user navigation patterns.

As some examples suggested, the resulting user navigation sessions can be studied and compared
with the designers’ expected user navigation pattern and help improve the structure of the site. This
can tell the site owner what the users prefer to do most and where the users are confused the most.

In general, these methods can help find errors and usability issues using information that is freely
available for virtually any web site. We did not implement the N-gram (history depth for N > 1)
feature of the HPG algorithm. Using such advanced feature of HPG we can take advantage of even
more accurate user navigation pattern mining. This feature will be part of the future work in this
area.

12

Appendix A: Sample Input/Output

In this section we show the sample input and output of every step from the preprocessing to the final
pattern found.

Original web server log (before preprocessing)

85.185.81.5 - - [01/Oct/2007:06:12:16 -0400] "GET /index.php?m=sheets&lang=fa HTTP/1.1" 200
20985 www.sheetexchange.com
"http://www.google.com/ie?q=%D9%85%D9%88%D8%B3%DB%8C%D9%82%DB%8C+%D8%AC%D8%AF%DB%8C%D8%AF&hl=
fo&btnG=Leita" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)" "-"
85.185.81.5 - - [01/Oct/2007:06:12:24 -0400] "GET /default.css HTTP/1.1" 200 3367
www.sheetexchange.com "http://www.sheetexchange.com/index.php?m=sheets&lang=fa" "Mozilla/4.0
(compatible; MSIE 6.0; Windows NT 5.1; SV1)" "-"
85.185.81.5 - - [01/Oct/2007:06:12:27 -0400] "GET /includes/form_verification.js HTTP/1.1" 200
886 www.sheetexchange.com "http://www.sheetexchange.com/index.php?m=sheets&lang=fa"
"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)" "-"
85.185.81.5 - - [01/Oct/2007:06:12:29 -0400] "GET /images/title_fa.jpg HTTP/1.1" 200 23614
www.sheetexchange.com "http://www.sheetexchange.com/index.php?m=sheets&lang=fa" "Mozilla/4.0
(compatible; MSIE 6.0; Windows NT 5.1; SV1)" "-"

Purified and simplified web server log

71.118.245.109 - - [01/Oct/2007:11:08:19 -0400] "GET /sheets.php HTTP/1.1" 200 18163
www.sheetexchange.com "http://www.google.com/search?q=javad maroufi sheet
music&hl=en&start=10&sa=N" "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.7)
Gecko/20070914 Firefox/2.0.0.7" "-"
71.118.245.109 - - [01/Oct/2007:11:09:15 -0400] "GET /search.php HTTP/1.1" 200 5848
www.sheetexchange.com "http://www.sheetexchange.com/sheets".php "Mozilla/5.0 (Windows; U;
Windows NT 5.1; en-US; rv:1.8.1.7) Gecko/20070914 Firefox/2.0.0.7" "-"
71.118.245.109 - - [01/Oct/2007:11:09:17 -0400] "GET /faq.php HTTP/1.1" 200 6408
www.sheetexchange.com "http://www.sheetexchange.com/search".php "Mozilla/5.0 (Windows; U;
Windows NT 5.1; en-US; rv:1.8.1.7) Gecko/20070914 Firefox/2.0.0.7" "-"

Simple sequential input: paths extracted with web log analyzers

(Here the first number is the number of repetitions)

34,/register.php,/sheets.php
31,/home.php,/register.php,/home.php,/search.php,/home.php,/search.php,/sheets.php,/home.php,/
add.php,/register.php,/home.php,/search.php,/home.php,/search.php
30,/register.php,/login.php,/sheets.php

Actual sequential input extracted using data mining software (Web Utilization
Miner)

(One page per line. First number is sequence number (transaction ID) connecting the pages. The
other numbers were unused in this experiment)

100003,1001391,1,5000716,1,"-"
100003,1001391,2,3000720,1,"/sheets.php"
100004,1001391,1,5000717,1,"/sheets.php"

13

100004,1001391,2,3000747,1,"/sheets.php&sheet_id="
100004,1001391,3,3000747,2,"/sheets.php&sheet_id="
100004,1001391,4,3000721,1,"/user.php&user_id="
100004,1001391,5,3000748,1,"/user.php&user_id=&sheet_id=&show_requests=1"
100004,1001391,6,3000744,1,"/user.php&user_id=&sheet_id=&request_id="
100004,1001391,7,3000721,2,"/user.php&user_id="
100005,1001391,1,5000718,1,"/user.php&user_id="
100005,1001391,2,3000747,1,"/sheets.php&sheet_id="
100005,1001391,3,3000747,2,"/sheets.php&sheet_id="
100005,1001391,4,3000747,3,"/sheets.php&sheet_id="
100005,1001391,5,3000721,1,"/user.php&user_id="
100005,1001391,6,3000721,2,"/user.php&user_id="
100005,1001391,7,3000721,3,"/user.php&user_id="
100005,1001391,8,3000721,4,"/user.php&user_id="

Final processed sequential input in TAB-separated format

(First number is the sequence number (transaction ID), the second number is the number of items in
the sequence)

0 6 "/sheets.php&sheet_id=" "/sheets.php&sheet_id=" "/user.php&user_id="
"/user.php&user_id=&sheet_id=&show_requests=1" "/user.php&user_id=&sheet_id=&request_id="
"/user.php&user_id="
0 7 "/sheets.php&sheet_id=" "/sheets.php&sheet_id=" "/sheets.php&sheet_id="
"/user.php&user_id=" "/user.php&user_id=" "/user.php&user_id=" "/user.php&user_id="
0 7 "/contact.php" "/sheets.php&sheet_id=" "/user.php&user_id="
"/sheets.php&sheet_id=" "/user.php&user_id=" "/user.php&user_id="
"/sheets.php&sheet_id="
0 6 "/user.php&user_id=" "/sheets.php&sheet_id=" "/user.php&user_id="
"/user.php&user_id=" "/user.php&user_id=" "/sheets.php&sheet_id="

Sample frequent sequences returned

"/user.php&user_id=&sheet_id=" "/user.php&user_id=&sheet_id=&request_id="
"/user.php&user_id=&sheet_id=" "/user.php&username="
"/user.php&user_id=&sheet_id=&request_id=" "/sheets.php&sheet_id="
"/user.php&user_id=&sheet_id=&request_id=" "/user.php&user_id="
"/user.php&user_id=&sheet_id=&request_id=" "/user.php&user_id=&sheet_id="
"/user.php&user_id=&sheet_id=&request_id=" "/user.php&user_id=&sheet_id=&request_id="
"/user.php&user_id=&sheet_id=&request_id=" "/user.php&user_id=&sheet_id=&show_requests=1"
"/user.php&user_id=&sheet_id=&show_requests=1" "/user.php&user_id=&sheet_id=&request_id="
"/user.php&username=" "/user.php&user_id=&sheet_id="
"/activation.php&username=&activation_id=" "/home.php" "/search.php"
"/activation.php&username=&activation_id=" "/home.php" "/sheets.php"
"/activation.php&username=&activation_id=" "/home.php" "/user.php&user_id=&sheet_id="

14

Appendix B: Algorithm Implementation and Usage

Sequential Algorithms Implementations

C++ implementations of PLWAP, WAP tree and GSP algorithms used. The original code from
http://cs.uwindsor.ca/~cezeife/codes.html has been modified to take in html pages (strings)
instead of numeric sequences.

Sequential Algorithms Usage

The code reads the data from a file named ”test.data”. See below. Once started the program asks for a
frequency (minimum support) between 0 and 1. The results are saved in ”result [GSP/WAP/PLWAP].data”
(TAB-separated). The execution time is printed for each algorithm.

Sequential Algorithms Input requirements

The required format of TAB-separated test.data is: id seq count seq item1 seq item2 ... Where id
is a unique sequence id seq count is the number of elements in the sequence seq item[n] can be any
string (here html page names and URLs)

Sequential Algorithms Limitations

No known limitations have been reported by the author.

HPG Algorithm Implementations

We implemented the HPG algorithm in Java. Source code is presented in Appendix C.

HPG Algorithm Usage

The code reads the data from a file named ”test.data”. And outputs the results to result.txt The
values of alpha, theta and lambda must be changed in the code. To compile the code the type package
is needed. Need to copy the file type.jar to jre
lib
ext folder.

HPG Algorithm Input requirements

Same as above.

HPG Algorithm Limitations

No knows limitation at this time.

15

Appendix C: HPG code

Here we present the code we wrote for HPG. Since the code for GSP, WAP, PLWAP were obtained
from the Internet, we do not present them here and the user is refereed to the [7].

1 /∗∗
2 ∗ sequenceMine . java
3 ∗
4 ∗
5 ∗ @author Nariman Farsad
6 ∗ @version 1.00 2010/4/15
7 ∗/
8 package org . j g rapht . graph ;
9 // package org . j g rapht . t r av e r s e . Dep thFi r s t I t e r a to r ;

10
11 import java . u t i l . ∗ ;
12 import org . j g rapht . ∗ ;
13 import org . j g rapht . graph . ∗ ;
14 import org . j g rapht . t ra ve r s e . ∗ ;
15 import type . l i b . ∗ ;
16 import java . i o . ∗ ;
17 class Counter
18 {
19 private int counter ;
20 public Counter ()
21 {
22 counter =0;
23 }
24 public int getCounter () {return counter ;}
25 public void setCounter (int c) { counter=c ;}
26 public void increment () { counter++;}
27 public void decrement () { counter −−;}
28 }
29
30 class PageCount
31 {
32 private St r i ng page ;
33 private int count ;
34
35 public PageCount ()
36 {
37 page = ”” ;
38 count = 0 ;
39 }
40 public PageCount (S t r i ng p , int c)
41 {
42 page = p ;
43 count = c ;
44 }
45 public St r i ng getPage () {return page ;}
46 public int getCount () {return count ;}
47 public void setPage (S t r i ng p) {page = p ;}
48 public void setCount (int c) { count = c ;}
49 public void incrementCount () { count++;}
50 }
51 class EdgePairs
52 {
53 private St r i ng page1 ;
54 private St r i ng page2 ;
55 private int count ;
56 public EdgePairs ()
57 {
58 page1 = ”” ;
59 page2= ”” ;
60 count = 0 ;
61 }
62 public EdgePairs (S t r i ng p1 , S t r i ng p2 , int c)
63 {
64 page1 = p1 ;
65 page2 = p2 ;
66 count = c ;
67 }
68 public St r i ng getPage1 () {return page1 ;}
69 public St r i ng getPage2 () {return page2 ;}
70 public int getCount () {return count ;}
71 public void setPage1 (S t r i ng p1) {page1 = p1 ;}
72 public void setPage2 (S t r i ng p2) {page1 = p2 ;}
73 public void setCount (int c) { count = c ;}
74 public void incrementCount () { count++;}
75 public St r i ng toS t r i ng () {return page1 + ”−>”+ page2+”\ t ”+count ;}
76
77 }
78
79
80 public class sequenceMine
81 {
82
83
84 public stat i c void main (S t r i ng [] arg) throws IOException
85 {

16

86 // HPG Graph
87 DirectedWeightedMultigraph<Str ing , DefaultWeightedEdge> weightedGraph =
88 new DirectedWeightedMultigraph<Str ing , DefaultWeightedEdge >(DefaultWeightedEdge . class) ;
89 Scanner F i l e I n = new Scanner (new F i l e (” t e s t . data”)) ;
90 PrintStream FileOut = new PrintStream (” r e s u l t . txt ”) ;
91 ArrayList<PageCount> pageL i s t s = new ArrayList <PageCount >() ;
92 ArrayList<EdgePairs> edgePa i rL i s t = new ArrayList<EdgePairs >() ;
93 ArrayList<Str ing> candVertix = new ArrayList <Str ing >() ;
94 int tota lPages = 0;
95 int t o t a l S e s s i o n s = 0 ;
96 f ina l St r i ng startPage = ”˜̃ ####” ;
97 f ina l St r i ng endPage = ”####˜̃ ” ;
98 S t r i ng prevPage ;
99 double alpha = 1;

100 double theta = 0 . 1 0 ;
101 double lambda = 0 . 0 2 ;
102 // Add the s t a r t and end v e r t i x to the graph
103 i f (! weightedGraph . addVertex (startPage))
104 System . out . p r i n t l n (” Fa i l ed to add v e r t i x : ”+startPage) ;
105 i f (! weightedGraph . addVertex (endPage))
106 System . out . p r i n t l n (” Fa i l ed to add v e r t i x : ”+endPage) ;
107
108 // read the f i l e l i n e by l i n e
109 while (F i l e I n . hasNextLine ())
110 {
111 St r i ngToken i ze r tokens = new St r i ngToken i ze r (F i l e I n . nextL ine () , ”\ t ”) ;
112 prevPage = startPage ; // s e t p rev i ou s page to s t a r t page
113 t o t a l S e s s i o n s++; // add the s e s s i o n
114 St r i ng s e s s i o n = tokens . nextToken () ; // sk ip s e s s i o n
115 St r i ng number = tokens . nextToken () ; // sk ip number
116 while (tokens . hasMoreTokens ()) // go through the tokens (pages)
117 {
118 St r i ng page = tokens . nextToken () ;
119 tota lPages ++;
120 boolean f l a gEx i s t s = fa l se ;
121 // add the new page to appropr i e ta edge pa i r
122 for (int i = 0 ; i < edgePa i rL i s t . s i z e () ; i++)
123 {
124 EdgePairs tempEdge = edgePa i rL i s t . get (i) ;
125 i f (tempEdge . getPage1 () . equa l s (prevPage)&&tempEdge . getPage2 () . equa l s (page))
126 {
127 tempEdge . incrementCount () ; // increment the edge pai count i f the edge a l r eady e x i s t s
128 f l a gEx i s t s=true ;
129 break ;
130 }
131 }
132 // cr ea t e the edge pa i r i f i t i s new
133 i f (! f l a gE x i s t s)
134 {
135 edgePa i rL i s t . add (new EdgePairs (prevPage , page , 1)) ;
136 }
137
138 prevPage = page ;
139 f l a gEx i s t s = fa l se ;
140 // add the pages to page counter
141 for (int i = 0 ; i < pageL i s t s . s i z e () ; i++)
142 {
143 PageCount temp = pageL i s t s . get (i) ;
144 i f (temp . getPage () . equa l s (page))
145 {
146 temp . incrementCount () ; // increment the count i f page a l r eady added
147 f l a gEx i s t s=true ;
148 break ;
149 }
150 }
151 // cr ea t e the new page i f did nor e x i s t and add i t to graph as v e r t i x
152 i f (! f l a gE x i s t s)
153 {
154 pageL i s t s . add (new PageCount (page , 1)) ;
155 i f (! weightedGraph . addVertex (page))
156 System . out . p r i n t l n (” Fa i l ed to add v e r t i x : ”+page) ;
157 }
158 }
159 // add the end edge to the edge pai l i s t
160 boolean f l a gEx i s t s = fa l se ;
161 S t r i ng page = endPage ; // se t next page to end page
162 // check i f the end edge pai e x i s t s
163 for (int i = 0 ; i < edgePa i rL i s t . s i z e () ; i++)
164 {
165 EdgePairs tempEdge = edgePa i rL i s t . get (i) ;
166 i f (tempEdge . getPage1 () . equa l s (prevPage)&&tempEdge . getPage2 () . equa l s (page))
167 {
168 tempEdge . incrementCount () ; // increment the cos t i s the edge e x i s t s
169 f l a gEx i s t s=true ;
170 break ;
171 }
172 }
173 // c re a te the edge pa i r i f i t does not e x i s t s
174 i f (! f l a gEx i s t s)
175 {
176 edgePa i rL i s t . add (new EdgePairs (prevPage , page , 1)) ;
177 }
178

17

179 }
180 // add the s t a r t edges that did not e x i s t
181 for (int i = 0 ; i < pageL i s t s . s i z e () ; i++)
182 {
183 boolean e x i s t s = fa l se ;
184 S t r i ng p = pageL i s t s . get (i) . getPage () ;
185 // check i s s t a r t edge e x i s t s
186 for (int j = 0 ; j < edgePa i rL i s t . s i z e () ; j++)
187 {
188 EdgePairs ep = edgePa i rL i s t . get (j) ;
189 i f (ep . getPage1 () . equa l s (startPage) && ep . getPage2 () . equa l s (p))
190 e x i s t s = true ;
191 }
192 i f (! e x i s t s) // add the edge i f i t did not e x i t s
193 edgePa i rL i s t . add (new EdgePairs (startPage , p , 0)) ;
194 }
195 // pr i n t pages
196 /∗ f o r (i n t i = 0 ; i < pageL i s t s . s i z e () ; i++)
197 {
198 System . out . p r i n t l n (pageL i s t s . get (i) . getPage () +”\t”+pageL i s t s . get (i) . getCount ()) ;
199 }
200 System . out . p r i n t l n (tota lPages) ; // p r i n t t o t a l pages
201 // pr i n t edge p a i r s
202 f o r (i n t i = 0 ; i < edgePa i rL i s t . s i z e () ; i++)
203 {
204 System . out . p r i n t l n (edgePa i rL i s t . get (i)) ;
205 }∗/
206
207 // add the edges with t h e i r weights c a l cu l a t ed to graph
208 for (int i = 0 ; i < edgePa i rL i s t . s i z e () ; i++)
209 {
210 EdgePairs tempEdge = edgePa i rL i s t . get (i) ; // get the cu r r en t edge pa i r
211 //add the edge to graph
212 DefaultWeightedEdge edge = weightedGraph . addEdge (tempEdge . getPage1 () , tempEdge . getPage2 ()) ;
213
214 // c a l cu l a t e the edge weight i f i t i s a s t a r t edge
215 i f (tempEdge . getPage1 () . equa l s (startPage))
216 {
217 double wieght = 0 . 0 ;
218 double pageCount = 0 . 0 ;
219 for (int j = 0 ; j<pageL i s t s . s i z e () ; j++)
220 {
221 PageCount pc = pageL i s t s . get (j) ;
222 i f (pc . getPage () . equa l s (tempEdge . getPage2 ()))
223 {
224 pageCount = pc . getCount () ;
225 break ;
226 }
227 }
228 wieght = alpha ∗ pageCount / tota lPages + (1−alpha) ∗ tempEdge . getCount ()/ t o t a l S e s s i o n s ;
229 weightedGraph . setEdgeWeight (edge , wieght) ;
230 }
231 else // c a l c u l a t e the wieght i f i t i s not a s t a r t edge
232 {
233 for (int j = 0 ; j<pageL i s t s . s i z e () ; j++)
234 {
235 PageCount pc = pageL i s t s . get (j) ;
236 i f (pc . getPage () . equa l s (tempEdge . getPage1 ()))
237 {
238 weightedGraph . setEdgeWeight (edge , (double) (tempEdge . getCount ())/ pc . getCount ()) ;
239 break ;
240 }
241 }
242 }
243 }
244 // check which f i r s t de r i v a t i on pages pass the support c r i t e r i a
245 Set <DefaultWeightedEdge> edgeS = weightedGraph . edgeSet () ;
246 I t e r a t o r i t = edgeS . i t e r a t o r () ;
247 while (i t . hasNext ())
248 {
249 DefaultWeightedEdge edge = (DefaultWeightedEdge) i t . next () ;
250 double weight = weightedGraph . getEdgeWeight (edge) ;
251 //System . out . p r i n t l n (edge+”\t”+weight) ;
252 i f (weightedGraph . getEdgeSource (edge) . equa l s (startPage) && weight > theta)
253 {
254 candVertix . add (weightedGraph . getEdgeTarget (edge)) ; // come up with candidate v e r t i x
255 //System . out . p r i n t l n (” t h i s edge passed the t e s t ” + weightedGraph . getEdgeTarget (edge)) ;
256 }
257 }
258 //System . out . p r i n t l n (weightedGraph) ;
259 for (int i = 0 ; i < candVertix . s i z e () ; i++)
260 {
261 ArrayList <Str ing> r u l e L i s t = new ArrayList <Str ing >() ;
262 S t r i ng o ldVer t i x = candVertix . get (i) ;
263 r u l e L i s t . add (o ldVer t i x) ;
264 sequenceMine(oldVert ix , weightedGraph , ru l eL i s t , 1 . 0 , lambda , Fi leOut) ;
265 }
266 System . out . p r i n t l n (”DONE! ”) ;
267 FileOut . c l o s e () ;
268
269 }
270
271 stat i c public void sequenceMine(S t r i ng ver t i x , DirectedWeightedMultigraph<Str ing , DefaultWeightedEdge> dg ,

18

272 ArrayList <Str ing> r u l eL i s t , double prevWeight , double support , PrintStream FileOut)
273 {
274 //System . out . p r i nt (v e r t i x +”\t ”) ;
275 f ina l St r i ng endPage = ”####˜̃ ” ;
276 Set <DefaultWeightedEdge> edgeS = dg . edgesOf (v e r t i x) ;
277 //System . out . p r i n t l n (edgeS) ;
278 DirectedWeightedMultigraph<Str ing , DefaultWeightedEdge> ndg =
279 (DirectedWeightedMultigraph<Str ing , DefaultWeightedEdge >)dg . c l one () ;
280 ndg . removeVertex (v e r t i x) ;
281 I t e r a t o r i t = edgeS . i t e r a t o r () ;
282 while (i t . hasNext ())
283 {
284 DefaultWeightedEdge currentEdge = (DefaultWeightedEdge) i t . next () ;
285 S t r i ng ta rg e t = dg . getEdgeTarget (currentEdge) ;
286 i f (! t a r g e t . equa l s (v e r t i x) && ! t a rg e t . equa l s (endPage))
287 {
288 //System . out . p r i n t l n (” the edge here i s ”+currentEdge) ;
289 double curWeight = dg . getEdgeWeight (currentEdge) ;
290 double newWeight = prevWeight∗curWeight ;
291 i f (newWeight >= support)
292 {
293 r u l e L i s t . add (ta r g e t) ;
294 sequenceMine(target , ndg , r u l eL i s t , newWeight , support , Fi leOut) ;
295
296 }
297 }
298 }
299 i f (r u l e L i s t . s i z e ()>1)
300 {
301
302 for (int i = 0 ; i<r u l eL i s t . s i z e () ; i++)
303 {
304 FileOut . p r i n t (r u l e L i s t . get (i)) ;
305 i f (i != ru l e L i s t . s i z e ()−1)
306 FileOut . p r i n t (”\ t ”) ;
307 else
308 FileOut . p r i n t l n (””) ;
309 }
310 FileOut . f l u s h () ;
311 r u l e L i s t . remove (r u l e L i s t . s i z e () −1);
312 }
313 }
314 }

19

References

[1] R. Srikant and R. Agrawal, “Mining sequential patterns: Generalizations and performance im-
provements,” Advances in Database TechnologyEDBT’96, pp. 1–17, 1996.

[2] J. Pei, J. Han, B. Mortazavi-Asl, and H. Zhu, “Mining access patterns efficiently from web logs,”
Knowledge Discovery and Data Mining. Current Issues and New Applications, pp. 396–407, 2000.

[3] C. Ezeife and Y. Lu, “Mining web log sequential patterns with position coded pre-order linked
wap-tree,” Data Mining and Knowledge Discovery, vol. 10, no. 1, pp. 5–38, 2005.

[4] J. Borges and M. Levene, “Data mining of user navigation patterns,” Web usage analysis and
user profiling, pp. 92–112, 1999.

[5] “The Web Utilization Miner WUM.” http://hypknowsys.sourceforge.net/wiki/, April 2010.

[6] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining frequent patterns without candidate generation: A
frequent-pattern tree approach,” Data mining and knowledge discovery, vol. 8, no. 1, pp. 53–87,
2004.

[7] “Downloadable Research Source Codes.” http://cs.uwindsor.ca/~cezeife/codes.html, April
2010.

[8] “JGraphT.” http://jgrapht.sourceforge.net/, April 2010.

20

