User Tools

Site Tools


lectures

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lectures [2011/09/21 20:53] nicklectures [2011/12/09 19:19] (current) nick
Line 5: Line 5:
   * {{:lecture1b.ppt|Lecture 1 - course introduction and fuzzy logic}}   * {{:lecture1b.ppt|Lecture 1 - course introduction and fuzzy logic}}
   * {{:lecture_2x.ppt|Lecture 2 - preliminaries and fuzzy logic}}   * {{:lecture_2x.ppt|Lecture 2 - preliminaries and fuzzy logic}}
-     * {{:rs-kdd.ppt|Alternative Lecture 2 - Rough Sets in KDD: Tutorial Notes}}+     * {{:rs-kdd.ppt|Alternative Lecture 2 - rough sets in KDD: Tutorial Notes}}
   * {{:lecture_3x.ppt|Lecture 3 - finish fuzzy logic and begin rough sets}}   * {{:lecture_3x.ppt|Lecture 3 - finish fuzzy logic and begin rough sets}}
      * {{:flcases.pdf|fuzzy logic cases}}      * {{:flcases.pdf|fuzzy logic cases}}
   * {{:lecture_4x.ppt|Lecture 4 - more rough sets}}   * {{:lecture_4x.ppt|Lecture 4 - more rough sets}}
-  * {{:lecture_5a.ppt|Lecture 5 - more rough sets-Various Reducts & Rough Sets Applications}}+  * {{:lecture_5x.ppt|Lecture 5 - more rough sets-Various Reducts & Rough Sets Applications}}
      * {{:umuai2007_aug31.pdf|application 1}}      * {{:umuai2007_aug31.pdf|application 1}}
      * {{:ohrn_thesis.pdf|application 2}}      * {{:ohrn_thesis.pdf|application 2}}
Line 15: Line 15:
      * {{:camwa2008pp.pdf|application 4}}      * {{:camwa2008pp.pdf|application 4}}
      * {{:full3912.pdf|application 5}}      * {{:full3912.pdf|application 5}}
 +  * {{:dbrough.pdf|Lecture 5a - DBROUGH}}
   * {{:lecture_6.ppt|Lecture 6 - Neural Networks}}   * {{:lecture_6.ppt|Lecture 6 - Neural Networks}}
   * {{:lecture_7a.ppt|Lecture 7 - More on Neural Networks}}   * {{:lecture_7a.ppt|Lecture 7 - More on Neural Networks}}
-  * {{:cse4403lec8.pdf|Lecture Evolutionary Computing: What}} +  * {{:lecture_7b.pdf|Lecture More on Neural Networks pdf version}} 
-  * {{:cse4403lec9.pdf|Lecture 9 - Genetic Algorithms & Evolution Strategies}} +  * {{:nn_tutorial.pdf|Lecture 7+ Neural Networks tutorial video}} 
-  * {{:cse4403lec10.pdf|Lecture 10 Evolutionary & Genetic Programming}} +  * {{:backpropagation.pdf|Lecture 7++ Neural Networks - backpropagation}} 
-  * {{:cse4403lec11.pdf|Lecture 11 Probabilistic Reasoning: Why}} +  * {{:lecture_14_copy.ppt|actually lecture 8-9 - Lecture 14 - Recurrent Neural Networks}}
-  * {{:cse4403lec12.pdf|Lecture 12 - Bayesian Networks}} +
-  * {{:cse4403lec13.pdf|Lecture 13 Discussion on Bayesian Networks}} +
-  * {{:lecture_14_copy.ppt|Lecture 14 - Recurrent Neural Networks}}+
      * {{:lecture_14aa.ppt|Lecture 14a - The Next Generation Neural Networks - G. Hinton}}      * {{:lecture_14aa.ppt|Lecture 14a - The Next Generation Neural Networks - G. Hinton}}
      * {{:lecture_14b.ppt|Lecture 14b - Neural Networks - Single Layer}}      * {{:lecture_14b.ppt|Lecture 14b - Neural Networks - Single Layer}}
Line 29: Line 27:
      * {{:lecture_14d.ppt|Lecture 14d - Neural Networks - Learning}}      * {{:lecture_14d.ppt|Lecture 14d - Neural Networks - Learning}}
      * {{:lecture_14f.ppt|Lecture 14e - Neural Networks - Feed Forward}}      * {{:lecture_14f.ppt|Lecture 14e - Neural Networks - Feed Forward}}
-  * {{:lecture_15.ppt||Lecture 15 - Web Intelligence, Brain Informatics and Granular Computing}} +  * {{:cse4403lec8.pdf|Lecture 10 - Evolutionary Computing: What}} 
-     * {{:wimbit.ppt|Lecture 15a - Web Intelligence meet Brain Informatics}} +      * {{:evolutionary_algorithm.pdf|Daniel Dennett’s lectures on evolutionary computing}} 
-  * {{:lecture_16.ppt|Lecture 16 - Granular Computing}} +  * {{:cse4403lec9.pdf|Lecture 11 - Genetic Algorithms & Evolution Strategies}} 
-     * {{:att00207.ppt|Lecture 16a - Zadeh's Granular Computing}} +  * {{:cse4403lec10.pdf|Lecture 12 - Evolutionary & Genetic Programming}} 
-     * {{:conceptual_granularity_fuzzy_and_rough_sets.ppt|Lecture 16 - Erich's Granular Computing}} +  * {{:lecture_20.ppt|actually Lecture 13 - Lecture 20 & 21- Ontology and Representation}} 
-     * {{:granular_computing.pdf|Lecture 16c - Skrowon's Granular Computing}} +  * {{:hmm_nicky.pdf|Lecture 14 - Hidden Markov Models}} 
-  * {{:lecture_17.ppt|Lecture 17 - Introduction to Expert Systems}} +  * {{:cse4403lec11.pdf|Lecture 11 - Probabilistic Reasoning: Why}} 
-  * {{:bayesian_network_modeling_for_evolutionary_genetic_structures.ppt|Lecture 18 - Bayesian Network Modeling for evolutionary genetic structures}} +  * {{:cse4403lec12.pdf|Lecture 15 - Bayesian Networks}} 
-  * {{:cercone.ppt|Lecture 19 - A graph theory approach to characterize the relationship between protein functions and structure of biological networks}} +  * {{:cse4403lec13.pdf|Lecture 15+ - Discussion on Bayesian Networks}} 
-  * {{:lecture_20.ppt|Lecture 20 & 21- Ontology and Representation}} +  * {{:lecture_15.ppt||Lecture 16 - Web Intelligence, Brain Informatics and Granular Computing}} 
-  * {{:lecture_22.ppt|Lecture 22 Course Review}}+     * {{:wimbit.ppt|Lecture 16a - Web Intelligence meet Brain Informatics}} 
 +  * {{:lecture_16.ppt|Lecture 17 - Granular Computing}} 
 +     * {{:att00207.ppt|Lecture 17a - Zadeh's Granular Computing}} 
 +     * {{:conceptual_granularity_fuzzy_and_rough_sets.ppt|Lecture 17b - Erich's Granular Computing}} 
 +     * {{:granular_computing.pdf|Lecture 17c - Skrowon's Granular Computing}} 
 +  * {{:lecture_17.ppt|Lecture 18 - Introduction to Expert Systems}} 
 +  * {{:bayesian_network_modeling_for_evolutionary_genetic_structures.ppt|Lecture 19 - Bayesian Network Modeling for evolutionary genetic structures}} 
 +  * {{:cercone.ppt|Lecture 20 - A graph theory approach to characterize the relationship between protein functions and structure of biological networks}} 
 +  * {{:lecture_22.ppt|Lecture 21 - Course Review}} 
 + 
 +Student project presentations for this course include: 
 + 
 +  * {{:cse4403.ppt|Noada Lugaj and Jason Panas - An investigation about the application of Artificial Neural Networks in medical diagnosis}} 
 +  * {{:sentencesimpliprojectpresentation_nicky_mee.ppt|Ameeta Agrawal and Nikolay Yakovets Sentence simpliFIcation using simple wikipedia}} 
 +  * {{:4403_presentation.ppt|Albert VanderMeulen - Phoneme Recognition Using Neural Networks }} 
 +  * {{|}} 
 + 
 + 
 + 
 +     * {{:00-kickoff-ppt.ppt|Eiben-Smith Lectures - Kickoff}} 
 +     * {{:01-introduction-ppt.ppt|Eiben-Smith Lectures - Introduction}} 
 +     * {{:02-what_is_an_ea-ppt.ppt|Eiben-Smith Lectures - What is an EA}} 
 +     * {{:03-genetic_algorithms-ppt.ppt|Eiben-Smith Lectures - Genetic Algorithms}} 
 +     * {{:04-evolution_strategies-ppt.ppt|Eiben-Smith Lectures - Evolutionary Strategy}} 
 +     * {{:05-evolutionary_programming-ppt.ppt|Eiben-Smith Lectures - Evolutionary Programming}} 
 +     * {{:06-genetic_programming-ppt.ppt|Eiben-Smith Lectures - Genetic Programming}} 
 +     * {{:08-parameter_control-ppt.ppt|Eiben-Smith Lectures - Parameter Tuning}} 
 +     * {{:09-multi-ppt.ppt|Eiben-Smith Lectures - Multimodal Problems}} 
 +     * {{:10-memetic_algorithms-ppt.ppt|Eiben-Smith Lectures - Memetic Algorithms}} 
 +     * {{:11-theory-ppt.ppt||Eiben-Smith Lectures - Theory}} 
 +     * {{:12-constraints-ppt.ppt|Eiben-Smith Lectures - Constraints}} 
 + 
 + 
 +     * {{:http.pdf|Probabilistic inference lectures}} 
  
  
lectures.1316638407.txt.gz · Last modified: 2011/09/21 20:53 by nick

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki