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Abstract 
 
The increasing popularity of sites like Craigslist7 means that more and more of the 
world's classified ads are available in a digital format online. A desire for users to be able 
to search these ads for some semantic meaning rather than be limited to a keyword search 
is natural and requires first the ability to extract semantic meaning from ads. 
 
In this project we designed a system to extract semantic information from Craigslist 
housing advertisements. Our system is based on partitioning Craigslist ads into title and 
body segments, training and running two Part-Of-Speech taggers on the resulting 
segments, and finally combining the resulting chunks using a series of handwritten rules. 
The resulting model is able to reliably extract many common features with high precision 
and recall and offers decent performance on less commonly occurring features. 
 
1 Introduction 
 
1.1 The Problem 
 
Craigslist.org is one of the web’s most pervasive sites for finding and placing personal 
advertisements. Among the challenges users experience on this site are difficulty 
navigating, sorting, and prioritizing advertisements. For example, upon reaching the San 
Francisco Bay Area “Apts/Housing for Rent” section, the user is presented with a 
reverse-chronological list of links, each of which typically has a rent value and number of 
bedrooms visible in its title. After clicking a link, one views a largely unstructured 
posting which may or may not match what the user is looking for. There is no way to sort 
this information, categorize it into condos, apartments, and houses, or anything else of 
that sort. As a result, finding exactly what you are interested in is a time-consuming task. 
 
One approach to this task would be to define a schema for an advertising category and 
then require posters to manually populate exactly this set of features. This imposes a 
degree of structure which in many cases might run counter to the wishes of the advertiser. 
It also puts the burden of organization on the poster, making the relatively simple task of 
posting an advertisement much more complicated. For users that post many 
advertisements at a time – like apartment owners and property agencies – this becomes an 
arduous task. Providing an API could enable automation of such tasks, but this requires 
technical expertise on behalf of the end user. 
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An alternative to this approach is to use natural language processing techniques to 
decipher this information from the text provided by posters, resulting in no burden on 
either the poster or browsing user. Our goal in this project is to do just that. By using 
NLP to extract the critical features of housing postings, we will enable column-by-
column sorting, viewing, and filtering of this information helping to make the search 
experience on Craigslist much more positive. 
 
1.2 Challenges 
 
Given that we start with a website and somehow have to process it using NLP techniques, 
the first challenges is to take the data from the website and automate the scraping and 
tokenization of its content in some reliable way so that the resulting text could be fed into 
the core NLP portion of our system. 
 
The really interesting NLP problems are determining what the key elements of a given 
posting are and how to identify them. Certain elements of a typical housing posting are 
simple to parse; phone numbers, dollar amounts, and words like “rent” and “deposit” next 
to these values make it relatively simple to identify this information (although of course 
there are plenty of examples of “rent 1400 deposit 1600” and “1400 rent 1600 deposit” 
which ensure context is not always easy to use). There are also many features which are 
much harder to parse. For example, most postings have a location embedded at the 
bottom. In some cases this is the exact address; in others, it is a general neighborhood. In 
addition, addresses are sometimes included in the posting itself, and they may or may not 
match the bottom location. Determining which location to trust is difficult. 
 
Similarly difficult, rent and deposit costs can sometimes depend on buyer or renter 
specifics, including duration of lease and presence of a pet. These statements are declared 
in sometimes less-than-formal words, and they are not frequent across the postings on the 
site. As a result, it is difficult to train on annotated instances of this information, because 
the ways in which they appear linguistically are highly variable. Thus, processing these 
nuances is challenging. 
 
Finally, there are a significant number of fields that one may be interested in. From 
smoking status to presence of a backyard, patio, or even a fireplace, the number of 
potential columns on a list is huge, but frequency of each of these can be relatively low, 
like presence of a pool. In terms of identifying information via training on data sets, one 
is more likely to be successful by focusing on elements that are both frequency and of 
interest to actual users. 
 
2 System 
 
Our overall system has four major components: (1) Scraping, Tokenization and 
Annotation, (2) Title Tagger, (3) Body Tagger, (4) Chunking and Merging. We examine 
each component below. 
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2.1 Scraping, Tokenization and Annotation 
 
Extracting raw postings from Craigslist proved surprisingly easy as their HTML is well 
suited for screen scraping because of their relatively consistent use of certain reserved 
elements to delineate posting urls, posting titles and posting bodies. A simple python 
script handled extracting the HTML and dividing it into {posting url, posting id, posting 
title, posting body}.a We then made use of a freely available tool for converting HTML to 
text5 and ran the resulting data through another python script to XML tag the posting id, 
title, and body.b We then annotated the resulting text using the Stanford NLP annotation 
tool4 and finally partitioned the title and body text, and tokenized and tagged the sectionsc 
so that we could use them for testing and training our taggers. Two other scriptsd were 
also part of this pipeline – namely a tool for combining a collection of examples into a 
single file for the tagger and a tool to strip the tags from a testing file before feeding it 
into the tagger). Most of the work of gluing together this pipeline and managing it was 
done by Josh. For more details on the actual data that was fed through this pipeline see 
Section 3. 
 
2.2 Taggers 
 
With our cleanly formatted and tagged postings in hand we trained a pair of Part-Of- 
Speech taggers. We decided to use a POS tagger rather than a basic classifier because of 
the need to use surrounding words to help identify a token's class (without additional 
context its impossible to know if '2' refers to the number of bedrooms, bathrooms, stories,  
or parking spots). The decision to use a POS tagger instead of a NER was based on our 
desire to try a different approach from previous work in information extraction on 
Craigslist ads.6  

 
Rather than reinvent the wheel, we downloaded and made use of the Stanford POS 
Tagger (acronym aside, a very useful tool)3 for our taggers and simply added additional 
features to help improve performance. The Stanford POS Tagger is a maximum entropy-
based tagger which makes use of a weighted linear combination of features (generated by 
so-called extractors) to determine a token's tag. 
 
Our decision to train two taggers was based on the intuition that the title and body text of 
Craigslist postings tended to be very different. In particular, we noticed that the title text 
tended to contain objective features (rent, count of bathrooms, etc) in fairly consistent 
formats whereas the body text had a tendency to be much more free-form and filled with 
lots of subjective descriptions. As a result we believed that with a very simple model the 
title text would be able to select with very high precision a number of features whereas 
the features needed for the body would be much more complex. Much of the work with 
error analysis of the taggers was done by Rohan and Josh and the work on new features 
was driven by Rohan. 

                                                
a  src/scrape/grab.py 
b  src/scrape/cleanup.py 
c  src/converter/annotated_to_tagger_data.py 
d  src/converter/combine_files.py and src/converter/detag_file.py 
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2.3 Chunking and Merging 
 
The final component of our system was a small tool to take the output from our taggers, 
chunk sequences of tokens that shared a tag, and then choose the most appropriate chunk 
for each tag.e This portion of our system is largely rule based. For example if a tag only 
appears in the title (or conversely in the body) the chunk for that tag is used (and if there 
are multiple such chunks the most frequently occurring chunk is used). For cases where a 
tag appears in both the title and body text, we look for chunks that appear in both (with 
some normalization to help recognize equivalent chunks) and if no such chunks exist, we 
fall back on the most frequently occurring chunk from either tagger (with a slight 
upweighting for the title text based on our belief that it tends to be higher precision). 
Most of the work for the Chunking and Merging script was done by Josh. 
 
3 Corpus and Data 
 
Our original focus was along the four major housing sections in craigslist: “Apts / 
housing”, “Rooms / Shared”, “Sublets / Temporary”, and “Housing Wanted”. From 
reviewing several postings from each of these categories, we quickly discovered a high 
variance between sections with respect to what information people included and what 
they omitted. For example, in the “Apts / Housing” section, most postings were focused 
on the elements of housing, like square footage, beds, and bathrooms. In the “Rooms / 
Shared” section, however, this information was not always present, and many posts 
focused around searching for ideal roommates – in some cases, information on a 
particular type of housing was completely omitted. We thus decided it would be 
worthwhile to focus on a particular section, as this would allow us to rely on a generally 
consistent set of attributes to work with. In the spirit of housing, we focused on the most 
housing-centric section, “Apts / Housing”. 
 
We began exploring this section in more detail by enumerating each of the different 
classes or pieces of information that were discussed across an informal sampling of 10-20 
postings. The following data set is the union of elements we found in this sample: 
 
Type (e.g. condo) Monthly rent  Deposit amount Bedrooms 
Bathrooms  Size (sqft)  Furnished or not Available date 
Contact email  Contact phone # Name of poster Smoking 
Number of floors On a cul-de-sac Has pool  Has air conditioning 
Garage/# of cars Parking spot  Address  Backyard 
Frontyard  Fireplace  Patio   List of floor types 
Adjective list  Dogs allowed  Cats allowed  Other pets allowed 
References required Credit check  List of outside links Remodeled/Upgraded 
Washer/dryer  Wireless internet Walk-in-closet  Sites nearby 
Room list  Utilities included Year built  Home style 
Gas BBQ  Breakfast nook 

                                                
e src/merge_results.py 
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Upon further review, we reduced this set to contain mainly elements that were of high 
frequency across posts on the site and likely to be of high interest to most end users. 
Moreover, we decided not to include boolean attributes, like whether or not a credit check 
or breakfast nook was included, as our system architecture was incapable of recognizing 
such features. In the end, our final set of attributes we chose to focus on was as follows: 
 
Type   Rent   Deposit  Bedrooms 
Bathrooms  Size   Available date  Built year 
Floors   Email   Phone   Address 
 
For our corpus we downloaded 500  postings. Of these, we identified 10 postings in our 
corpus that were not appropriate for training or testing, as they were not categorized 
correctly. For example, the following is an actual posting in this section that we 
consciously removed from our data set: 
 
Can't refinance?? Protect your Home. Easier than a Refi (brentwood / oakley) 
 
Artafdmwf ekdpb omgywa uzwpmzwoce ekdpb hmva ekdpb rtafdmwf ekdpb. 
 
Jyglbu jumukkwm vgn mvbwimmwcgvn vgn uakbep ucgenwnpoc yglbu. 
 
We divided the 500 postings in the San Francisco bay area Apts/Housing section between 
the three of us and then to try and enforce consistency between our annotations David did 
a second pass through all of the postings to ensure uniformity. As mentioned in Section 
2.1 we used the Stanford annotator to identify this information for use in training and 
testing. It is worth noting that many of the posts have several references to the same piece 
of data, so on occasion, multiple instances of bedroom and bathroom, for example, were 
identified in the annotation. 
 
The resulting annotated data looked something like: 
 
http://sfbay.craigslist.org/eby/apa/1176224104.html 1176224104 
<title><tag name="rent" value="start"/>$1725<tag name="rent" value="end"/> / <tag name="bedrooms" value="start"/>2<tag 
name="bedrooms" value="end"/>br - Furnished Large Sunny Quiet 2nd Flr <tag name="bedrooms" value="start"/>2<tag 
name="bedrooms" value="end"/>-bed Avail <tag name="available_date" value="start"/>5/17/09<tag name="available_date" 
value="end"/> (berkeley) (map)</title> 
 
Fully Furnished large (<tag name="size" value="start"/>800+<tag name="size" value="end"/>sqft) Sunny 2nd Flr <tag 
name="bedrooms" value="start"/>2<tag name="bedrooms" value="end"/>- Bed apt., quiet building, quiet neighborhood, very private, 
hardwood floor, tasteful furnishings, lots of 
light, two large bedrooms with 2 large closets, eat in kitchen, very quiet, including T.V., DVD, VCR, microwave, linens, kitchen 
supplies, toaster, kettle, coffee maker, and many other extras for a home away from home. Close to U.C., LBL shuttle, downtown 
BART, and shops. This is a quiet family centered neighborhood, very popular with postdocs and visiting scholars. 
Located at <tag name="address" value="start"/>2315 Grant St<tag name="address" value="end"/>., at Bancroft. Pics available <tag 
name="available_date" value="start"/>May 17, 2009<tag name="available_date" value="end"/>. rent is <tag name="rent" 
value="start"/>$1,725 <tag name="rent" value="end"/>plus utilities. Will rent month-to-month and short or long term. 
Call or email Bob at <tag name="phone" value="start"/>510-915-2288<tag name="phone" value="end"/> <tag name="email" 
value="start"/>rwr.korman@comcast.net 
<tag name="email" value="end"/> 
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<tag name="address" value="start"/>2315 Grant St. at Bancroft<tag 
name="address" value="end"/> (google map) (yahoo map) 
 
As can be seen, in cases like “3br” or “1600 
sqft” we focused on annotating only the 
number. Despite our efforts to be consistent in 
our annotations and second reviews, we 
identified a number of issues in our 
annotations helping to demonstrate just how 
hard it can be to get good data from humans. 
Interestingly enough, we found these errors 
during our test phase when we looked at the 
'errors' in our system and saw that frequently 
the errors were in the goldens themselves. We 
discuss this more in Section 4. 
 
4 Initial Model 
 
In our initial exploration with the POS taggers 
we stuck with built-in architectures and extractors and we used wordshapes(1), 
bidirectional, generic, and prefixsuffix(3) for our initial exploration. We chose 
bidrectional because of the importance of context words, prefixsuffix and wordshapes 
primarily to capture some of the random character sequences embedded in some key 
tokens. generic similarly looks at some of the surrounding context as well as extended 
prefixsuffix features. 
 
We then trained our taggers on the first 300 postings in our corpus and used the last 200 
postings for testing. Unfortunately, given the uneven distribution of tags (the vast 
majority of our tokens were tagged as O), we 
found the accuracy numbers reported by the 
tagger to be basically useless. To work around 
this, we wrote another scriptf to scrape the results 
and produce precision and recall number for each 
tag. The results can be found in Table 1 and 2. 
 
As expected the title classifier tended to have 
very high precision for some of the most 
common features such as bedrooms and rent but 
had no results for many of the tags which rarely 
appear in the title (in Table 2 the zero rows 
usually had between 1 and 5 examples). In 
contrast, the body tagger was able to identify 
tags for a lot more of the tokens although often 
with lower precision (although surprisingly it did 
better on bathrooms). 

                                                
f src/compute_results.py 

Table 1: Initial Body Tagging Results 

Table 2: Initial Title Tagging Results 
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Passing the results into the final conflict 
resolution Chunker and Merger was then 
fascinating because it led to the question of 
“how can we evaluate these results” because in 
many examples there were multiple correct 
results in our annotation. Our solution to this 
was simply to accept a result if it matched one 
of the chunks marked as correct in the golden 
set. 
 
Even with this method of evaluation, we found 
our initial results to be somewhat poor. 
However, when we started analyzing the results 
we discovered that in many cases this was 
because of annotation errors. For example, we 
often had our model choose a string like “apt” 
or “apartment” as the type when the golden set 
marked other answers like “Apart” or “Apt” and failed to mark the “apartment” or “apt” 
strings. Other obvious issues we saw included numerical mismatches between “1600” 
and “1,600.0”, or between “1800 sq. ft.” vs “1800”. We even identified a few cases of a 
string being mis-tagged (a handful of street addresses were marked instead as email). To 
more fairly evaluate our model we introduced a series of equivalences classes. With these 
extra modifications to the merger's evaluation tool, we found that the combination of the 
two models often produced better results than the individual models (although this begs 
the question of whether the taggers are being unfairly evaluated because of bad 
annotations and no mechanism to detect equivalence classes). In particular we found that 
the final model tended to yield extraordinarily high precision for most of our features. 
Table 3 contains the final results. 
 
The few features we did very poorly on were mostly because of low recall. In the case of 
built_year, we suffered from the problem that there were only ~10 instances in the test 
set. For available_date the problem was something different. available_date tends to 
come in many vastly different formats such as {date/month, immediately, now, first of 
the month, mid-April, ...} making it hard to identify a canonical format. Similarly, floors 
and cars tended to vary between numbers and those same numbers spelled out (e.g. one, 
two, etc), and sometimes cars was non numerical (e.g. street parking). Another feature 
with highly variable formatting was phone which could be anything from 123.456.1234 
to (123) 456-1234 or 123-456-1234. As for address, a careful analysis of the data shows 
that our results tend to just focus on substrings of the golden address explaining the low 
recall. We also did a terrible job of detecting emails despite there being many clear 
signals a token is an email address. 
 
Even for some of the features we did very well on, the error cases presented interesting 
challenges. For example, deposit often was expressed as “one month's rent” which is a 
perfectly reasonable answer, but we would hope the deposit could be easily expressed as 

Table 3: Initial Final Results 
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a number. Another interesting case where our simple approach to looking at context 
broke down was “rent and deposit are $1895 and $1000 respectively”. 
 
5 Extensions 
 
Based on our analysis of the results from the 
basic model described in Section 4 we 
considered a number of extensions, both in 
terms of additional features and in terms of 
changes to our preprocessing of the postings.  

• To detect emails better, we added 
extractors that detected the presence of 
an @ sign, the presence of ‘.net.’, ‘.com 
‘or ‘.edu’ in the word. 

• To distinguish between rent/deposit and 
size we added an extractor to identify 
the presence of a $ sign in front of the 
word. 

• To address our poor performance on 
built_year we added a feature that 
detected whether the word contained a 
number between 1800 and 2000.  

• To improve the performance of 
address, we added features that detected 
whether the word was one of ‘Street’, 
‘Parkway’, ‘Boulevard’, ‘Road’ or 
‘Avenue’ and all their common known 
abbreviations. 

• To address the issue of numbers being 
formatted differently (one versus 1) we 
created a second dataset in which we 
converted the written out form into the 
decimal one. 

 
To make the comparison simpler we only 
present the results for the addition of our new 
extractors although we do discuss the impact of 
using the dataset with numbers converted into 
decimal form. 
 
As shown in Table 4 adding the extra extractors discussed above often improved our 
body tagger's performance dramatically. The F-Score of bathroom increased from .78 to 
.89, the F-score of deposit increased from .55 to .61, and the recall of built_year doubled 
(although given the number of examples this means we just correctly identified a couple 
of extra strings) to name a few. In no case did a feature's F-Score lower with the 
additional extractors; although floors was not affected. Because the new extractors were 

Table 5: Title Tagging Results with Extended 
Extractors 

Table 4: Body Tagging Results with 
Extended Extractors 
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designed for rarely occurring features which 
mostly appeared in the body text, the 
additional extractors had no impact on the title 
tagger as shown in Table 5. 
 
In terms of their effect on the final results of 
our model we found that the new extractors' 
impact was somewhat reduced given the 
already excellent performance of the title 
tagger. As shown in Table 6 we did see notable 
improvements in F-Score for built_year (.22 to 
.36), phone (.82 to .86), address (.38 to .45) 
and email (.67 to .7). In all of these cases the 
improvement came from increasing recall 
which makes a lot of sense given the intuition 
behind the newly added features. Like with our 
experience with our basic model, in looking at 
the final results we found that many of the 
false positives were in fact still results of annotation errors. 
 
As for our other extension, we found the impact of converting written out numbers to 
decimal numbers to be relatively small. For the title tagger, the only effect of this 
extension was to slightly reduce the precision and recall scores for bathrooms. In the 
body tagger its effects were a mixed bag. It did improve the recall score for cars 
(although at the cost of a lot of precision), but it reduced the precision from floors with no 
corresponding improvement in recall. It also had slightly negative effects on 
available_date and type. 
 
6 Conclusion and Future Work
 
It is clear from our results that we have demonstrated a working system that applies NLP 
techniques to the real-world problem of extracting meaningful features from Craigslist 
housing postings. Our system offers 90+% precision for almost all categories of interest 
and for many of the most common and important categories (e.g. rent, bedrooms, 
bathrooms) offers very high recall. 
 
Nevertheless, our system falls short in a few ways. For one, in our architecture there is no 
easy way to identify boolean features (e.g. is there a pool) because there are so many 
different ways to negate a word many of which are not going to show up in the text in a 
sequence which our architecture requires. Another major issue is that because we have no 
understanding of the meaning of words our system is incapable or taking a line like 
“deposit is one month's rent” and making the connection with the result for rent. It would 
be interesting to explore deeper semantic elements of the postings to discover this 
information (say through parsing and semantic role labeling). 
 

Table 6: Final Results with Extended 
Extractors 



 

Also, although we improved performance via the addition of many new extractors to our 
taggers, it is clear that one of our system's major failings is its low recall for many 
features. To address this shortcoming there are a number of additional features we 
considered adding but did not have time to implement. For example there are a number of 
regular expressions we could use to improve recall of phone numbers and built_years (for 
built_years “\d\d\d0's” is one potentially useful extractor). We could have also used 
features such as detecting a word that is 5 digits in succession to identify zip codes for 
addresses. It might also be useful to assemble additional sets of word lists (e.g. 
{townhouse, condo, apartment}) and make features to detect memberships in those sets. 
These word lists could also include a set like {one, two, three, four,...} to try and capture 
our intuitions about spelled out numbers without making them appear exactly the same as 
a series of digits. 
 
One of the best things we could do to improve our recall numbers, and help the wider 
research community, would be to produce a set of well-annotated Craigslist postings. 
With a series of correctly annotated postings we would expect our recall numbers to 
improve, and if we produced a much larger corpus we would hopefully overcome some 
of the issues of sparsity we encountered with our rarer features. 
 
Another area to explore more is our method for combining title and body tagging results. 
Because our system was restrictive and relatively manual it would be interesting to 
investigate a more automated approach. For example, a system that made use of 
validation data to learn relative per-tag weightings between body and title chunks would 
be interesting and potentially have a lot to offer, especially for features where the title 
tagger has near perfect performance. Another interesting extension would be to have the 
tagger output a probability for each tag it assigns and then make use of those values in 
our merging, 
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