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Earley Parser 
Adapted from Wikipedia,  

the free encyclopedia (Oct 6, 2011) 
 
The Earley parser is a type of chart parser mainly used for parsing in computational linguistics, named 
after its inventor, Jay Earley. The algorithm uses dynamic programming1. 

Earley parsers are appealing because they can parse all context-free languages. The Earley parser 
executes in cubic time (O(n3), where n is the length of the parsed string) in the general case, quadratic 
time (O(n2)) for unambiguous grammars, and linear time for almost all LR(k) grammars. It performs 
particularly well when the rules are written left-recursively. 

The algorithm 
In the following descriptions, α, β, and γ represent any string of terminals/nonterminals (including the 
empty string), X and Y represent single nonterminals, and a represents a terminal symbol. 

Earley's algorithm is a top-down dynamic programming algorithm. In the following, we use Earley's dot 
notation: given a production X → αβ, the notation X → α • β represents a condition in which α has already 
been parsed and β is expected. 

For every input position (which represents a position between tokens), the parser generates an ordered 
state set. Each state is a tuple (X → α • β, i), consisting of 

• the production currently being matched (X → α β) 
• our current position in that production (represented by the dot) 
• the position i in the input at which the matching of this production began: the origin position 

(Earley's original algorithm included a look-ahead in the state; later research showed this to have little 
practical effect on the parsing efficiency, and it has subsequently been dropped from most 
implementations.) 

The state set at input position k is called S(k). The parser is seeded with S(0) consisting of only the top-
level rule. The parser then iteratively operates in three stages: prediction, scanning, and completion. 

• Prediction: For every state in S(k) of the form (X → α • Y β, j) (where j is the origin position as 
above), add (Y → • γ, k) to S(k) for every production in the grammar with Y on the left-hand side 
(Y → γ). 

                                                
1 In mathematics and computer science, dynamic programming is a method for solving complex problems by 
breaking them down into simpler subproblems. The key idea behind dynamic programming is quite simple. In 
general, to solve a given problem, we need to solve different parts of the problem (subproblems), and then combine 
the solutions of the subproblems to reach an overall solution. Often, many of these subproblems are really the same. 
The dynamic programming approach seeks to solve each subproblem only once, thus reducing the number of 
computations. This is especially useful when the number of repeating subproblems is exponentially large. 

Top-down dynamic programming simply means storing the results of certain calculations, which are later used again 
since the completed calculation is a sub-problem of a larger calculation. Bottom-up dynamic programming involves 
formulating a complex calculation as a recursive series of simpler calculations. 
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• Scanning: If a is the next symbol in the input stream, for every state in S(k) of the form (X → α • 
a β, j), add (X → α a • β, j) to S(k+1). 

• Completion: For every state in S(k) of the form (X → γ •, j), find states in S(j) of the form (Y → α • 
X β, i) and add (Y → α X • β, i) to S(k). 

These steps are repeated until no more states can be added to the set. The set is generally implemented 
as a queue of states to process (though a given state must appear in one place only), and performing the 
corresponding operation depending on what kind of state it is 

Pseudo code 

Adapted from Speech and Language Processing by Daniel Jurafsky and James H. Martin: 

function EARLEY-PARSE(words, grammar) 

    ENQUEUE((γ → •S, [0,0]), chart[0]) 
    for i ← from 0 to LENGTH(words) do 
        for each state in chart[i] do 
            if INCOMPLETE?(state) then 
                if NEXT-CAT(state) is a nonterminal then 
                    PREDICTOR(state)         // non-terminal 
                else do 
                    SCANNER(state)           // terminal 
            else do 
                COMPLETER(state) 
        end 
    end 
    return chart 
 
procedure PREDICTOR((A → α•B, [i, j])), 
    for each (B → γ) in GRAMMAR-RULES-FOR(B, grammar) do 
        ENQUEUE((B → •γ, [j, j]), chart[ j]) 
    end 
 
procedure SCANNER((A → α•B, [i, j])), 
    if B ⊂ PARTS-OF-SPEECH(word[j]) then 
        ENQUEUE((B → word[j], [j, j + 1]), chart[j + 1]) 
    end 
 
procedure COMPLETER((B → γ•, [ j, k])), 
    for each (A → α•Bβ, [i, j]) in chart([j]) do 
        ENQUEUE((A → αB•β, [i, k]), chart[k]) 
    End 
 
Example 
Consider the following simple grammar for arithmetic expressions: 

P → S      # the start rule 
S → S + M | M 
M → M * T | T 
T → number 

With the input: 

2 + 3 * 4 

This is the sequence of state sets: 



(state no.) Production (Origin) # Comment 
----------------------------------------- 
== S(0): • 2 + 3 * 4 == 
(1)  P → • S         (0)    # start rule 
(2)  S → • S + M     (0)    # predict from (1) 
(3)  S → • M         (0)    # predict from (1) 
(4)  M → • M * T     (0)    # predict from (3) 
(5)  M → • T         (0)    # predict from (3) 
(6)  T → • number    (0)    # predict from (5) 
 
== S(1): 2 • + 3 * 4 == 
(1)  T → number •    (0)    # scan from S(0)(6) 
(2)  M → T •         (0)    # complete from S(0)(5) 
(3)  M → M • * T     (0)    # complete from S(0)(4) 
(4)  S → M •         (0)    # complete from S(0)(3) 
(5)  S → S • + M     (0)    # complete from S(0)(2) 
(6)  P → S •         (0)    # complete from S(0)(1) 
 
== S(2): 2 + • 3 * 4 == 
(1)  S → S + • M     (0)    # scan from S(1)(5) 
(2)  M → • M * T     (2)    # predict from (1) 
(3)  M → • T         (2)    # predict from (1) 
(4)  T → • number    (2)    # predict from (3) 
 
== S(3): 2 + 3 • * 4 == 
(1)  T → number •    (2)    # scan from S(2)(4) 
(2)  M → T •         (2)    # complete from S(2)(3) 
(3)  M → M • * T     (2)    # complete from S(2)(2) 
(4)  S → S + M •     (0)    # complete from S(2)(1) 
(5)  S → S • + M     (0)    # complete from S(0)(2) 
(6)  P → S •         (0)    # complete from S(0)(1) 
 
== S(4): 2 + 3 * • 4 == 
(1)  M → M * • T     (2)    # scan from S(3)(3) 
(2)  T → • number    (4)    # predict from (1) 
 
== S(5): 2 + 3 * 4 • == 
(1)  T → number •    (4)    # scan from S(4)(2) 
(2)  M → M * T •     (2)    # complete from S(4)(1) 
(3)  M → M • * T     (2)    # complete from S(2)(2) 
(4)  S → S + M •     (0)    # complete from S(2)(1) 
(5)  S → S • + M     (0)    # complete from S(0)(2) 
(6)  P → S •         (0)    # complete from S(0)(1) 

The state (P → S •, 0) represents a completed parse. This state also appears in S(3) and S(1), which are 
complete sentences. 
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