

__

Earley Parser
Adapted from Wikipedia,

the free encyclopedia (Oct 6, 2011)

The Earley parser is a type of chart parser mainly used for parsing in computational linguistics, named
after its inventor, Jay Earley. The algorithm uses dynamic programming1.

Earley parsers are appealing because they can parse all context-free languages. The Earley parser
executes in cubic time (O(n3), where n is the length of the parsed string) in the general case, quadratic
time (O(n2)) for unambiguous grammars, and linear time for almost all LR(k) grammars. It performs
particularly well when the rules are written left-recursively.

The algorithm
In the following descriptions, α, β, and γ represent any string of terminals/nonterminals (including the
empty string), X and Y represent single nonterminals, and a represents a terminal symbol.

Earley's algorithm is a top-down dynamic programming algorithm. In the following, we use Earley's dot
notation: given a production X → αβ, the notation X → α • β represents a condition in which α has already
been parsed and β is expected.

For every input position (which represents a position between tokens), the parser generates an ordered
state set. Each state is a tuple (X → α • β, i), consisting of

• the production currently being matched (X → α β)
• our current position in that production (represented by the dot)
• the position i in the input at which the matching of this production began: the origin position

(Earley's original algorithm included a look-ahead in the state; later research showed this to have little
practical effect on the parsing efficiency, and it has subsequently been dropped from most
implementations.)

The state set at input position k is called S(k). The parser is seeded with S(0) consisting of only the top-
level rule. The parser then iteratively operates in three stages: prediction, scanning, and completion.

• Prediction: For every state in S(k) of the form (X → α • Y β, j) (where j is the origin position as
above), add (Y → • γ, k) to S(k) for every production in the grammar with Y on the left-hand side
(Y → γ).

1 In mathematics and computer science, dynamic programming is a method for solving complex problems by
breaking them down into simpler subproblems. The key idea behind dynamic programming is quite simple. In
general, to solve a given problem, we need to solve different parts of the problem (subproblems), and then combine
the solutions of the subproblems to reach an overall solution. Often, many of these subproblems are really the same.
The dynamic programming approach seeks to solve each subproblem only once, thus reducing the number of
computations. This is especially useful when the number of repeating subproblems is exponentially large.

Top-down dynamic programming simply means storing the results of certain calculations, which are later used again
since the completed calculation is a sub-problem of a larger calculation. Bottom-up dynamic programming involves
formulating a complex calculation as a recursive series of simpler calculations.

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 – South Ross 101

Fall Semester, 2011

• Scanning: If a is the next symbol in the input stream, for every state in S(k) of the form (X → α •
a β, j), add (X → α a • β, j) to S(k+1).

• Completion: For every state in S(k) of the form (X → γ •, j), find states in S(j) of the form (Y → α •
X β, i) and add (Y → α X • β, i) to S(k).

These steps are repeated until no more states can be added to the set. The set is generally implemented
as a queue of states to process (though a given state must appear in one place only), and performing the
corresponding operation depending on what kind of state it is

Pseudo code

Adapted from Speech and Language Processing by Daniel Jurafsky and James H. Martin:

function EARLEY-PARSE(words, grammar)

 ENQUEUE((γ → •S, [0,0]), chart[0])
 for i ← from 0 to LENGTH(words) do
 for each state in chart[i] do
 if INCOMPLETE?(state) then
 if NEXT-CAT(state) is a nonterminal then
 PREDICTOR(state) // non-terminal
 else do
 SCANNER(state) // terminal
 else do
 COMPLETER(state)
 end
 end
 return chart

procedure PREDICTOR((A → α•B, [i, j])),
 for each (B → γ) in GRAMMAR-RULES-FOR(B, grammar) do
 ENQUEUE((B → •γ, [j, j]), chart[j])
 end

procedure SCANNER((A → α•B, [i, j])),
 if B ⊂ PARTS-OF-SPEECH(word[j]) then
 ENQUEUE((B → word[j], [j, j + 1]), chart[j + 1])
 end

procedure COMPLETER((B → γ•, [j, k])),
 for each (A → α•Bβ, [i, j]) in chart([j]) do
 ENQUEUE((A → αB•β, [i, k]), chart[k])
 End

Example
Consider the following simple grammar for arithmetic expressions:

P → S # the start rule
S → S + M | M
M → M * T | T
T → number

With the input:

2 + 3 * 4

This is the sequence of state sets:

(state no.) Production (Origin) # Comment

== S(0): • 2 + 3 * 4 ==
(1) P → • S (0) # start rule
(2) S → • S + M (0) # predict from (1)
(3) S → • M (0) # predict from (1)
(4) M → • M * T (0) # predict from (3)
(5) M → • T (0) # predict from (3)
(6) T → • number (0) # predict from (5)

== S(1): 2 • + 3 * 4 ==
(1) T → number • (0) # scan from S(0)(6)
(2) M → T • (0) # complete from S(0)(5)
(3) M → M • * T (0) # complete from S(0)(4)
(4) S → M • (0) # complete from S(0)(3)
(5) S → S • + M (0) # complete from S(0)(2)
(6) P → S • (0) # complete from S(0)(1)

== S(2): 2 + • 3 * 4 ==
(1) S → S + • M (0) # scan from S(1)(5)
(2) M → • M * T (2) # predict from (1)
(3) M → • T (2) # predict from (1)
(4) T → • number (2) # predict from (3)

== S(3): 2 + 3 • * 4 ==
(1) T → number • (2) # scan from S(2)(4)
(2) M → T • (2) # complete from S(2)(3)
(3) M → M • * T (2) # complete from S(2)(2)
(4) S → S + M • (0) # complete from S(2)(1)
(5) S → S • + M (0) # complete from S(0)(2)
(6) P → S • (0) # complete from S(0)(1)

== S(4): 2 + 3 * • 4 ==
(1) M → M * • T (2) # scan from S(3)(3)
(2) T → • number (4) # predict from (1)

== S(5): 2 + 3 * 4 • ==
(1) T → number • (4) # scan from S(4)(2)
(2) M → M * T • (2) # complete from S(4)(1)
(3) M → M • * T (2) # complete from S(2)(2)
(4) S → S + M • (0) # complete from S(2)(1)
(5) S → S • + M (0) # complete from S(0)(2)
(6) P → S • (0) # complete from S(0)(1)

The state (P → S •, 0) represents a completed parse. This state also appears in S(3) and S(1), which are
complete sentences.

References

• J. Earley, "An efficient context-free parsing algorithm", Communications of the Association for
Computing Machinery, 13:2:94-102, 1970.

• J. Leo, A general context-free parsing algorithm running in linear time on every LR(k) grammar without
using look-ahead, Theoretical Computer Science, 82:165-176, 1991.

• J. Aycock and R.N. Horspool. Practical Earley Parsing. The Computer Journal, 45:6:620-630, 2002.
• Daniel M. Roberts Earley Parsing for Context-Sensitive Grammars

