EXTRACTING MEANINGFUL SEMANTIC INFORMATION
WITH EMATISE: AN HPSG-BASED INTERNET
SEARCH ENGINE PARSER

LIJUN HOU and NICK CERCONE

Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1 Canada

Abstract

We describe EMATISE, our prototype natural
language interface that serves as a front-end to Inter-
net search engines; this prototype is based on the
HPSG (Head-Driven Phrase Structure Grammar)
formalism. Our current work concentrates on parsing
natural language phrases and extracting meaningful
.semantic information. We present the architecture of
our system for internet access and the reasons for our
choice of parser. The implementation of some mod-
ules of the system is discussed and some experimen-
tal results with sample sessions are presented.

Keywords
HPSG, natural language parsing, semantics, inter-
net search engine, directories.

1 Introduction

The amount of information available on the world
wide web is growing considerably, thus making re-
trieval of relevant information arduous. We provide
natural language access to some of the major search
engines and directories to enable people to access
several catalogues for searching. The query is parsed
and analyzed, resulting in the selection of relevant
keywords for search. Using relevant keywords sig-
nificantly reduces the listing of irrelevant sites.
Synonyms are searched automatically as applicable.

Search engines and Internet directories are pri-
mary vehicles that Internet information seekers use to
find web sites and documents of interest. Most cur-
rent search engines (spider, index and search engine
software) use search strategies based on keyword
matching. Some search engines allow conjunctions of
keywords, combinations of disjunctions of keywords,
and negations. The Boolean combination of key-
words is evaluated and matched with the words in an
inverted index, which is built in advance, to retrieve
documents containing these keywords.

Users may become frustrated by not knowing
how to pick appropriate keywords to formulate query
statements. Users may not find what they want in

0-7803-7087-2/01/$10.00 © 2001 IEEE

such on-line searches because the words they use fail

to match words that are needed in the documents.

Also, casual users may have problems with the sub-

tleties of Boolean logic, which is used by most search

engines to combine keywords into a query statement.

Table 1 illustrates how crucial is the choice of key-

words to determine search engine response. Yet there

appears little consistency in keyword interpretation
within a search engine or between search engines.
Several search engines purport to use natural lan-
guage for access. It appears that their attempt to pro-
vide better ad-hoc access was not totally successful
as Table 2 illustrates. In Table 2, natural language
phrases were entered in an attempt to find the “best”
or “top” computer science “department” or “pro-
gram”. The results indicate that semantic analysis
was either not performed or performed inadequately.
Bach Internet “engine” has a listing or catalogue
to search. Depending on how URLs (uniform re-
source locators) are added to catalogues, they are
classified as a directory {Yahoo Home Page. Nov.

2000. http://www.yahoo.com] or as a spider or robot

[AltaVista home page, Nov. 21300,

http://www altavista.com/; Info-seek home page,

June 1997, http://www.infoseek.com; Lycos home

page, Nov. 2000, http://www lycos.com]. We refzr to

both types as search engines unless noted.
Typically, keyword searches exhibit the following
problems:

e Since a keyword can have many synonyms, all syno-
nyms need to be used in the search in order to obtain

_ all relevant sites.

e Variations in spelling might result in missing some of
the relevant sites., A search for color might miss a site
with the word colour and a search for gray will not
find grey, and so on.

e Ambiguity in selection and ordering of keywords
might result in different search results when a mere
word match is performed. For example, if a search is
made for sites performing online reservation of flight
tickets, the keywords can be any of the following: (1)
reservation, flight, ticket; (2) online reservation, flight,
ticket; (3) online reservation, air, ticket; (4) online res-
ervation, flight OR air, ticket; or (5) reservation OR
booking, flight OR air, ticket.

2858

Authorized licensed use limited to: York University. Downloaded on January 13, 2010 at 11:11 from IEEE Xplore. Restrictions apply.

Each of the sets of keywords in combination
with options exclusively supported by each search
engine like “+” and “-” might be tried by the user, as
each of them yields different results both in terms of
number of sites returned and in their ordering in the
results returned.

these search engines when compared to keyword
matching. Most existing natural language search en-
gines are restrictive and allow users to present que-
ries as phrases or questions alone. The following
searches are easier to express as sentences than as
questions: “I would like to travel Europe by rail” and
“I want to stay in Vancouver for two days”. More-

Keywords Infoseek | Yahoo | Lycos over, the popularity of these search engines depends
!Otgbcog%;hetr ff;lgnﬁee 43?2%13 307'1/ ;.~ ;j on other features like response time, catalogue up-
+op, ¢ er scienc: X 7,3 .

top, +computer science 76,989 1064 7,37 dates, and relevancy rankmg.

+top, +computer sci- 2,132 7 17,374

ence natural language Number of Number of
top, computer science 4,606,545 2| 28,403 : hits infoseek, | hits Lycos,
department 71997 11/2000
+top, computer science 78,386 3071 28,403 Which is the best computer 22,497,252 276,497
department _ science department?

fop, +computer science 76,991 101 | 28,403 Which is the best computer 22,497,257 344,642
department science program?

+op, +computer sci- 2,131 27| 28,403 |"Which is the top computer 22,497,276 240,964
ence department science department?

top, computer science 4,606,672 | 1(RHIT) | 23,925 Which is the top computer 22,497,290 295,051
program science program?

+top, computer science 78,415 3071 23,925 the best computer science 22,497,339 326,032
_program department?

top, +computer science 76,991 | {(N.Ga) | 23,925 the best computer science 22,497,350 428,316
_program program?

+top, +computer sci- 2,132 162 [23,925 the top computer science 22,497,299 308,597
ence program] department? :

rank & computer sci- 7,570,132 16460 | 29,205 the top computer science 22,497,305 399,084
ence program program?

rank & computer sci- 4,604,421 | 133,690 | 28,694 best computer science de- 4,931,348 331,822
ence department partment

rank and computer sci- | 23,267,722 | 133,690 | 28,604 best computer science 7,895,146 428,927 |
ence department program?

rank T computer science 4,117 | 133,690 28,694 top computer science de- 4,681,660 322,200
department partment? ‘

rank or computer sci- 6,070,374 | 133,690 | 28,694 top computer science pro- 7,653,131 307,306
ence department gram?

comg;ner science depart- 4,667,918 1,086,127
. . . men
Table 1. Choice of k‘eywords is crucial to search en- coemputer Science pro- 7,638,548 1,594,063
cFne response. gram?

Note: “+” is used to indicate that the word following must ap- computer science? 4,665,750 3,850,408
pear for the search to be successful; “&" and “I" are logica computing science? 2,588,408 857,813

operators

Search engines that employ a concept search
look for pages containing the exact query words en-
tered or also for concepts closely linked to the query
words. This feature of concept searching broadens
the search, e.g., a search for elderly people might
bring up a site that only has retired people or senior
citizens [Excite Home Page. November 2000.
http://www.excite.com]. However, the selection of
keywords plays an important role in the search results
obtained, as in the case of keyword searching. For
example selecting appropriate keyword(s) may be a
difficult task for searches like airlines flying between
Canada and Japan. ‘

Selecting appropriate keywords for a distributed
information resource like the WWW is difficult, even
for an expert. Hence many search engines are now
providing phrasal and natural language search op-
tions. Some queries are better expressed as phrases
rather than keywords. The possibility of finding the
most relevant site as a top ranking one is higher in

2859

Table 2. Attempt using natural language access.

Although there are many search engines, none
has been objectively judged to be better than the oth-
ers are. Some search engines are more suitable for
searches made on general topics or categories, some
may have more features for searching than the others,
some may list matches differently, some may return
search results more quickly and so on. Hence, the
correct choice of the search engine will depend on the
specific search requirements of the user.

We developed a natural language interface [NLI]
to serve as the front-end to Intemnet search engines
thus enabling the user to access several catalogues for
searching. The NLI uses natural language processing
techniques to eliminate the need for formal query
syntax and to permit free-language query submis-
sions s0 as to assist casual users find the information
they seek. :

NLI's have been built for databases in the past,
see (Cercone and McCalla 1986) and (Perrault and

Authorized licensed use limited to: York University. Downloaded on January 13, 2010 at 11:11 from IEEE Xplore. Restrictions apply.

Grosz 1986) for a detailed overview of NL database
interfaces, their problems and solutions which are
embodied in the many actual systems they discuss.
Our NLI is different from conventional NL database
interfaces since the WWW is a collection of hetero-
geneous information and of many different modali-
ties. Query languages are different and search strate-
gies vary.

Our prototype is implemented using Sicstus
Prolog and Attribute Logic Engine [ALE] (Matheson
1997), which is an integrated phrase structure parsing
and definite clause logic programming system based
on the HPSG formalism (Sag and Wasow 1997). The
system also uses OpenText as the target search en-
gine, and its manufacturing slice of computer prod-
ucts as one of several experimental search domains.
System modules and their configuration are shown in
Figure 1.

The user interface module accepts natural lan-
guage queries from the user and translates this input
into a Prolog list of atoms that is required by the
parser. The parser module generates all valid parses
for the input list. The semantic extractor converts the
attribute value matrix {[AVM] feature structure, the
result of parsing, into the logical query (term expan-
sion) that is acceptable to the search engine. The
search engine access module passes the logical query
to the OpenText search engine and provides the user
with results from the natural language query.

List Logical
NL User input ALE AVM | Semantic | Query Search
—~—p1 Interface »| Parser »| E Engine
Lexicon Access
Rules
Principles

Figure 1. System Configuration.

We briefly explain the operation of the parser and the
semantic extractor, together with a working lexicon
in the next section, followed by our experimental re-
sults.

2 HPSG Parser

HPSG is a constraint-based, lexicalist approach
to grammatical theory that models language as a sys-
tem of constraints built upon typed feature structures
(Pollard and Sag 1994; Sag and Wasow 1997). Lin-
guistic information is represented in a multiple
inheritance hierarchy of feature structures. A feature
structure, or AVM (attribute-value matrix), consists
of a set of attribute/value pairs, which store syntactic
and semantic information about words, and phrases,
see in Figure 2.

sign
SYNSEM synsem

LOC foc
CAT cat
HEAD head
MARKING marking
SPR synsem_list
SUBCAT synsem_list
CONT cont
SEM_MARK dconcept
QUERY query_list

Figure 2. Feature Structure.

A sign is a lexical entry, a phrase or a sentence.
It has the feature SYNSEM for storing both syntactic
and semantic information. SYNSEM, in turn, has a
feature of its own, called LOC, containing local in-
formation, while nonlocal information needed to
compute long distance dependencies is not imple-
mented in our prototype. The LOC feature introduces
two features CAT, which contains the syntactic in-
formation (e.g., HEAD, MARKING, SPR and SUE-
CAT) for the head of the sign, and CONT, which
contains semantic information for the sign.

CONT is comprised of features SEM_MARK
and QUERY. SEM_MARK is used for selectional re-
strictions and to contrc! ambiguity. QUERY contains
a list of query terms. Each term is composed of the
following four features: ACTION, KEYWORD,
SYNONYMS and ANTONYMS to capture the se-
mantic interpretation of the query terms and the logi-
cal relationship among them.

HPSG is a highly lexical grammar formalism
and its lexicon is rich in information. Only a small set
of rules and principles are introduced to control the
joining of syntactic constituents, and they handle a
wide variety of English constructions.

The grammar rules used in HPSG control how
the different classes of syntactic constituents are
joined to form larger grammatical structures. In our
prototype, four grammar rules are defined in HPSG:
Subject-Head, Head-Complement, Head-Subject-
Complement and Adjunct-Head. They are used to-
gether with two additional rules: Specifier-Head and
Conjunct rules, to handle specifiers and conjunctions.

Each of the rules stated above is processed in
conjunction with a collection of principles. Our pro-
totype uses five universal principles outlined in
HPSG: Head feature principle, Subcategorization
principle, Specifier principle, Marking principle and
the Semantic principle.

The semantic principle unifies the CONT feature
of signs. In our prototype, it is especially tuned to be
able to handle the unification of semantic information
for query terms in search engine queries. The seman-
tics principle combines the SEM_MARK and
QUERY information for the words or phrases being
joined.

The action principle is defined to handle the in-
ter-relationship between the semantic information of

2860

Authorized licensed use limited to: York University. Downloaded on January 13, 2010 at 11:11 from IEEE Xplore. Restrictions apply.

the query terms. This principle ensures that the logi-
cal conjunction of the daughter is assigned to be one
* of and, or, not.

For additional details regarding this prototype
HPSG parser, see Hou (1999).

3 Semantic Interpretation and Semantic
Extractor

Traditional parsers use a set of syntactic gram-
mar rules along with a lexicon to parse the natural
language. Applied to the parsed results, semantic
rules convert the parse tree into a logical query. We
carry out semantic analysis in two phases. Since an
HPSG parser is used, the parser does critical semantic
analysis during parsing. Further detailed analysis is
performed in the semantic interpreter as illustrated in
Figure 3.

All successful distinct parses generated by the
parser are transmitted to the semantic extractor for
further processing. The semantic extractor is a Prolog
program that converts the output of the HPSG parser
from a complex AVM feature structure into a logical
query. The logical query is term expanded for the
query language accepted by the target (OpenText)
search engine

The list of keywords from the extractor are con-
verted into appropriate search terms using the seman-
tic rules, synonyms list and search engine informa-
tion. Semantic rules are applied primarily to group
nominal compounds. For example, in South Africa,
the word south would be treated as an adjective in the
lexicon. However South Africa has to be present as

Figure 3. Two Phases of Semantic Analysis.
the name of the country in the search term. In order
to ensure that no relevant sites are missed, all of the
synonyms of keywords, wherever applicable, are in-
cluded in the search terms using the boolean option
‘OR’. Search engine information provides details of
search options supported by individual search en-
gines so as to map the search terms with the search
engine selected. While doing so, the interpreter iden-
tifies keywords that must be-present in the sites listed

2861

and encodes them with signs like ‘+°.

OpenText's text search product Livelink Pin-
stripe provides slice search to ensure highly targeted
searches for business users. There are over 150 pre-
categorized information groupings, each grouping
representing a search slice on a particular business
topic. Its computer and electronic product manufac-
turing slice contains information on computer manu-
facturing, communications equipment, audio and
video equipment, semiconductor manufacturing, con-
trol instrument manufacturing, etc. Our prototype
used their computer manufacturing search domain.

Each resulting AVM returned by the parser is
represented by ALE internally as a nested Prolog list
structure, This list takes the form of phrase(-synsem(-
loc(-cat,~cont))), where cat encodes the syntactic in-
formation, and cont conveys the semantic informa-
tion. As an example, the list structure resulted from
parsing the phrase “computer makers” is shown in
Figure 4. The semantic extractor first extracts the
CONT value from the AVM. Then the QUERY value
is, in turn, extracted from the CONT value. Other in-
formation which is not presently used in the semantic
conversion, e.g., the CAT and SEM_MARK values,
are just discarded.

phrase
SYNSYM synsym
OC loc
CAT cat
HEAD noun
AGR a%
NUM lural
PERSON PERS
CASE case
MOD none
MARKING marking
SPR synsem_list
SUBCAT e_list

CONT cont
QUERY ﬂ%— query_list

ACTION conj
antoynm_list
computer
! synonym_list
ne_query_list
HD quel
CTION conj
ANTONYMS antoynm_list
KEYWORD company
SYNONYM ne_synonym_list
HD_manufacturer
TL e_list
TL e_list
SEM_MARK dconcept

Figure 4. Example of the AVM Feature Structure.

Each element in the list value of the QUERY
feature is analyzed to obtain the query terms. While
extracting information from the QUERY list, a struc-
ture is created to store information about the current
query. This structure is a list of predicates, with each
predicate containing query information for a single
query term. The symbol of the predicate in the list is
the logical conjunct (e.g., and, or, not) extracted from
the element of the QUERY list. If the logical con-
junct is unspecified, then it takes the default value of

Authorized licensed use limited to: York University. Downloaded on January 13, 2010 at 11:11 from IEEE Xplore. Restrictions apply.

“and”. Each predicate takes three arguments. The
first argument is the KEYWORD value extracted.
The second argument is a list containing synonyms of
the KEYWORD, each synonym is extracted sepa-
rately and concatenated to the list. The third argu-
ment is a list containing antonyms extracted for the
KEYWORD. An example structure for the phrase
“computer makers” follows:

fand (computer, [], [1), and (company, [manufacturer], [])]

After the structure has been completely built
from the AVM, it is passed to the predicate that han-
dles printing of the logical query. The elements in the
list value of the structure are processed and printed
individually. If the KEYWORD value of an element
is unspecified, then it represents a general concept
that does not contribute to the selection of a query
term, thus it is ignored. The output of a query term
depends on the logical conjunct associated with it.

For the logical relationship of negation (e.g., not),
the query term is composed of the list of antonyms of
the KEYWORD, if any. An example logical query
output for the phrase “less expensive computers” is:

and (economic sor cheap) and computer

If the KEYWORD has no antonyms, the domain
concept hierarchy will be examined to look for any
sibling concept of the concept represented by the
KEYWORD. Such an example would be for the
phrase “computer companies outside Canada”, its
logical query output is:

and computer and (company sor manufacturer) and (usa sor europe)

If the logical relationship is anything other than
‘negation (e.g., and, or), then the query term is com-
posed of the KEYWORD and the list of its synonyms,
if any. An example logical query for the phrase
“computer makers” is:

and computer and (company sor manufacturer)

If the KEYWORD has no synonyms, the domain
concept hierarchy will be examined to look for any
child concept of the concept represented by the
KEYWORD. An example logical query for the
phrase “computer parts” is:
and computer and (hardware sor desktop sor note-
book sor server sor monitor
sor modem sor printer SOr scanner SO Camera SOr
memory sor software)

If there exists no child concept, the query term is the
KEYWORD itself.

4 Generic Lexical Processing

The lexicon plays an important role in HPSG
grammar. Most importantly, it defines a finite set of
lexical signs (words) permitted as input. The ALE

2862

parser works bottom--up from information in lexical
entries to unify their feature structures. The parse will
fail immediately as soon as it finds any word in the
user query that is not defined in the lexicon. However,
as part of the natural language processing module of
an Internet meta search engine, the lexicon will al-
most always suffer from this incompleteness, even
for restricted domains. This situation is especially
true for the case of proper names. Proper names
could be found making up a large portion in Web
queries; with a name being either a person or an or-
ganization's name, or any name related to an event or
an object, etc. Despite their pervasive use in queries,
proper names seem elusive and unpredictable. It will
be almost impossible trying to include all or most of
them into a finite lexicon. We discuss several differ-
ent methods, which could be used to solve this prob-
lem, with the emphasis on the approach used in our
parser as a partial solution to this problem.

‘When faced with this challenge, two kinds of so-
lutions are arrived at easily. The first solution is to
simply reject an input sentence, which contains any
undefined words, and let the parsing fail. The second
solution is to probe users with questions, to acquire
lexical knowledge about the undefined words “on the
fly”, dynamically expanding the lexicon as the parser
learns more words.

Neither of these two methods above are desirable,
since neither method is user--friendly, either by re-
jecting the user request without making use of any
other information that might be available, or burden-
ing the user to specify a full definition of the unde-
fined proper name which might scarcely be used in
the future.

‘We propose an approach which defines a special
generic lexical entry in the lexicon that takes on the
properties of a proper name and substitutes any unde-
fined words in the input by this generic lexical entry
before parsing. If its original syntactic role is indeed
a proper name, then parsing succeeds. From the
parsed output, we replace the generic Iexical item by
the original words in the input, and then send it for
Web searching. But if it does not fit syntactically into -
the role of a proper name, the parsing will fail in the
unification process.

The basic idea for introducing such a generic
lexical entry is to make it serve as a placeholder for
those words undefined during parsing. Since the un-
defined proper nouns do not actually participate in
the parsing process, they are not analyzed semanti-
cally by the system; for example, the parser will not
work out any synonyms or antonyms in terms of its
word relationships. But this kind of processing fits
well with the linguistic nature of proper nouns, since
it is usually not necessary for this type of semantic
analysis to happen for proper nouns.

Authorized licensed use limited to: York University. Downloaded on January 13, 2010 at 11:11 from IEEE Xplore. Restrictions apply.

By including a generic lexical entry in the lexi-
con and having it act as the intermediary for unde-
fined proper nouns, we have partially solved the
problem of lexicon incompleteness for the case of
proper names in Web searching. This effectively im-
proved usability of the NL processing system by giv-
ing it power to process a much larger amount of
words than the fixed lexicon is predefined to handle.

5 Other Parsing Considerations

There are many other linguistic issues that exist
in the development of a natural language processing
system. For example, when interpreting a user's query
and converting it into logical form, the intrinsic sub-
tleties of Boolean logic with negation, conjunction,
and disjunction might add to the semantic ambiguity
of a query. In the phrase “papers written by Nelson
and Woods”, the “and” normally does mean the logi-
cal “AND”. But when stating “travel agents in Can-
ada and the US”, the Boolean expression with “and”
actually means the logical “OR”. There are also other
cases where the “or” could be misunderstood to mean
the “exclusive OR”, etc.

Another example of a linguistic issue with an
important impact on natural language understanding
is how to translate a user's query when the query con-
tains specifications such as “frequent, very, recent”,
etc. In the phrase “recent models of Honda”, “recent”
may take on “years” as the chronological measure.
Furthermore, ‘“recent” may mean different things in
1996 than in 1999. In the phrase “recent data on cur-
rency exchange”, “recent” may mean “months” or
even “days”.

The goal of Ematise is to present a working pro-
totype which uses recent advances in HPSG grammar
formalisms and to experiment with some crucial as-
pects of natural langnage processing for which these
advances are particularly well-suited. Thus, not all
linguistic issues are covered, and not all solutions are
incorporated into Ematise.

6 Multi-Domain Semantic Analysis

In order for the natural language interface to be
of practical use to query the vast collection of data
that resides on the Internet, the parser must be capa-
ble of extending its coverage over multipie search
domains. However, when multiple domains are pre-
sent, there could exist potentially different semantic

interpretations in different contexts for a single query.

We discuss the impact of the increased complexity of
the parser due to semantic ambiguity and outline the
approach our parser uses to resolve ambiguity in a
multi--domain query environment.

The Ematise parser defines the feature named
SEM_MARK (Semantics Marker) to contain the con-

2863

text information for a phrase or sentence. In the im-
plementations of general principles, especially the
Semantics Principle, which constrains the unification
process for semantic information, the semantic inter-
pretation of the query terms only are successfully
unified into the query list if their SEM_MARK in-
formation is unifiable. This is the basic idea used to
disambiguate sentences or phrases among different
contexts and domains. When the parser cannot re-
solve ambiguity, the system generates all valid parses
for the input, and prompts the user to choose among
alternatives to resolve the ambiguity. For example, a
user may enter on--line query requests such as:

[1] I want to visit Japan.

[2] 1 want to visit the homepage of IBM product re-
views.

In sentence [1], “visit” has a particular semantic
meaning for “travel”, while in sentence [2], it does
not convey any specific semantic interpretation in our
system. This ambiguity can be handled by defining
multiple entries in the lexicon for the word “visit”,
represented by feature structures as shown in Figure

@

word visit
SYNSEM [LOCICAT| HEAD verb
SUBCAT <NP[SEM_MARK 1 >
CONT SEM_MARK location 1
QUERY <travel>
(b) word visit
SYNSEM | LOC I CAT! HEAD verb
SUBCAT <NP[SEM_MARK 1 >

CONT SEM_MARK dconcept 1
QUERY <>
“dconcept” is the default value for feature SEM_MARK

Figure 5. Feature Structure for “visit”.

In our example sentence (1), the feature structures for
the noun “japan” conveys “location” as its value for
the SEM_MARK feature, see Figure 6.

word japan
SYNSEM | LOC | CAT! HEAD noun

CONT SEM_MARK location
QUEI

<japan>
Figure 6. Feature Structure for “japan”.

Since “japan” is unifiable with the top feature
structure defined for “visit”, the phrase “visit japan”
can be unified based on the Head--Complement
schema, with the resulting feature structure after uni-

fication as shown in Figure 7.
Phrase visit

japan
SYNSEM | LOC | CATIHEAD verb

CONT SEM_MARK Iocation
QUERY <travel, japan>

Figure 7. Feature Structure for “visit japan”.

Authorized licensed use limited to: York University. Downloaded on January 13, 2010 at 11:11 from IEEE Xplore. Restrictions apply.

For our example sentence [2], the noun phrase
“the homepage of IBM product review” does not
have “location” as its SEM_MARK, so it can only be
unified with the second feature structure defined for
the word “visit”, in which case “visit” does not con-
tribute to a specific semantic interpretation.

7 EMATISE

The meta search engine of Ematise is designed in
modular fashion, as depicted in Figure 8. The main
components are the CGI interface, the aggregation
engine, and the search service drivers. The CGI inter-
face is simply a layer that passes user's query option
in a logical format which is search service neural
from Web client to the meta search engine server.
The logical query is then passed on to the aggregation
engine, which is responsible for concurrently dis-
patching the query to selected search services, obtain-
ing the initial results from each service, eliminating
duplicate results, consolidating and re-ranking the re-
sults, and finally creating HTML pages from the re-
sults, to be properly displayed back at the Web client.
The individual search service drivers are responsible
for translating the original logical query whichisina
search service neural format into some service spe-
cific query, sending the query to the service, and re-
ceiving results. These drivers are implemented as a
collection of independent Java classes, where each
class represents a particular service. It is designed so
that classes can be added, modified and removed
without impacting the rest of the meta search engine.

CGI Interface and Client-Server Communication
The meta search engine is a Java application on the
server. The Web client which is developed in Java
applet communicates with the meta search engine on
the server side through a small CGI interface written
in Perl. For each user query, the applet makes a CGI
call to the server, passes the user query request to the
CGI, which in turn invokes the Java application on
that same server for the meta search. The meta search
engine resides separately on the server, and is not
fully integrated with the Web client because of the
strict security restrictions enforced on Java applets.
The meta search engine must establish URL connec-
tions with selected search engines over the Internet,
this can only be implemented in a standalone Java
application on the server, since applets are not per-
mitted to have network connections with servers
other than the one from which the applet is invoked.
This restriction is one of the safeguards on untrusted
applets, which blocks some of Java's functionality.
The loss is a trade-off for the security that must be in
place for the language to run remotely on Web cli-
ent's computers.

Query Result
Consolidation

AltaVista Infoseek ‘WebCrawler OpenText
SOV S .
g Search Service
{ Drivers

Figure 8. Meta Search Engine Architecture,

Of course, in addition to CGI, this client-server
invocation could also be achieved through other al-
ternative options, such as using Java RMI (remote
method invocation) package.

The aggregation engine is one of the major com-
ponents of the meta search engine for EMATISE.
The algorithm and control for the aggregation engine
is discussed in detail in Hou (1999).

Search Service Drivers are a collection of Java
classes; each executes in a separate thread for a par-
ticular search service. They contain all the service
specific information. In Ematise, we selected four
popular Internet search services: AltaVista, Infoseek,
WebCrawler, and OpenText. Based on their index.
size, which is regarded as a clear indication of how
comprehensive a record of the Web the search ser-
vice covers, the first three are categorized into big,
medium, and small search services, respectively.
OpenText is a specialty search service characterized
as a business oriented search service. Table 3 summa-

rizes some of their features.

AltaVista 150 GET Yes Yes Yes

No

infoseek 45 GET Yes Yes Yes No
Web 2 GET Yes Yes Yes No
Crawler

OpenText | 5 POST No No Yes Yes

Table 3. Comparison-Meta Search Engine Properties.

2864

Authorized licensed use limited to: York University. Downloaded on January 13, 2010 at 11:11 from IEEE Xplore. Restrictions apply.

After translating and sending the query with the
proper format to a designated search service, the
driver must also receive and parse the query results
from that service. Each service could return its results
in a format that is completely different from others.
The driver class has to understand the output format
and correctly parse the output to extract the informa-
tion of the returned documents. While gathering re-
turned results, any duplicate documents returned by
the same service are simply removed.

The meta search engine of Ematise provides a
layer of abstraction above traditional search services.
Its design incorporates several desirable features.

As the Web grows and changes, search services
are also volatile in nature. New search services are
being launched continually. The search interface of
existing search services also changes quite often due
to enhancements or upgrades which might have an
impact on both its query input and output format.
Also there are a number of services being retired or
replaced. The modular design of the meta search en-
gine of Ematise, especially the collection of search
service driver classes, provides a wrapper around this
service specific information, effectively encapsulates
them, and allows for services to be added, modified,
and removed easily and cleanly, thus providing good
adaptability toward a changing Internet.

Ematise has a meta search engine that does not
require large databases or large amounts of memory
by itself. Since both the server and client side of the
meta search engine are implemented in Java, they are
easily portable to different platforms without the ex-
tra effort of changing the code.

8 Experimental Results

To experiment with the target search domain,
computer manufacturing, a small HPSG lexicon with
over 200 words was built, together with the typed
feature structures, grammar rules and universal prin-
ciples outlined above. The lexical entries are organ-
ized in inheritance hierarchies based on their seman-
tic groupings. Words are classified into top level se-
mantic categories, which include: computer compo-
nents, companies, places, proper nouns, nouns, etc.

Suppose a user wants information on “computer
makers outside of Canada”. Parsing of this natural
language phrase contains the following QUERY fea-
ture as the output of unification, see Figure 9.

Each keyword from the query list is extracted
and analyzed. To reflect the interrelationship of the
keywords, a logical structure is constructed:

{and (computer,[1,[1), and (company.{],
{manufacturer]), not (canada,{ 1,[)]
Here the word “maker” contributes to keyword
“company” or its synonym “manufacturer”. The word

2865

“outside” is interpreted as its logical equivalence
“not”, and is unified with the ACTION feature of the
head of the noun phrase following it, to form the
predicate “not (canada,[},[])”. By examining the con-
cept hierarchies of the keywords, this predicate trans-
lates into “(usa sor europe)”, the synonym-or of the
two sibling concepts of the key concept {\it canada}
in the hierarchy. So the final output from the natural
language processing module is the following logic
query that is compatible with OpenText search syntax:

and computer and (company sor manufacturer) and (usa sor europe)

QUERY ne_query_list
HOD quer;/

ACTION conj
ANTONYMS antonym_fist
KEYWORD computer
SYNONYMS synonym_list

TL ne_query_list
HD query
ACTION][0]
ANTONYMS antonym_list
KEYWO! cana

SYNONYMS synonym_list
TL ne_query_list

Figure 9. The Output of QUERY Feature.

We have integrated our natural language inter-
face with OpenText's search engine to provide a real-
istic environment for the experimentation and evalua-
tion of retrieval effectiveness. For example, for the
above listed user query, the test against OpenText
without the natural language interface actually yields
no documents. However, if we query against Open-
Text via the natural language interface, the semantic
meaning of the input is analyzed and properly ex-
tracted, the same query yields 89,431 Web docu-
ments. By picking samples at random among the re-
turned Web documents, we found around 49% of
them were relevant to the query. Our general experi-
ments show that the natural language interface effec-
tively improves the quality of search engine results
(Mahalingam and Cercone 1999).

A few sample screenshots illustrating several ex-
amples are given in Figures 10-12. Figure 10 shows a
simple translation of the sentence “I want to visit the
homepage of ibm product review” into search engine
neutral search terms to be term expanded by the driv-
ers for particular search engines. Figure 11 illustrates
the results of this query after the results are assem-
bled by the aggregation engine. Figure 12 illustrates
another use of the verb “visit”, as “stay”, for the
query “I want to stay cheaply in Vancouver”.

9, Concluding Remarks

An Internet search engine can provide enhanced
performance by integrating conventional search en-
gine technologies with techniques adapted from natu-
ral language processing. A search engine with a NL
interface could be more user-friendly and precise, by
actually eliminating the need for a formal query-

Authorized licensed use limited to: York University. Downloaded on January 13, 2010 at 11:11 from IEEE Xplore. Restrictions apply.

formatting syntax and the formulation of a request as
logical manipulations of specific keywords.

A first prototype of such a natural language in-
terface system was built with current concentration in
natural language parsing and semantic extraction.
Our purpose is to make a comparison of the effec-
tiveness of retrieval by syntactic and semantic analy-
sis of phrases and retrieval by simple keyword-based
approaches, and to evaluate any potential improve-
ments introduced by natural language analysis.

An important aspect of our future work is to ex-
plore the use of multiple search domains, which not
only requires expanding the lexicon, but also in-
volves research on context analysis.

Figure 10. Input to Ematise of “I want to visit the
homepage of ibm product review”.

Acknowledgments

The authors are members of the Institute for Robotics and
Intelligent Systems (IRIS) and wish to acknowledge the
support of the Networks of Centers of Excellence Program
of the Government of Canada, the Natural Sciences and
Engineering Research Council, and the participation of
PRECARN Associates Inc.

Figure 11. Output from Ematise for “I want to visit

References the homepage of ibm product review”.
Cercone, N, and McCalla, G. (1986) Accessing Knowledge
Through Natural Language. Invited chapter for
M.Yovits 25th Anniversary Issne Advances in Com-

} . BT B ST
puters series, Academic Press, 1-99. F &I
Hou, L, (1999), EMATISE: English Meta Access to Inter- L2 3 ﬁ) a(A gl @; *33 EE‘

net Search Engines. M.Math Thesis, Computer Science, »vwggwx -
University of Waterloo, Waterloo, ON., Canada. i .

Mahalingam, G., and Cercone, N. (1999) Finding Informa-
tion Easily is Important for e-Business!, Data Warehous-
ing and Data Mining for Electronic Commerce W. Kou
(ed.), IBM Press, 135-168.

Matheson, C. (1997) HPSG Grammars in ALE. Centre for
Cognitive Science, University of Edinburgh.
http://www.ltg here.ed.ac.uk/projects/ledtools/ale-hpsg/.

Perrault, C. R., and Grosz, B. J. (1986) Natural Language
Interfaces. Annual Review of Computer Science. Palo

Alto, California, USA.
Pollard, C., and Sag, I. (1994) Head Driven Pharse Struc-

ture Grammar, Univ. of Chicago Press. Figure 12, Input to Ematise for “I want to stay
Sag, 1., and Wasow, T. (1997) Syntactic Theory: A Formal cheaply in Vancouver”.

Introduction. http://hpsg.stanford.edu/hpsg/sw-tb.html.

= -:nnsﬁ;amam mmemm Ecgines

?;ww i"‘"" vuwyr-—m n.‘Q -
mwmunmmq RO B

2866

Authorized licensed use limited to: York University. Downloaded on January 13, 2010 at 11:11 from IEEE Xplore. Restrictions apply.

