
c© British Computer Society 2002

Practical Earley Parsing
JOHN AYCOCK1 AND R. NIGEL HORSPOOL2

1Department of Computer Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta,
Canada T2N 1N4

2Department of Computer Science, University of Victoria, Victoria, BC, Canada V8W 3P6
Email: aycock@cpsc.ucalgary.ca

Earley’s parsing algorithm is a general algorithm, able to handle any context-free grammar. As with
most parsing algorithms, however, the presence of grammar rules having empty right-hand sides
complicates matters. By analyzing why Earley’s algorithm struggles with these grammar rules,
we have devised a simple solution to the problem. Our empty-rule solution leads to a new type
of finite automaton expressly suited for use in Earley parsers and to a new statement of Earley’s
algorithm. We show that this new form of Earley parser is much more time efficient in practice

than the original.

Received 5 November 2001; revised 17 April 2002

1. INTRODUCTION

Earley’s parsing algorithm [1, 2] is a general algorithm,
capable of parsing according to any context-free grammar.
(In comparison, the LALR(1) parsing algorithm used in
Yacc [3] is limited to a subset of unambiguous context-
free grammars.) General parsing algorithms like Earley
parsing allow unfettered expression of ambiguous grammar
constructs, such as those used in C, C++ [4], software
reengineering [5], Graham/Glanville code generation [6] and
natural language processing.

Like most parsing algorithms, Earley parsers suffer
from additional complications when handling grammars
containing ε-rules, i.e. rules of the form A→ ε which crop
up frequently in grammars of practical interest. There are
two published solutions to this problem when it arises in
an Earley parser, each with substantial drawbacks. As we
discuss later, one solution wastes effort by repeatedly
iterating over a queue of work items; the other involves
extra run-time overhead and couples logically distinct parts
of Earley’s algorithm.

This led us to study the nature of the interaction between
Earley parsing and ε-rules more closely, and arrive at a
straightforward remedy to the problem. We use this result
to create a new type of automaton customized for use in an
Earley parser, leading to a new, efficient form of Earley’s
algorithm.

We have organized the paper as follows. We introduce
Earley parsing in Section 2 and describe the problem that
ε-rules cause in Section 3. Section 4 presents our solution
to the ε-rule problem, followed by a proof of correctness in
Section 5. In Sections 6 and 7, we show how to construct our
new automaton and how Earley’s algorithm can be restated
to take advantage of this new automaton. Section 8 discusses
how derivations of the input may be reconstructed. Finally,
some empirical results in Section 9 demonstrate the efficacy
of our approach and why it makes Earley parsing practical.

2. EARLEY PARSING

We assume familiarity with standard grammar notation [7].
Earley parsers operate by constructing a sequence of sets,

sometimes called Earley sets. Given an input x1x2 . . . xn, the
parser builds n + 1 sets: an initial set S0 and one set Si for
each input symbol xi . Elements of these sets are referred to
as (Earley) items, which consist of three parts: a grammar
rule, a position in the right-hand side of the rule indicating
how much of that rule has been seen and a pointer to an
earlier Earley set. Typically Earley items are written as

[A→ α • β, j]
where the position in the rule’s right-hand side is denoted by
a dot (•) and j is a pointer to set Sj .

An Earley set Si is computed from an initial set of Earley
items in Si , and Si+1 is initialized, by applying the following
three steps to the items in Si until no more can be added.

SCANNER. If [A → . . . • a . . . , j] is in Si and a = xi+1,
add [A→ . . . a • . . . , j] to Si+1.

PREDICTOR. If [A → . . . • B . . . , j] is in Si , add [B →
•α, i] to Si for all rules B → α.

COMPLETER. If [A→ . . . •, j] is in Si , add [B → . . . A •
. . . , k] to Si for all items [B → . . . • A . . . , k] in Sj .

An item is added to a set only if it is not in the set
already. The initial set S0 contains the item [S′ → •S, 0]
to begin with—we assume the grammar is augmented with
a new start rule S′ → S—and the final set must contain
[S′ → S•, 0] for the input to be accepted. Figure 1 shows
an example of Earley parser operation.

We have not used lookahead in this description of Earley
parsing, for two reasons. First, it is easier to reason about
Earley’s algorithm without lookahead. Second, it is not
clear what role lookahead should play in Earley’s algorithm.

THE COMPUTER JOURNAL, Vol. 45, No. 6, 2002

PRACTICAL EARLEY PARSING 621

S0

S′ → •E , 0
E→ •E + E , 0
E→ •n , 0

n

S1

E→ n• , 0
S′ → E• , 0
E→ E • +E , 0

+

S2

E→ E + •E , 0
E→ •E + E , 2
E→ •n , 2

n

S3

E→ n• , 2
E→ E+ E• , 0
E→ E • +E , 2
S′ → E• , 0

FIGURE 1. Earley sets for the grammar E → E + E | n and
the input n + n. Items in bold are ones which correspond to the
input’s derivation.

Earley recommended using lookahead for the COMPLETER

step [2]; it was later shown that a better approach was to use
lookahead for the PREDICTOR step [8]; later it was shown
that prediction lookahead was of questionable value in an
Earley parser which uses finite automata [9] as ours does.

In terms of implementation, the Earley sets are built in
increasing order as the input is read. Also, each set is
typically represented as a list of items, as suggested by
Earley [1, 2]. This list representation of a set is particularly
convenient, because the list of items acts as a ‘work queue’
when building the set: items are examined in order, applying
SCANNER, PREDICTOR and COMPLETER as necessary;
items added to the set are appended onto the end of the list.

3. THE PROBLEM OF ε

At any given point i in the parse, we have two partially-
constructed sets. SCANNER may add items to Si+1
and Si may have items added to it by PREDICTOR and
COMPLETER. It is this latter possibility, adding items to
Si while representing sets as lists, which causes grief with
ε-rules.

When COMPLETER processes an item [A→ •, j] which
corresponds to the ε-rule A → ε, it must look through
Sj for items with the dot before an A. Unfortunately,
for ε-rule items, j is always equal to i—COMPLETER

is thus looking through the partially-constructed set Si .3

Since implementations process items in Si in order, if an
item [B → . . . • A . . . , k] is added to Si after COMPLETER

has processed [A → •, j], COMPLETER will never add
[B → . . . A • . . . , k] to Si . In turn, items resulting directly
and indirectly from [B → . . . A• . . . , k] will be omitted too.
This effectively prunes potential derivation paths, which can
cause correct input to be rejected. Figure 2 gives an example
of this happening.

3j = i for ε-rule items because they can only be added to an Earley
set by PREDICTOR, which always bestows added items with the parent
pointer i.

S′ → S

S → AAAA

A → a

A → E

E → ε

S0

S′ → •S , 0
S → •AAAA , 0
A→ •a , 0
A→ •E , 0
E→ • , 0
A→ E• , 0
S → A • AAA , 0

a

S1

A→ a• , 0
S → A • AAA , 0
S → AA • AA , 0
A→ •a , 1
A→ •E , 1
E→ • , 1
A→ E• , 1
S → AAA • A , 0

FIGURE 2. An unadulterated Earley parser, representing sets
using lists, rejects the valid input a. Missing items in S0 sound
the death knell for this parse.

Two methods of handling this problem have been
proposed. Grune and Jacobs aptly summarize one approach:

‘The easiest way to handle this mare’s nest is
to stay calm and keep running the Predictor and
Completer in turn until neither has anything more
to add.’ [10, p. 159]

Aho and Ullman [11] specify this method in their presen-
tation of Earley parsing and it is used by ACCENT [12], a
compiler–compiler which generates Earley parsers.

The other approach was suggested by Earley [1, 2].
He proposed having COMPLETER note that the dot needed
to be moved over A, then looking for this whenever future
items were added to Si . For efficiency’s sake, the collection
of non-terminals to watch for should be stored in a data
structure which allows fast access. We used this method
initially for the Earley parser in the SPARK toolkit [13].

In our opinion, neither approach is very satisfactory.
Repeatedly processing Si , or parts thereof, involves a lot
of activity for little gain; Earley’s solution requires an
extra, dynamically-updated data structure and the unnatural
mating of COMPLETER with the addition of items. Ideally,
we want a solution which retains the elegance of Earley’s
algorithm, only processes items in Si once and has no run-
time overhead from updating a data structure.

4. AN ‘IDEAL’ SOLUTION

Our solution involves a simple modification to PREDICTOR,
based on the idea of nullability. A non-terminal A is said
to be nullable if A ⇒∗ ε; terminal symbols, of course,
can never be nullable. The nullability of non-terminals in
a grammar may be easily precomputed using well-known
techniques [14, 15]. Using this notion, our PREDICTOR can
be stated as follows (our modification is in bold):

If [A→ . . . • B . . . , j] is in Si , add [B → •α, i]
to Si for all rules B → α. If B is nullable,
also add [A→ . . . B • . . . , j] to Si .

THE COMPUTER JOURNAL, Vol. 45, No. 6, 2002

622 J. AYCOCK AND R. N. HORSPOOL

S0

S′ → •S , 0
S → •AAAA , 0
S′ → S• , 0
A→ •a , 0
A→ •E , 0
S → A • AAA , 0
E→ • , 0
A→ E• , 0
S → AA • AA , 0
S → AAA • A , 0
S → AAAA• , 0

a

S1

A→ a• , 0
S → A • AAA , 0
S → AA • AA , 0
S → AAA • A , 0
S → AAAA• , 0
A→ •a , 1
A→ •E , 1
S′ → S• , 0
E→ • , 1
A→ E• , 1

FIGURE 3. An Earley parser accepts the input a, using our
modification to PREDICTOR.

In other words, we eagerly move the dot over a non-
terminal if that non-terminal can derive ε and effectively
‘disappear’. Using the grammar from the ill-fated Figure 2,
Figure 3 demonstrates how our modified PREDICTOR fixes
the problem.

5. PROOF OF CORRECTNESS

Our solution is correct in the sense that it produces exactly
the same items in an Earley set Si as would Earley’s original
algorithm as described in Section 2 (where an Earley set
may be iterated over until no new items are added to Si

or Si+1). In the following proof, we write Si and S′i to
denote the contents of Earley set Si as computed by Earley’s
method and our method, respectively. Earley’s SCANNER,
PREDICTOR and COMPLETER steps are denoted by ES, EP,
and EC; ours are denoted by E′S, E′P, and E′C.

We begin with some results which will be used later.

LEMMA 5.1. Let I be the Earley item [A → α•, i].
If I ∈ Si , then α⇒∗ ε.

Proof. There are two cases, depending on the length of α.
Case 1. |α| = 0. The lemma is trivially true, because α

must be ε.
Case 2. |α| > 0. The key observation here is that the

parent pointer of an Earley item indicates the Earley set
where the item first appeared. In other words, the item
[A→ •α, i] must also be present in Si , and because both it
and I are in Si , it means that α must have made its debut and
been recognized without consuming any terminal symbols.

Therefore α ⇒∗ ε.

LEMMA 5.2. If S0 = S′0, S1 = S′1, . . . , Si−1 = S′i−1, then
Si ⊆ S′i .

Proof. Assume that there is some Earley item I ∈ Si such
that I �∈ S′i . How could I have been added to Si?

Case 1. I was added initially. In this case, i = 0,
I = [S′ → •S, 0]. Obviously, I ∈ S′i as well.

Case 2. I was added by ES being applied to some item
I ′ ∈ Si−1. ES is the same as E′S and Si−1 = S′i−1, so I must
also be in S′i .

Case 3. I was added by EP. Say I = [A → •α, i].
Then there must exist I ′ = [B → . . . • A . . . , j] ∈ Si . If I ′
is also in S′i , then I ∈ S′i because E′P adds at least those items
that EP adds.

Case 4. I was added by EC, operating on some I ′ =
[A → α•, j] ∈ Si . Say I = [B → . . . A • . . . , k]. First,
assume j < i. If I ′ ∈ S′i , then I ∈ S′i because EC and E′C
are the same, and would be referring back to Earley set j

where Sj = S′j . Now assume that j = i. By Lemma 5.1,
α ⇒∗ ε and thus A ⇒∗ ε. There must therefore also be
an item I ′′ = [B → . . . • A . . . , k] ∈ Si . If I ′′ ∈ S′i , then
I ∈ S′i , added by E′P.

Therefore Si ⊆ S′i by contradiction, since no I can be
chosen such that I ∈ Si and I �∈ S′i .

LEMMA 5.3. If S0 = S′0, S1 = S′1, . . . , Si−1 = S′i−1, then
Si ⊇ S′i .

Proof. We take the same tack as before: posit the existence
of an Earley item I ∈ S′i but I �∈ Si . How could I have been
added to S′i?

Case 1. I was added initially. This is the same situation
as Case 1 of Lemma 5.2.

Case 2. I was added by E′S. For this case, the proof is
directly analogous to that given in Lemma 5.2, Case 2, and
we therefore omit it.

Case 3. I was added by E′P. If I = [A → •α, i], then
this case is analogous to Case 3 of Lemma 5.2 and we omit
it. Otherwise, I = [A → . . . B • . . . , j]. By definition of
E′P, B ⇒∗ ε and there is some I ′ = [A→ . . . • B . . . , j] in
S′i . If I ′ ∈ Si , then I ∈ Si because, if it were not, Earley’s
algorithm would have failed to recognize that B ⇒∗ ε.4

Case 4. I was added by E′C. This case is analogous to
Lemma 5.2, Case 4, and the proof is omitted.

As before, no I can be chosen such that I ∈ S′i and I �∈ Si ,
proving that Si ⊇ S′i by contradiction.

We can now state the main theorem.

THEOREM 5.1. Si = S′i , 0 ≤ i ≤ n.

Proof. The proof follows from the previous two lemmas by
induction. The basis for the induction is S0 = S′0. Assuming
Sk = S′k , 0 ≤ k ≤ i − 1, then Si = S′i from Lemmas 5.2
and 5.3.

Our solution thus produces the same item sets as Earley’s
algorithm.

6. THE BIRTH OF A NEW AUTOMATON

The Earley items added by our modified PREDICTOR can
be precomputed. Moreover, this precomputation can take
place in such a way as to produce a new variant of LR(0)
deterministic finite automata (DFA) which is very well
suited to Earley parsing.

In our description of Earley parsing up to now, we
have not mentioned the use of automata. However,
the idea to use efficient deterministic automata as the

4Earley’s algorithm recognizes that B derives the empty string with a
series of PREDICTOR and COMPLETER steps [16].

THE COMPUTER JOURNAL, Vol. 45, No. 6, 2002

PRACTICAL EARLEY PARSING 623

S′ → •S
S → •AAAA

A→ •a
A→ •E
E→ •

S
S′ → S•

E
A→ E• a

A→ a•

A

S → A • AAA

A→ •a
A→ •E
E→ •

A

S → AA • AA

A→ •a
A→ •E
E→ •

A

S → AAA • A

A→ •a
A→ •E
E→ •

A

S → AAAA•

a

a

a

E

E

E

0
1

2 3

4

5

6

7

FIGURE 4. LR(0) automaton for the grammar in Figure 2. Shading indicates the start state.

S′ → •S
S → •AAAA

A→ •a
A→ •E
E→ •
S′ → S•
A→ E•
S → A • AAA

S → AA • AA

S → AAA • A

S → AAAA•

S′ → S•

S → A • AAA

A→ •a
A→ •E
E→ •
A→ E•
S → AA • AA

S → AAA • A

S → AAAA•

A→ a•

A→ E•

S → AA • AA

A→ •a
A→ •E
E→ •
A→ E•
S → AAA • A

S → AAAA•

S → AAA • A

A→ •a
A→ •E
E→ •
A→ E•
S → AAAA•

A

S → AAAA•

AAA

S

a E
a

E

a E

a E

0 1

2

3

4 5 6

7

FIGURE 5. LR(0) ε-DFA.

THE COMPUTER JOURNAL, Vol. 45, No. 6, 2002

624 J. AYCOCK AND R. N. HORSPOOL

basis for general parsing algorithms dates back to the
early 1970s [17]. Traditional types of deterministic
parsing automata (e.g. LR and LALR) have been applied
with great success in Earley parsers [18] and Earley-like
parsers [19, 20, 21]. Conceptually, this has the effect of
precomputing groups of Earley items which must appear
together in an Earley set, thus reducing the amount of work
the Earley algorithm must perform at parse time. (We note
that the parsing algorithm described in [16] is related to an
Earley parser and employs precomputation as well.)

Figure 4 shows the LR(0) automaton for the grammar in
Figure 2. (The construction of LR(0) automata is treated in
most compiler texts [7] and is not especially pertinent to this
discussion.) Each LR(0) automaton state consists of one or
more LR(0) items, each of which is exactly the same as an
Earley item less its parent pointer.

Assume that an Earley parser uses an LR(0) automaton.
We discuss this in detail later, but for now it is sufficient to
think of this as precomputing groups of items that appear
together, as described above. We observe that some LR(0)
states must always appear together in an Earley set. This idea
is captured in the theorem below. The function GOTO(L,A)

returns the LR(0) state reached if a transition on A is made
from LR(0) state L. Given an LR(0) item l = [A→ α • β]
and an Earley set Si , l � Si iff the Earley item [A →
α •β, j] ∈ Si . Where L is a LR(0) state, we write L � Si to
mean l � Si for all l ∈ L.

LEMMA 6.1. If [B → •α, i] ∈ S′i and α ⇒∗ ε, then
[B → α•, i] will be added to S′i while performing the
modified PREDICTOR step.

Proof. We look at the length of α.
Case 1. |α| = 0. True, because α = ε.
Case 2. |α| > 0. Let m = |α|. Then α = X1X2 . . . Xm.

Because α ⇒∗ ε, none of the constituent symbols of α

can be terminals. Furthermore, Xl ⇒∗ ε, 1 ≤ l ≤ m.
When processing [B → •X1X2 . . . Xm, i], E′P would add
[B → X1 • X2 . . . Xm, i], whose later processing by E′P
would add [B → X1X2 • . . . Xm, i], and so on until [B →
X1X2 . . . Xm•, i]—also known as [B → α•, i]—had been
added to S′i .

THEOREM 6.1. If an LR(0) item l = [A → •α] is
contained in LR(0) state L, L � Si and α ⇒∗ ε, then
GOTO(L,A) � Si .

Proof. As part of an Earley item, l must have the parent
pointer i because the dot is at the beginning of the item.
By Lemma 6.1, the Earley item I = [A → α•, i] will be
added to Si . As a result of COMPLETER processing of I

(whose parent pointer is i, making COMPLETER look ‘back’
at the current set Si), transitions will be attempted on A for
every LR(0) state in Si . Thus GOTO(L,A) � Si .

We can treat Theorem 6.1 as the basis of a closure
algorithm, combining LR(0) states that always appear
together, iterating until no more state mergers are possible.
This results in a new type of parsing automaton, which we

S → A • AAA

A→ •a
A→ •E
E→ •
A→ E•
S → AA • AA

S → AAA • A

S → AAAA•

S → A • AAA

S → AA • AA

S → AAA • A

S → AAAA•

A→ •a
A→ •E
E→ •
A→ E•

4
4k

4nk

ε

FIGURE 6. Splitting an LR(0) ε-DFA state into ε-kernel and
ε-non-kernel states, joined by an ε edge.

call the ‘LR(0) ε-DFA’. For the LR(0) automaton in Figure 4,
the LR(0) ε-DFA states would be

{0, 1, 2, 4, 5, 6, 7} {1}
{4, 2, 5, 6, 7} {2}
{5, 2, 6, 7} {3}
{6, 2, 7} {7}

The LR(0) ε-DFA is drawn in Figure 5.
Can the original problem with empty rules recur when

using the ε-DFA in an Earley parser? Happily, it cannot.
Recall that the problem with which we began this paper was
the addition of an Earley item [B → . . . • A . . . , k] to Si

after COMPLETER processed [A → •, i]: the dot never
got moved over the A even though A ⇒∗ ε. With the ε-
DFA, say that state l contains the troublesome item [B →
. . . • A . . .]. All items [A → •α] must be in l too. If A

is nullable, then there has to be some value of α such that
A⇒ α ⇒∗ ε and the dot must be moved over the A in state
l by Theorem 6.1.

7. PRACTICAL USE OF THE ε-DFA

We have not elaborated on the use of finite automata in
Earley parsers because of a vexing implementation issue: the
parser must keep track of which parent pointers and LR(0)
items belong together. This leads to complex, inelegant
implementations, such as an Earley item being represented
by a tuple containing lists inside lists [18]. We have
previously shown how to solve this problem by splitting
the states of an LR(0) DFA and using a slightly non-
deterministic LR(0) automaton instead [9]. This exploits
the fact that an Earley parser is effectively simulating non-
determinism.

This state-splitting idea may be extended to the ε-DFA.
Each state s in the ε-DFA can be divided into (at most) two
new states.

1. snk, the ε-non-kernel state. This contains all LR(0)
items in s with the dot at the beginning of the right-
hand side and any LR(0) items derived from them via
nullability. One exception is that the start LR(0) item
[S′ → •S] cannot be in an ε-non-kernel state.

THE COMPUTER JOURNAL, Vol. 45, No. 6, 2002

PRACTICAL EARLEY PARSING 625

S′ → •S
S′ → S•

ε

S → •AAAA

S → A • AAA

S → AA • AA

S → AAA • A

S → AAAA•
A→ •a
A→ •E
A→ E•
E→ •

S′ → S•

S → A • AAA

S → AA • AA

S → AAA • A

S → AAAA•

A→ a•

A→ E•

S → AA • AA

S → AAA • A

S → AAAA•

S → AAA • A

S → AAAA•

S → AAAA•

A→ •a
A→ •E
A→ E•
E→ •

S

A

AAA

ε

a

E

a

E

ε

ε

0

1

2

3

4

5

6

7 8

9

FIGURE 7. Split LR(0) ε-DFA.

S0

0 , 0
1 , 0 a

S1

5 , 0
3 , 0
4 , 1
2 , 0

FIGURE 8. An Earley parser accepts the input a, using the split
ε-DFA of Figure 7.

2. sk , the ε-kernel state. All LR(0) items not in snk are
contained in sk . It is possible to have an ε-kernel
state without a corresponding ε-non-kernel state, but
not vice versa.

Figure 6 shows how state 4 of the ε-DFA in Figure 5 would
be split. Clearly, the same information is being represented.
Outgoing edges are retained accordingly with the LR(0)
items in the new states. In Figure 6, state 4nk would have
a transition on a because it contains the item [A → •a];
state 4k would not have such a transition, even though the
original state 4 did. Incoming edges go to the ε-kernel
state; the original edge coming into state 4 would now go
to state 4k. Having a transition on ε between ε-kernel
and ε-non-kernel states gives a slightly non-deterministic
automaton, which we call the split ε-DFA (Figure 7).
Since an Earley parser simulates non-determinism, the same
actions are being performed in the split ε-DFA as were
occurring in the original DFA.

The advantage to splitting the states in this way is that
maintaining parent pointers with the correct LR(0) items is
now easy. All items in an ε-non-kernel state have the same
parent pointer, as do all items in an ε-kernel state. In the
former case, this is because the dot is at the beginning of
each LR(0) item in the state (or derived via nullability from
an item that did have the dot at the beginning); in the latter
case, it is because an ε-kernel state is arrived at from a state
which possessed this parent pointer property. Applying this
result, it is now possible to represent an Earley item simply
as a split ε-DFA state number and a parent pointer. This pair

foreach (state, parent) in Si:
k ← goto(state, xi+1)
if k �= �:

add (k, parent) to Si+1
nk ← goto(k, ε)
if nk �= �:

add (nk, i+1) to Si+1

if parent = i:
continue

foreach A→ α in completed(state):
foreach (pstate, pparent) in Sparent:

k ← goto(pstate, A)
if k �= �:

add (k, pparent) to Si

nk ← goto(k, ε)
if nk �= �:

add (nk, i) to Si

FIGURE 9. Pseudocode for processing Earley set Si using a split
ε-DFA.

represents one or more of the original Earley items. Figure 8
shows the Earley sets from Figure 3 recoded using the split
ε-DFA.

How would an Earley parser use the split ε-DFA? Some
pseudocode is given in Figure 9. This code assumes that
Earley items in Si and Si+1 are implemented as worklists and
that the items themselves are (state, parent) pairs. The goto
function returns a state transition made in the split ε-DFA,
given a state and grammar symbol (or ε). The absence of a
transition is denoted by the value �. There is at most a single
transition in every case, so goto may be implemented as a
simple table lookup. The completed function supplies a
list of grammar rules completed within a given state. Recall
that an Earley item is only added to an Earley set if it is not
already present. Both goto and completed are computed
in advance.

The work for each Earley item now divides into two parts.
First, we add Earley items to Si+1 resulting from moving the
dot over a terminal symbol; this is the SCANNER. Second,
we ascertain which grammar rules are now complete and
attempt to move the dot over the corresponding non-terminal
in parent Earley sets; this is the COMPLETER. A special

THE COMPUTER JOURNAL, Vol. 45, No. 6, 2002

626 J. AYCOCK AND R. N. HORSPOOL

case exists here, because it is now unnecessary to complete
items which begin and end in the current set, Si . In our
split ε-DFA, this is all precomputed, as is all the work of
PREDICTOR.

While use of our split ε-DFA makes Earley parsing more
efficient in practice, as we will show in Section 9, we have
not changed the underlying time complexity of Earley’s
algorithm. In the worst case, each split ε-DFA state would
contain a single item, effectively reducing it to Earley’s
original algorithm. Having said this, we are not aware of
any practical example where this occurs.

8. RECONSTRUCTING DERIVATIONS

To this point, we have described efficient recognition, but
practical use of Earley’s algorithm demands that we be able
to reconstruct derivations of the input. Finding a good
method to do this is a harder problem than it seems.

At one level, the argument can be made that our new
Earley items—consisting of a split ε-DFA state and a parent
pointer—contain the same information as a standard Earley
parser, just in compressed form. Therefore, by retaining
information about the LR(0) items in each ε-DFA state, we
could reconstruct derivations as a standard Earley parser
would. Of course, this method would be unsatisfying in the
extreme. It seems silly to sift through the contents of a state
at parse time and to retain the internal information about
a state in the first place. We would like a method which
operates at the granularity of states.

Compounding the problem is that a lot of activity can
occur within a single ε-DFA state due to ε-rules. Consider
our running example, the grammar whose split LR(0) ε-DFA
is shown in Figure 7: given the legal input ε, ten derivation
steps would have to be reconstructed from one Earley set
containing only two items!

Our solution is in two parts. First, we follow Earley [1, 2]
and add links between Earley items to track information
about an item’s pedigree. As the contents of our Earley items
are different from that of a standard Earley parser, it is worth
elaborating on this. Our Earley items can have two types of
links.

1. Predecessor links. If an item (s, p) is added as a result
of a state machine transition from sp to s, where sp is
part of the item (sp, pp), then we add a predecessor link
from (s, p) to (sp, pp).

2. Causal links. Why did a transition from sp to s occur?
There can be three reasons.

(a) Transition on a terminal symbol. We record the
causal link for (s, p) as being absent (�).

(b) ε-transition in the state machine. We need not
store a causal link or a predecessor link for (s, p)

in this case.
(c) Transition on a non-terminal symbol. In this case,

(s, p) was added as the result of a rule completion
in some state sc; we add a causal link from (s, p)

to (sc, pc).

Both types of links are easy to compute at parse time.

TABLE 1. Rule increase in practical grammars due to NNF
conversion.

Rules ε-rules NNF rules

Ada 459 52 701
Algol 60 169 7 191
C++ 643 15 794
C 214 0 214
Delphi 529 34 651
Intercal 87 1 89
Java 1.1 269 0 269
Modula-2 245 33 326
Pascal 178 10 219
Pilot 68 3 125

Second, we do not create the split ε-DFA using the
original grammar G, but an equivalent grammar Gε which
explicitly encodes missing information that is crucial to
reconstructing derivations. As Gε deals with non-existence,
as it were, we call it the nihilist normal form (NNF)
grammar.

The NNF grammar Gε is straightforward to produce.
For every non-terminal A which is nullable, we create a new
non-terminal symbol Aε in Gε . Then, for each rule in G in
which A appears on the right-hand side, we create rules in
Gε that account for the nullability of A. For example, a rule
B → αAβ in G would beget the rules B → αAβ and B →
αAεβ in Gε . In the event of multiple nullable non-terminals
in a rule’s right-hand side, all possible combinations must be
enumerated. Finally, if a rule’s right-hand side is empty or if
all of its right-hand side is populated by ‘ε-non-terminals’,
then we replace its left-hand side by the corresponding
ε-non-terminal. For instance, A → ε would become Aε →
ε, and A → BεCεDε would become Aε → BεCεDε .
The new grammar for our running example is:

S′ → S

S′ε → Sε

S → AAAA

S → AAAAε

S → AAAεA

S → AAAεAε

S → AAεAA

S → AAεAAε

S → AAεAεA

S → AAεAεAε

S → AεAAA

S → AεAAAε

S → AεAAεA

S → AεAAεAε

S → AεAεAA

S → AεAεAAε

S → AεAεAεA

Sε → AεAεAεAε

A → a

Aε → Eε

Eε → ε

The size of an NNF grammar is, as might be expected,
dependent on the use of ε-rules in the original grammar.
We took ten programming language grammars from two
repositories5 to see what effect this would have in practice.
The results are shown in Table 1. The conversion to an
NNF grammar did not even double the number of grammar
rules; most increases were quite modest. The grammar

5The comp.compilers archive (http://www.iecc.com) and the Retrocom-
puting Museum (http://www.tuxedo.org/˜esr/retro).

THE COMPUTER JOURNAL, Vol. 45, No. 6, 2002

http://www.iecc.com
http://www.tuxedo.org/%CB%9Cesr/retro%00%00

PRACTICAL EARLEY PARSING 627

S′ → •S
S′ε → Sε•

S
S′ → S•

ε

S → •AAAA

S → •AAAAε

S → •AAAεA

S → •AAAεAε

S → •AAεAA

S → •AAεAAε

S → •AAεAεA

S → •AAεAεAε

S → Aε • AAA

S → Aε • AAAε

S → Aε • AAεA

S → Aε • AAεAε

S → AεAε • AA

S → AεAε • AAε

S → AεAεAε • A

A→ •a

a

A→ a• a
A→ •a

A

S → A • AAA

S → A • AAAε

S → A • AAεA

S → A • AAεAε

S → AAε • AA

S → AAε • AAε

S → AAεAε • A

S → AAεAεAε•
S → AεA • AA

S → AεA • AAε

S → AεAAε • A

S → AεAAεAε•
S → AεAεA • A

S → AεAεAAε•
S → AεAεAεA•

A

S → AA • AA

S → AA • AAε

S → AAAε • A

S → AAAεAε•
S → AAεA • A

S → AAεAAε•
S → AAεAεA•
S → AεAA • A

S → AεAAAε•
S → AεAAεA•
S → AεAεAA•

A

S → AAA • A

S → AεAAA•
S → AAεAA•
S → AAAεA•
S → AAAAε•

A

S → AAAA•

ε

ε

ε

0

1

2

3

4

5

6

7

8

FIGURE 10. The new split LR(0) ε-DFA.

conversion and state machine construction would usually
occur at compiler build time, where execution speed is
not such a critical issue. However, as our results in the
next section show, even when we convert the grammar and
construct the state machine lazily at run-time, our method
is still substantially faster (over 40% faster) then a standard
Earley parser.

When constructing the split ε-DFA from Gε , ε-non-
terminals such as Aε in the right-hand side of a grammar
rule act as ε symbols in that the dot is always moved over
them immediately. Both S′ and S′ε , if present, are treated as
start symbols and it is important to note that two symbols
A and Aε are treated as distinct. Figure 10 shows the new
split ε-DFA. Some states, and LR(0) items within states, that
were present in Figure 7 are now absent. These missing
states and items were extraneous and will be inferred instead.

To be explicit about how the parser is modified to attach
predecessor and causal links to the items in an Earley set,
new pseudocode for processing an Earley set is shown in
Figure 11. The pseudocode assumes that each item has an
associated set of links, where that set is organized as a set of
(predecessor link, causal link) pairs; the notation &x is used
to denote a link to the item x.

Pseudocode for constructing a rightmost derivation is
given in Figure 12. With an ambiguous grammar, there may
be multiple derivations for a given input; the shaded lines
mark places where a choice between several alternatives
may need to be made. These choices may be made using

foreach item in Si:
(state, parent) ← item
k ← goto(state, xi+1)
if k �= �:

add (k, parent) to Si+1
add link (&item, �) to ←↩

(k, parent) in Si+1
nk ← goto(k, ε)
if nk �= �:

add (nk, i+1) to Si+1

if parent = i:
continue

foreach A→ α in completed(state):
foreach pitem in Sparent:

(pstate, pparent) ← pitem
k ← goto(pstate, A)
if k �= �:

add (k, pparent) to Si

add link (&pitem, &item) to ←↩

(k, pparent) in Si

nk ← goto(k, ε)
if nk �= �:

add (nk, i) to Si

FIGURE 11. Pseudocode for processing Earley set Si with
creation of predecessor and causal links (‘←↩’ is a line continuation
symbol).

heuristics, user-defined routines, disambiguating rules [22]
or more elaborate means [23].

Assuming some disambiguation mechanism, the causal
function returns the item pointed to by a causal link and the
predecessor function returns the predecessor of an item,

THE COMPUTER JOURNAL, Vol. 45, No. 6, 2002

628 J. AYCOCK AND R. N. HORSPOOL

def rparse(A, item):
(state, parent) ← item

choose A→ X1X2 . . . Xn in completed(state)

output A→ X1X2 . . . Xn

for sym in Xn, Xn−1, . . . , X1:
if sym is ε-non-terminal:

derive-ε(sym)

else if sym is terminal:
item ← predecessor(item, �)

else:
itemwhy ← causal(item)

rparse(sym, itemwhy)
item ← predecessor(item, itemwhy)

FIGURE 12. Pseudocode for constructing a rightmost derivation.

rparse(S′,(2,0)) S′ → S

rparse(S, (5,0)) S → AAAA †
derive-ε(Aε) A→ E

E → ε

rparse(A, (8,1)) A→ a

derive-ε(Aε) A→ E

E → ε

rparse(A, (8,0)) A→ a

FIGURE 13. A trace of rparse; the alternative S → AAεAAε

has been chosen at (†).

given its associated causal item (possibly �). How rparse
is initially invoked depends on the input: rparse(S′ε,I)
if the input is ε and rparse(S′,I) otherwise. The second
argument, I, is the Earley item in the final Earley set
containing the LR(0) item [S′ε → Sε•] or [S′ → S•], as
appropriate. We make the tacit assumption that I identifies a
single (Earley item, Earley set) combination as might be the
case with an implementation using pointers.

The purpose of derive-ε is to output the rightmost
derivation of ε from a given ε-non-terminal. If there is only
one way to derive the empty string, this may be precomputed
so that derive-ε need only output the derivation sequence.

Finally, rules that are output in any fashion should be
mapped back to rules in the original grammar G, a trivial
operation. Figure 13 traces the operation of rparse on the
Earley items and links in Figure 14.

Rather than use NNF, another approach would be to
systematically remove ε-rules from the original grammar,
then apply Earley’s algorithm to the resulting ε-free
grammar. For our running example, the corresponding
ε-free grammar would be:

S′ → S

S′ → ε

S → AAAA

S → AAA

S → AA

S → A

A → a

While this is an equivalent grammar to our NNF one, in the
formal sense, there is a substantial amount of information
lost. For example, when the rule S → AAA is recognized
using the ε-free grammar above, it is not clear that there
were four ways of arriving at this conclusion in the original
grammar, that an ambiguity in the original grammar has been

4,1

8,0

3,0

2,0

8,1

5,0

2,0

1,0

0,0

S0 S1 S2

4,2

FIGURE 14. Earley sets and items for the input aa. Predecessor
links are represented by solid arrows and causal links by dotted
arrows. Some Earley items within a set have been reordered for
aesthetic reasons.

TABLE 2. SPARK timings.

Time (s)

Earley 2132.81
PEP (lazy) 1497.37
PEP (precomputed) 1050.77

encountered and when any semantic actions associated with
the original grammar rules A → E and E → ε should be
invoked. Clearly, having an equivalent grammar does not
imply honoring the structure of the original grammar as with
our approach. This is a matter of practical import, because
the users of a parser will expect to have the parser behave as
though it were using the grammar the user specified.

One area of future work is to try and find better ways to
reconstruct derivations.

9. EXPERIMENTAL RESULTS

We have two independently-written implementations of our
recognition and reconstruction algorithms in the last two
sections, which we will refer to as ‘PEP’. The timings below
were taken on a 700 MHz Pentium III with 256 MB RAM
running Red Hat Linux 7.1, and represent combined user and
system times.

One implementation of PEP is in the SPARK toolkit.
We scanned and parsed 735 files of Python source code,
786,793 tokens in total; the results are shown in Table 2.
There is the standard Earley parser, of course, and two
versions of PEP: one which precomputes the split LR(0) ε-
DFA and another which lazily constructs the state machine
(similar to the approach taken in [24] for GLR parsing).
All timings reported in this section include both the time
to recognize the input and the time to construct a rightmost
derivation. The precomputed version of PEP runs twice as
fast as the standard Earley algorithm, the lazy version about
42% faster.

THE COMPUTER JOURNAL, Vol. 45, No. 6, 2002

PRACTICAL EARLEY PARSING 629

Bison Time (seconds)

PE
P

T
im

e
(s

ec
on

ds
)

0 0.01 0.02 0.03 0.04 0.05

0

0.05

0.1

0.15

0.2

0.25

1x

2x

FIGURE 15. PEP versus Bison timings on Java source files from
JDK 1.2.2. Darker circles indicate many points plotted at that spot.

Bison Time (seconds)

PE
P

T
im

e
(s

ec
on

ds
)

0 0.01 0.02 0.03 0.04 0.05

0

0.05

0.1

0.15

0.2

0.25

1x

2x

FIGURE 16. PEP versus Bison timings on a faster machine with
more memory.

The other implementation of PEP is written in C, allowing
a comparison with LALR(1) parsers generated by Bison, a
Yacc-compatible parser generator. We used the same (Flex-
generated) lexical analyzer for both and compiled everything
with gcc -O. Figure 15 shows how the parsers compared
parsing 3234 Java source files from JDK 1.2.2, plotting the
sum of user and system times for each parser. Due to clock
granularity, data points only appear at intervals, and many
points fell at the same spot; we have used greyscaling to
indicate point density, where a darker color means more
points. Overall, 97% of PEP times were 0.02 s or less.
Looking at cumulative time over the entire test suite, PEP
was only 2.1 times slower than the much more specialized
LALR(1) parser of Bison.

To look at how PEP might be affected by the computing
environment, we repeated the Java test run, this time using
a 1.4 GHz Pentium IV XEON with 1 GB RAM running
Red Hat Linux 7.1. The results, in Figure 16, show
that individual PEP times drop noticeably: the worst case

measured was 0.08 s less than before. The cumulative time
remained roughly the same, with PEP only 1.9 times slower
than Bison. Given the generality of Earley parsing compared
to LALR(1) parsing, and considering that even PEP’s worst
time would not be noticeable by a user, this is an excellent
result.

10. CONCLUSION

Implementations of Earley’s parsing algorithm can easily
handle ε-rules using the simple modification to PREDICTOR

outlined here. Precomputation leads to a new variant of
LR(0) state machine tailored for use in Earley parsers based
on finite automata. Timings show that our new algorithm
is twice as fast as a standard Earley parser and fares well
compared to more specialized parsing algorithms.

ACKNOWLEDGEMENTS

This work was supported in part by a grant from the National
Science and Engineering Research Council of Canada.
This paper was greatly improved thanks to comments from
the referees and Angelo Borsotti.

REFERENCES

[1] Earley, J. (1968) An Efficient Context-Free Parsing Algorithm.
PhD Thesis, Carnegie-Mellon University.

[2] Earley, J. (1970) An efficient context-free parsing algorithm.
Commun. ACM, 13, 94–102.

[3] Johnson, S. C. (1978) Yacc: yet another compiler–compiler.
Unix Programmer’s Manual (7th edn), Vol. 2B. Bell
Laboratories, Murray Hill, NJ.

[4] Willink, E. D. (2000) Resolution of parsing difficulties. Meta-
Compilation for C++. PhD Thesis, University of Surrey,
Section F.2, pp. 336–350.

[5] van den Brand, M., Sellink, A. and Verhoef, C. (1998) Current
parsing techniques in software renovation considered harm-
ful. In Proc. 6th Int. Workshop on Program Comprehension,
Ischia, Italy, June 24–26, pp. 108–117. IEEE Computer Soci-
ety Press, Los Alamitos, CA.

[6] Glanville, R. S. and Graham, S. L. (1978) A new method for
compiler code generation. In Proc. Fifth Ann. ACM Symp. on
Principles of Programming Languages, Tucson, AZ, January
23–25, pp. 231–240. ACM Press, New York.

[7] Aho, A. V., Sethi, R. and Ullman, J. D. (1986) Compilers:
Principles, Techniques, and Tools. Addison-Wesley, Reading,
MA.

[8] Bouckaert, M., Pirotte, A. and Snelling, M. (1975) Efficient
parsing algorithms for general context-free parsers. Inform.
Sci., 8, 1–26.

[9] Aycock, J. and Horspool, N. (2001) Directly-executable
Earley parsing. In CC 2001—10th International Conference
on Compiler Construction, Genova, Italy, April 2–6. Lecture
Notes in Computer Science, 2027, 229–243. Springer, Berlin.

[10] Grune, D. and Jacobs, C. J. H. (1990) Parsing Techniques:
A Practical Guide. Ellis Horwood, New York.

[11] Aho, A. V. and Ullman, J. D. (1972) The Theory of Parsing,
Translation, and Compiling, Volume 1: Parsing. Prentice-
Hall, Englewood Cliffs, NJ.

THE COMPUTER JOURNAL, Vol. 45, No. 6, 2002

630 J. AYCOCK AND R. N. HORSPOOL

[12] Schröer, F. W. (2000) The ACCENT Compiler Compiler,
Introduction and Reference. GMD Report 101, German
National Research Center for Information Technology.

[13] Aycock, J. (1998) Compiling little languages in Python. In
Proc. 7th Int. Python Conf., Houston, TX, November 10–13,
pp. 69–77. Foretec Seminars, Reston, VA.

[14] Appel, A. W. (1998) Modern Compiler Implementation in
Java. Cambridge University Press, Cambridge, UK.

[15] Fischer, C. N. and LeBlanc Jr, R. J. (1988) Crafting a
Compiler. Benjamin/Cummings, Menlo Park, CA.

[16] Graham, S. L., Harrison, M. A. and Ruzzo, W. L. (1980)
An improved context-free recognizer. ACM Trans. Program.
Languages Syst., 2, 415–462.

[17] Lang, B. (1974) Deterministic techniques for efficient
non-deterministic parsers. In Automata, Languages, and
Programming, Saarbrücken, July 29–August 2. Lecture Notes
in Computer Science, 14, 255–269. Springer, Berlin.

[18] McLean, P. and Horspool, R. N. (1996) A faster Earley parser.
In Proc. 6th Int. Conf. on Compiler Construction, Linköping,
Sweden, April 24–26. Lecture Notes in Computer Science,
1060, 281–293. Springer, Berlin.

[19] Billot, S. and Lang, B. (1989) The structure of shared
forests in ambiguous parsing. In Proc. 27th Ann. Meeting of
the Association for Computational Linguistics, Vancouver,

Canada, June 26–29, pp. 143–151. Association for Computa-
tional Linguistics, Morristown, NJ.

[20] Vilares Ferro, M. and Dion, B. A. (1994) Efficient
incremental parsing for context-free languages. In Proc. 5th
IEEE Int. Conf. on Computer Languages, Toulouse, France,
May 16–19, pp. 241–252. IEEE Computer Society Press,
Los Alamitos, CA.

[21] Alonso, M. A., Cabrero, D. and Vilares, M. (1997)
Construction of efficient generalized LR parsers. In Proc. 2nd
Int. Workshop on Implementing Automata, London, Canada,
September 18–20. Lecture Notes in Computer Science, 1436,
131–140. Springer, Berlin.

[22] Aho, A. V., Johnson, S. C. and Ullman, J. D. (1975)
Deterministic parsing of ambiguous grammars. Commun.
ACM, 18, 441–452.

[23] Klint, P. and Visser, E. (1994) Using filters for the
disambiguation of context-free grammars. In Proc. ASMICS
Workshop on Parsing Theory, Milano, Italy, October 12–14,
pp. 1–20. Technical Report 12694, Dipartimento di Scienze
dell’Informazione, Università degli Studi di Milano.

[24] Heering, J., Klint, P. and Rekers, J. (1989) Incremental gen-
eration of parsers. In Proc. SIGPLAN ’89 Conf. on Program-
ming Language Design and Implementation, Portland, OR,
June 21–23, pp. 179–191. ACM Press, New York.

THE COMPUTER JOURNAL, Vol. 45, No. 6, 2002

