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Abstract

This paper presents an overview of the data-structures and algorithms used by our group in the imple-
mentation of a statistical anaphora resolver based on the one described by Ge, et al in 1998. Additionally,
we provide numerical and graphical comparisons of the relative performance of our implementation and
theirs. The remainder of this paper is organized as follows:

Section 1 summarizes the base algorithm that our group developed, as described in ”A Statistical Approach
to Anaphora Resolution (Ge, et al. 1998). Section 2 provides motivation for extensions to that base
algorithm, along with the algorithmic enhancements that we implemented to meet those goals. Section
3 reconsiders the material presented in Sections 1 and 2, but in greater depth. Specifically, we discuss
the specific data-structures and optimization techniques that we applied in the implementation of those
algorithms. Section 4 describes the experiments that we performed to gauge the efficacy of our system,
along with qualitative and quantitative summaries of the results that we obtained. Section 5 examines some
possible explanations for the errors exposed in Section 4. And finally, Section 6 summarizes our team’s
findings, as well as suggests avenues for future research. Additionally, Appendix A presents the figures and
data referenced by Section 4.

1 Statistical Anaphora Resolu-
tion

The problem of Anaphora Resolution refers to the
problem of determining the relationship between pro-
nouns (such as he, she, or it) and the antecedent
nouns or noun phrases (such as ‘Mr. Harris,’ ‘Ms.
Lewis,’ or ‘the dog’) that they refer to in a set of log-
ically related sentences, hereafter referred to as ‘sto-
ries.’ For instance, in the following story

Mr. Harris arrived in Munich on Saturday
afternoon. However, he did not meet Ms.
Lewis until the following morning.

there is an anaphora between the pronoun ‘he’ and
the noun ‘Mr. Harris.’

Statistical anaphora resolution, is a branch of sta-
tistical NLP that relies on large corpora of training
data to determine statistical relationships between
words, for the purpose of gauging the relationship
between pronouns and antecedents in the absence of
any higher level expert knowledge of language.

In their landmark 1998 paper, “A Statistical Ap-
proach to Anaphora Resolution,” Ge, Hale, and
Charniak describe a probabilistic architecture for
considering written works and identifying the an-
tecedents that the pronouns therein refer to. The al-
gorithm that they present for doing so approximates
the probability that a candidate antecedent is associ-
ated with a particular pronoun,

P (A(p)) = a|p, h, W̄ , t, l, sp, d̄, M̄)

the semantics of which are described at length in
that paper, and omitted here for brevity, into the
product of four conditional probabilities, which can
be accurately calculated, or approximated, given a
large enough body of training data. By generat-
ing those probabilities for each of a set of candi-
date antecedents, and selecting from that set, the
one that maximizes its approximated probability, or
score, they demonstrate that it is possible to achieve
a success rate of over 80% for anaphora resolution.

Motivations for, along with descriptions of those
four approximated probabilities: Hobb’s score,
gender-animaticity score, mention-count score, and
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parse score, are presented below.

1.1 Hobbs Score

The Hobbs Score derives from Hobb’s algorithm,
which was first proposed by Hobbs in his 1976 pa-
per, “Pronoun Resolution.”

Hobb’s algorithm is essentially a method for
traversing the parse trees generated by a story, be-
ginning from a node used to represent a pronoun and
ending at a node used to represent a noun phrase,
which is in turn proposed as an antecedent for that
pronoun.

Although Hobb’s algorithm, as originally proposed,
has stood the test of time, its original formulation re-
lied crucially on assumptions about the structure of
parse trees, that although at the time were generally
adhered to, have since fallen out of style. Most no-
tably, Hobb’s algorithm, assumed the existence of N̄
nodes, which are conspicuously absent from the Tree-
bank data set, which both this paper, and Ge’s use
as an experimental testbed.

Fortunately, Hobb’s algorithm has since been mod-
ified to work, as nearly as was originally intended,
given the conventions of the Treebank dataset. Pre-
sented below is an algorithmic description of a mod-
ified version of Hobb’s algorithm as suggested by
Tetreault in “A Corpus-Based Evaluation of Center-
ing and Pronoun Resolution.”

1. Begin at the NP node immediately dominating
the pronoun being considered.

2. Walk up the tree that that node appears in to
the first NP or S node encountered. Call this
node X, and call the path used to reach it p.

3. Traverse all branches below X to the left of path
p in a left-to-right, breadth-first manner. Pro-
pose as the antecedent any NP node that is en-
countered which has an NP or S node between
it and X. If no antecedent is found, proceed to
Step 4.

4. If node X is the highest S node in the sentence,
traverse the surface parse trees of previous sen-
tences in the story being considered in order of
recency, the most recent first; each tree is tra-
versed in a left-to-right, breadth-first manner,
and when an NP node is encountered, is pro-
posed as an antecedent. If X is not the highest
S node in the sentence, continue to Step 5.

5. From node X, go up the tree to the first NP or
S node encountered. Call this new node X, and
call the path traversed to reach it p.

6. If X is an NP node and if the path p to X did
not pass through the N node that X immediately
dominates, propose X as an antecedent.

7. Traverse all branches below node X to the left
of path p in a left-to-right, breadth-first man-
ner. Propose any NP node encountered as an
antecedent.

8. If X is an S node, traverse all branches of node X
to the right of path p in a left-to-right, breadth-
first manner, but do not go below any NP or
S node encountered. Propose any NP node en-
countered as an antecedent.

9. Go to Step 4.

In addition to identifying antecedents, Hobb’s al-
gorithm also provides a method for gauging their dis-
tance from the pronouns that it considers. Because
Hobb’s algorithm returns antecedents in increasing
order of distance from a pronoun, if it is allowed to
produce a list of antecedents (by continuing execu-
tion after discovering an antecedent, rather than by
returning immediately) position in that list can be
used as a rough measure of distance.

By running Hobb’s algorithm against an annotated
training corpus, and allowing it to propose a list of
candidate antecedents for every pronoun that it en-
counters, and then recording the number of times
that the i − th item in those lists corresponded to
the correct antecedent for a given pronoun, it is pos-
sible to establish a statistical model of the expected
number of items that must appear in those lists before
the correct antecedent for a given pronoun appears,
hereafter referred to as ‘Hobb’s distance.’

Accordingly, Hobb’s score, which is designed to
capture the expected distance between pronouns and
the antecedents that they refer to, is defined as fol-
lows: The probability that a candidate antecedent
occurring at Hobb’s distance i in a list of candidate
antecedents proposed by Hobb’s algorithm for a given
pronoun is the ration of the number of times that a
correct antecedent was observed at that Hobb’s dis-
tance in some body of training data, divided by the
number of times that Hobb’s algorithm generated the
correct antecedent for a pronoun, at any Hobb’s dis-
tance:
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P (dH = i|a) =
|correct antecedents at Hobbs dist. i|

|correct antecedents|

Hobb’s distance is perhaps a more telling metric of
distance than intermittent words, when considering
a potential antecedent for a given pronoun. Consider
the following two examples:

Mr. Harris stayed at home, whereas Ms.
Lewis went out. He did his laundry.

Mr. Harris stayed at home, whereas Ms.
Lewis went out, after having spent the entire
day indoors. He did his laundry.

Whereas the number of intermittent words between
‘Mr. Lewis’ and ‘he’ varies significantly between the
two, Hobb’s algorithm would identify Mr. Harris at
the same Hobb’s distance in both cases. This fact
suggests that Hobb’s algorithm is able to correctly
ignore subordinate clauses that appear between an-
tecedents and pronouns, and yet have no bearing on
their relationship.

1.2 Gender-Animaticity Score

Gender-Animaticity score represents a rough attempt
to determine the likelihood that a candidate an-
tecedent belongs to class of nouns or noun phrases
that the pronoun being considered is associated with.
For example, in the following sentence,

Mr. Harris and Ms. Lewis are getting mar-
ried. He doesn’t seem happy with the idea.

The pronoun ‘he’ is understood to refer to ‘Mr.
Harris’ because it is associated with the class of mas-
culine nouns or noun phrases, to which ‘Ms. Lewis,’
as opposed to ‘Mr. Harris,’ does not belong.

Similarly, in the following sentence, ‘it’ clearly
refers to the inanimate object that is referenced.

Mr. Harris was sitting on the table next to
the lamp. It hadn’t been dusted in weeks.

Additionally, the gender-animaticity score can also
be used to discriminate between the plurality of the
nouns referenced by pronouns such as ‘he’ and ‘they,’
which might respectively refer to ‘Mr. Harris,’ and
‘his family,’ but not vice-versa.

The gender-animaticity score is calculated by
dividing the number of times that a pronoun-
antecedent anaphora pair appeared in training data,

divided by the total number of times that that an-
tecedent was observed:

P (p|wa) =
|wa in the antecedent for p|

|wa|

Oftentimes, however, data for the gender-
animaticity score is quite sparse, as most antecedents
tend to appear rather infrequently, and it is often the
case that antecedents observed in training data do not
appear in test data at all. Accordingly, smoothing
is applied to compensate for that fact. Specifically,
when a previously unobserved antecedent is consid-
ered as the referent of a given pronoun, its gender-
animaticity score is defined as the prior probability
of that pronoun.

In the equation presented above, we interpret |wa|
to be the number of times that the antecedent phrase
wa was the referent of any pronoun, rather than the
number of times that it was observed. The motivation
behind this assumption is explored further in Section
3.

1.3 Mention-Count Score

Mention-Count score is designed to model the impor-
tance of an antecedent in a given story. Essentially,
antecedents that appear frequently in a story, are
more likely to be the referent of a particular pronoun
than those that are only mentioned once or twice.
Because the number of times that an antecedent has
appeared by the time that the pronoun with which it
should be associated appears is a function of how far
into a story that pronoun appears, calculation of the
mention-count score involves determining how many
sentences into the story being considered that that
pronoun appears:

P (a|ma, j) =
|antecedent a seen matimes by sentence j|

|wa|

As was the case for the gender-animaticity score,
data tends to be quite spare for the mention-count
score, and a certain amount of smoothing is necessary
to compensate for that fact.

First, because the number of times that an-
tecedents appear in stories varies wildly, rather than
explicitly represent the number of times, |ma| that
an antecedent has appeared, that count is instead
bucketed. Doing so allows antecedents that are men-
tioned in test data, a number of times that had pre-
viously never been observed, to be treated identically
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to those that appeared in training data, a nearly iden-
tical number of times.

Second, because most antecedents tend to appear
rather infrequently, and it is often the case that a pre-
viously unobserved antecedent is encountered during
testing, the mention-count score for such antecedents
is approximated as one, divided by the number of
times that any antecedent was seen |ma| times by
the j’th sentence in a story.

1.4 Parse Score

Parse score is designed to capture the fact that cer-
tain language patterns tend to repeat themselves
more often than others, and that those patterns can
be exploited to determine the relationship between
pronouns and antecedents. Specifically, if an an-
tecedent is referred to by a pronoun when it occurs
in a certain syntactic relationship, which is defined in
terms of the nodes that immediately surround that
antecedent in a parse tree, then it is likely to be the
referent of the pronoun that is most often associated
with that pattern.

To be precise, parse score is defined as follows:

P (wa|h, t, l) =
P (wa|h, t, l)
P (wa|t, l)

where wa is an antecedent, and after turning the
sentence that it appears in into a parse tree, t is the
type of the node that it is associated with, l is that
node’s parent’s type, and h is the head, or the some-
what loosely defined, ‘most significant’ component of
that node’s parent node.

A simple, yet effective technique for determining
a node’s head, is taken from the OpenNLP project
(http://opennlp.sourceforge.net/), and is described
algorithmically, below:

1. If the node being considered has more than two
children, the first two of which are NP nodes,
and the second of which is a pre-terminal node,
return that node’s third child.

2. If the node being considered has more than one
child,

(a) If that node’s first child is an NP node,
perform a left-right depth-first traversal be-
ginning from that node and return the last
node encountered.

(b) If any of that node’s children are pre-
terminal, and are of type CC, then return
the left-most such node that is encountered.

(c) If any of that node’s children are NP nodes,
return the left-most such node that is en-
countered.

3. Return that node.

As parse score tends to be even sparser than the
two previously mentioned score, extra measures are
taken to ensure that it is smoothed in a reasonable
way. As suggested by Charniak in “Statistical Pars-
ing with a Context-free Grammar and Word Statis-
tics,” that smoothing is achieved by the equation

p(a|h, t, l) = λ1p(a|h, t, l)
+ λ2p(a|ch, t, l)
+ λ3p(a|t, l)
+ λ4p(a|t)

where ch is used to represent the class of node
types that the head that is being considered refers
to. In practice, head classes are even more loosely
defined than heads themselves, and although several
techniques have been proposed for their classification,
most notably by Charniak, there appears to be no
clear consensus on how to do so.

1.5 Anaphora Resolution

Given the four conditional probability estimates pre-
sented above, Ge, et al, propose the following method
for determining the correct antecedent to associate
with a given pronoun.

Beginning from the pronoun being considered,
Hobb’s algorithm is run repeatedly until an accept-
ably large number of candidate antecedents are pro-
posed. For each of those antecedents, the four ap-
proximate probabilities mentioned above, are multi-
plied together as an estimate of the true probabil-
ity that a given antecedent is correct, given the pro-
noun being considered. Ultimately, the candidate an-
tecedent that produces the largest probability is pro-
posed as a result.

What is important to note about Ge’s method is
that because the four conditional probabilities de-
scribed above are only approximations, there is no
guarantee that they, or their product, will repre-
sent true probability distributions. Fortunately, Ge’s
method concerns itself only with the maximization of
their product. Accordingly, although originally pro-
posed an approximation to a true probability distri-
bution, deriving from independence assumptions, the
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four probabilities described above, can equally well
be though of as scores.

The extensions described in the following section
depend largely on that intuition.

2 Extensions

The algorithm presented above has proved to be an
effective method for resolving anaphoras. The four
component scores that it makes use of correspond to
key intuitions that fit together into a natural approx-
imation for the probability that a pronoun is related
to an antecedent.

However, while that approximation is somewhat el-
egant, it perhaps places an unnecessary restriction
upon its use in the context of more general scoring
functions. Specifically, if one’s goal is to correctly re-
solve as many anaphora as possible, it perhaps makes
sense to move away from the intuition that those four
component scores be multiplied together to approxi-
mate a true probability, and to instead consider them
in a more general form, simply as score functions.

Doing so allows one to use the component score
described above as a base for a more involved scor-
ing function that itself incorporates additional scor-
ing methods, that although no longer an accurate ap-
proximation to a legitimate probability, produces en-
hanced performance characteristics.

Two such extensions to those component scores,
along with a method for combining them with Ge’s
scoring functions, are described below.

2.1 MaxEnt Antecedent Classification

One possible extension to Ge’s scoring functions is
a more extensive pronoun-antecedent classification
system, which could be used to address what Ge
described as an inability to accurately capture the
pronoun-antecedent relationships that the gender-
animaticity score was aimed at describing. By pro-
viding an additional method for capturing an an-
tecedents gender and animaticity, it is perhaps pos-
sible to obtain more accurate information about an
antecedent’s traits than could be obtained by simply
counting sparse training data instances.

Such classification could be obtained through the
use of a maximum entropy classifier, based on char-
acter n-gram models. Training might be accom-
plished by considering each of the matching pronoun-
antecedent pairs in some body of training data, and
treating the pronoun being considered as the ‘class’ of

the antecedent. Similarly, during testing, whenever
a candidate antecedent is encountered, that classi-
fier could be used to suggest an appropriate pronoun
class. If that class is identical to the pronoun being
considered, a scoring boost might be awarded. Simi-
larly, if the two differ, than a penalty might instead
be applied. The amount of boost or punishment to
apply based on the result of such classification could
be tuned using a validation set.

2.2 Language Model Scoring

Another possible extension one might choose to im-
plement is the use of a language model. Specifically,
given a candidate antecedent for a particular pro-
noun, a language model could be used to gauge how
‘natural’ it might sound if that antecedent were sub-
stituted for that pronoun.

Such a scoring function is motivated by the intu-
ition that only when the correct antecedent is selected
for a particular pronoun, can the sentence that that
pronoun appears in be read, given the antecedent sub-
stitution, without sounding awkward or grammati-
cally incorrect. Accordingly, because language mod-
els attach higher probabilities to grammatically cor-
rect, natural sounding sentences, such a probability
could be employed as an additional scoring boost or
penalty to a candidate antecedent.

A natural choice for such a language model is the
Trigram Language Model based on smoothing that
uses Absolute Discounting, which presented during
the first three weeks of the quarter, and proved em-
pirically to be quite effective at detecting sentence
correctness.

2.3 Combining Scoring Functions

Having developed the scoring functions described
above, the question remains how they might be com-
bined with those proposed by Ge.

One possible approach is to multiply the two new
scores with Ge’s original four. However, because do-
ing so would completely remove their products’ inter-
pretability as a legitimate probability, there is per-
haps little incentive to do so. Specifically, the scoring
functions proposed above each operate on drastically
different scales, whereas language model score is in
the range between zero and one, MaxEnt score is sim-
ply a binary yes-no that might be converted into an
arbitrary boost-punishment.

And alternate approach would be to add the two
new scores to Ge’s original four. The advantage of
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addition over multiplication is that it affords the op-
portunity to apply different weights to each scoring
function, based on their experimentally determined
efficacy. However, such an approach perhaps only
makes sense if an appropriately large amount of time
might be devoted to the tuning of such parameters.

Something of a hybrid approach between the two
techniques mentioned might be a product where each
term is weighted by an exponent. However, what
advantages, if any, such an approach might offer over
a simple weighted sum, are unclear.

A final approach is would be something of a vot-
ing algorithm. Essentially, each scoring algorithm
would be permitted to rank each of the candidate
antecedents that they are presented in order of in-
creasing score. Having done so, final scores could be
determined by performing a possibly weighted addi-
tion of the ranks generated by each function. The
most notable flaw in such a design is that the Max-
Ent score, as proposed above, does not generate con-
tinuous values, but rather a fixed boost or punish-
ment score. Accordingly, if such a technique were to
be applied, the MaxEnt score would either have to
be incorporated differently, or modified to produce
a continuous range of values, neither of which seem
very appealing.

Ultimately, given the time constraints related to
this project, incorporating the two new scores de-
veloped above, with those developed by Ge through
simple multiplication is perhaps the most reasonable
approach to take. Although the results produced by
doing so might ultimately prove inferior to those that
could be obtained by deciding otherwise, there is re-
grettably too little time to allocate the alternative
techniques the time that they deserve.

3 Implementation Details

Our group chose to use Java to build our anaphora
resolution system. This allowed us to leverage sev-
eral NLP components that our group developed pre-
viously over the course of the quarter. Additionally,
the decision to do so allowed our group to make use
of NLP data structures such as CounterMap, which
were provided on the course web space.

Details of how our group used those tools to im-
plement the algorithms described in Sections 2 and
3, are described in the sections below.

3.1 Hobbs Implementation

Our group’s implementation of Hobb’s algorithm was
essentially identical to the one presented in Section
2, that is attributed to Tetreault. At the suggestion
of Chris Manning and Bill MacCartney, given the
semantics of the annotations used in the Treebank
data set, S nodes were taken as any of the following:
S, SBAR, SBARQ, SINV, or SQ. Similarly, N nodes
were taken as any of the following: NN, NNS, NNP,
NNPS, NX, or PRP.

Even in light of Tetreault’s modifications to Hobb’s
algorithm, there still exist instances in the Treebank
data set, that fail to satisfy some subset of the as-
sumptions made by the algorithm as it is written.
When such instances presented themselves, which
was rarely, our group simply chose to discard the
pronoun being considered at the time, so as not to
introduce erroneous data into our experiments.

3.2 Gender-Animaticity Implementa-
tion

The implementation of the gender-animaticity score
was relatively straight-forward, as it simply required
a count of antecedents and the pronouns they occur
with. Wherever multiple antecedents related to the
same pronoun, each of those instances were recorded
as data points, rather than just the one that was clos-
est to that pronoun.

Although doing so perhaps somewhat mitigated
the data sparsity problem mentioned in Section 2,
by introducing as many antecedents into our count
repositories as possible, ultimately data sparsity re-
mained a serious issue, given the relative infrequency
of antecedent types.

Although the smoothing that our group chose to
implement followed Ge’s suggestion to simply substi-
tute the prior probability of the pronoun being con-
sidered, there appeared to be little intuitive reason
to do so. Ultimately the decision was made for lack
of a better idea.

3.3 Mention-Count Implementation

The mention count score was similarly easy to im-
plement, as it only required keeping counts of the
number of times that an antecedent has been seen
in a given story. Our group defined a repeat men-
tion to be an exact string match between two labeled
antecedents.
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A cursory inspection of the training data that our
group ran our algorithms against suggested that most
antecedent strings occur exactly once in a story, while
many others occur two or three times. Other numbers
of occurrences are generally unusual and sporadic.
Accordingly, to bucket those counts appropriately, we
assigned the counts 1, 2, and 3, their own buckets, 4,
5, and 6, to a single bucket, and all higher counts into
a final bucket. Although there was insufficient time
to perhaps learn a better bucketing function given
validation data, we believe that our decision was a
reasonable one given our observations.

While several other bucketing schemes were at-
tempted, a brief, qualitative inspection of the dis-
tribution of counts in those buckets suggests that at
least among the schemes that we examined, the one
that we settled upon proved the most effective.

3.4 Parse-Score Implementation

Implementing the parse probability statistic did not
provide much of a challenge given that our training
and test data were already marked up with full parse
tree information. To determine the type of an an-
tecedent, we simply examined its tree label. To make
it easier to retrieve the type of a node’s parent in a
parse tree (and to make the implementation of Hobbs
algorithm easier) we transformed all Tree objects into
MTrees, which are identical to Trees, with the excep-
tion that they also contain pointers to their parents.

To extract an antecedent’s head, we used the al-
gorithm presented in Section 2, that is used in the
OpenNLP project. Although doing so made im-
plementation rather straightforward, we believe that
such a rule-based approximation is perhaps not en-
tirely accurate, and might ultimately prove to be
source of error in our methods.

Once heads and types were extracted, producing
parse probability estimates was simply a matter of
dividing counts. Some additional smoothing did how-
ever, need to be applied to the smoothing components
described in Charniak’s paper, ”Statistical Parsing
with a Context-free Grammar and Word Statistics”
when appropriate data was unavailable. Specifically,
it was necessary to approximate the final statistic
p(a|t), when the antecedent being considered had not
been seen in combination with the type being consid-
ered, as 1/|antecedenttypes|.

While applying the smoothing described in Sec-
tion 2, we chose simple lambda values of 1

3 for each
statistic, other than the clustering statistic, which
was assigned a weight of 0. The decision to do so

was a function of time constraints, which prevented
our group from being able to implement some form
of parameter tuning based on validation data, and
from locating an appropriate resource that described
a method for performing head classification. It is un-
doubtedly the case that had the effort been devoted
to some form of intelligent parameter tuning, a sub-
stantial improvement in experimental results would
have been realized.

3.5 MaxEnt and Language Model
Scores

Our group chose to reuse the MaxEnt classifier that
we developed during the fourth and fifth weeks of the
quarter as the MaxEnt scoring component described
in Section 3.

As suggested earlier, each unique pronoun that
appeared in training data was taken to represent a
unique class to which antecedents might be fit. As
our group previously demonstrated that an n-gram
based classification system proved to be an effective
technique for accurate classification, we opted to clas-
sify antecedents based on a combination of their 2, 3,
and 4-gram character characteristics.

Our group similarly chose to reuse the Trigram
Language model that we developed during the sec-
ond and third weeks of the quarter as the Language
Model scoring component described in Section 3.

The modifications that our group made to that
model’s original architecture, which permitted appli-
cation to the BLLIP dataset, allowed for integration
with a minimal amount of modification.

3.6 The BLLIP-WSJ Dataset

The dataset that our group chose to use for exper-
imentation was the BLLIP 1987-1989 Wall Street
Journal Corpus, Release 1, created by the Brown
Laboratory for Linguistic Information Processing. It
is organized according to the standard Penn Treebank
conventions, with the following exceptions:

• Certain auxiliary verbs (e.g., ”have”, ”been”
etc.) are deterministically labeled AUX or
AUXG (e.g., ”having”).

• Root nodes are given the new non-terminal la-
bel S1 (as opposed to the empty string in the
treebank).
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• Number attached to non-terminals indicating
coreference are preceded by ”#” (as opposed to
”-” in the treebank).

• Two new grammatical function tags, PLE and
DEI, have been added. These tags are used to
mark two forms of non-coreferential pronouns,
deictic and pleonastic.

The corpus is also broken up into separate story
files, where several sentences on a related topic com-
prise a story. Coreferences between pronouns and
antecedents occur only within stories, and never be-
tween them, even if the topic being discussed within
both is identical.

During experimentation, it became clear that de-
spite its widespread usage, the BLLIP dataset ap-
pears to contain multiple instances of annotations
that appear incorrect. Specifically, pronouns are of-
ten tagged as referring to antecedents with which
they appear to have no logical relation. Similarly,
it is often the case that gender and animaticity are
incoherent for a given pronoun-antecedent pair. The
consequences of this fact are discussed further in Sec-
tion 5.

3.7 High-Level Details

Training for the system described in Sections 2 and
3 is accomplished by parsing a set of stories from the
BLLIP data set. For each story, pronoun-antecedent
pairs are extracted and combined into counts for each
of the scoring functions described above.

Once training is complete, a separate body of sto-
ries are read in from the BLLIP dataset for testing
purposes. For each story, pronouns are extracted, as
are the antecedents that they are annotated as being
associated with. As suggested by Ge and Hobb, sen-
tences often contain dangling pronouns that do not
relate to any particular antecedent. For instance, in
the sentence

It is raining

there is no antecedent to which ‘it’ directly refers.
Whenever such pronouns are encountered, that is,
those that have no associated antecedent in a story,
they are discarded. Otherwise, Hobb’s algorithm
is used to generate a set of fifteen candidate an-
tecedents, to which the scoring functions described
above are applied. Whichever of those antecedents
achieves the greatest score is returned as a result.

Those returned antecedents are then examined to
determine whether or not they are correct, given the
annotations of the story that they appear in. The
algorithm is applied to a sufficiently large body of
test data, and the fraction of correct antecedent se-
lections over all pronouns considered is presented as
a measure of its efficacy.

4 Experiments

This section summarizes the experiments used to fur-
ther test our anaphora resolution system.

4.1 Experiment 1

Our first experiment was to run each of the heuris-
tics listed above individually to see how they perform
on their own. In doing this, we chose the 15 top an-
tecedents according to Hobb’s algorithm, then rank
them by the score given by each heuristic. We used a
test set of 1,635 pronouns, over 98 stories to evaluate
the percentage that the classifier labeled correctly.
The results are displayed in Figure 1. Hobb’s algo-
rithm, which by itself finds over 54% of the correct
antecedents, provides a very stable footing on which
to improve.

4.2 Experiment 2

In order to hopefully improve on the results from Ex-
periment 1, we tested combining the heuristics. A
sample of our results can be found in Figure 2. Un-
fortunately, it seems that combining features as dis-
cussed in Ge, et. al. was not as effective as we had ini-
tially hoped. At best, other heuristics do not change
the ranking achieved by the Hobb’s distance. This
issue is further discussed in the following section.

4.3 Experiment 3

In an attempt to gain more insight into what might be
causing the poor performance, we found the rank of
each antecedent according to our scoring functions,
and kept a running total of how many of these an-
tecedents were placed in each rank. The output,
running only Hobb’s score, is displayed in Figure 3.
54.9% of the time, the correct antecedent is ranked
first, 76% are placed in the top 3, and 83% in the
top 5. From this, it is evident that Hobbs is being
effective at suggesting the correct antecedents.
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When we run this experiment with more scoring
functions, however, we get a more dispersed spread.
Using Mention Count, Parse Probability, Gender and
MaxEnt we get the graph in Figure 4. In this graph,
the correct antecedent is ranked first only 45% of the
time, top three only 72%, and top five only 80%.
Clearly, the other scoring functions are not adding
much value in the current implementation.

5 Error Analysis

To analyze the sources of our anaphora resolution
errors, we printed out each candidate proposed by
Hobbs, followed by each component score, and finally
the composite score and a special marking for the cor-
rect candidates. Examination of this output yielded
several interesting Examination of that output lead
to several interesting observations about the sources
of error for each scoring mechanism, along with what
improvements might most benefit the composite score
generated by our algorithm, and as a result, lead to
more accurate identification of antecedents.

5.1 Data Sparsity

The first and most profound source of error that we
observed was clearly due to sparsity of training data.
While we initially assumed that fact to be a func-
tion of the size of our training data, we saw little
improvement when that data set was augmented to
encompass the entire 1987 portion of the BLLIP-WSJ
dataset. The problem instead appears to be a func-
tion of the fact that antecedents are exactly the kinds
of words that are not commonly repeated, even in
large bodies of text. Instead, most often they are
proper nouns, referring to very specific entities. An-
other factor that exaggerates that problem is that
those specific entities are often be referred to in a va-
riety of ways, and seeing an entity named one way
affords no information related to the different nam-
ings that it takes on.

Contributing to the problem even further is the fact
that the BLLIP dataset often tags larger phrases than
the true antecedent that it presumably intends to re-
fer to. As an example, the antecedent, ‘Mr. Harris,
who is chairman of the board,’ might often be tagged
as the referent of ’he,’ when clearly, ‘Mr. Harris’
would suffice. Ultimately this may be a consequence
of the BLLIP dataset’s convention of only tagging a
small set of grammatical types as antecedents. If that
proved to be the case, then some method of extracting

the most significant part of those antecedents might
result in the extraction of less unique, more salient
antecedents, and as a result, produce data sets that
did not require such extensive smoothing.

The data sparsity problem manifested itself in
gender-animaticity score, mention count score, and
parse-probability score, as they all relied on counts
related to specific antecedents.

Our first attempt at addressing that issue was to
extract a head from each antecedent, and to then
use that head in all further calculations, instead of
the full antecedent itself. This however, did not lead
to consistent improvement, possibly because of the
inadequacy of our primitive head-finding function.

Our second attempt at addressing the data sparsity
problem was to compute statistics separately for each
word in a given antecedent. Accordingly, the score
that a candidate antecedent was given was defined
as the average score of each of its component words.
While this technique did have the effect of spread-
ing data out more evenly and resulted in a decreased
need for smoothing, it also seemed to dilute the value
of each of the original scoring functions, and added
significant noise in the form of ‘filler’ words that by
themselves conveyed no useful information relating to
the antecedent that they appeared in.

5.2 Smoothing Techniques

As suggested repeatedly in Section 4, the anaphora
resolution algorithm that our group implemented
left substantial room for the possibility of training
smoothing weights based on validation data. Un-
fortunately, given time constraints, there proved to
be little opportunity to adequately explore intelligent
techniques for doing so. As the odds that the weights
that our group happened upon in an ad-hoc fash-
ion were actually optimal, given the datasets that we
considered, are astronomically small, it is almost cer-
tainly the case that we might achieve a substantial
reduction in misclassifications if we were to do so.

5.3 Combining Scores

As Section 4 indicates, each of the scoring functions
that our group implemented, proved moderately suc-
cessful; no one function was completely unable to cor-
rectly identify the appropriate antecedent for some
percentage of the pronouns that our algorithm was
applied to. Moreover, the figures in Section 4 suggest
that while our algorithm only achieves a correct an-
tecedent identification of slightly more than 50%, it
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is almost never the case that any of the three high-
est scoring antecedents that it considers are incorrect,
given the pronoun being considered.

Such results strongly suggest that perhaps the most
significant source of error in our algorithm was the
method that we chose to combine the scoring func-
tions that we developed. Clearly, if our group were
able to develop a method for performing a closer ex-
amination of the three highest-scoring candidate an-
tecedents for a given pronoun, and from that pool,
ultimately selecting an antecedent, we might be able
to achieve a success rate much nearer to that obtained
by Ge.

6 Conclusion

Somewhat surprisingly, our group’s initial implemen-
tation of the algorithm described by Ge for anaphora
resolution, was unable to produce results that agreed
with those presented in his paper. Specifically,
whereas Ge was able to claim a successful classifi-
cation rate of over 80%, our group’s implementation
topped out somewhere in the mid fifties.

As suggested above, presumably the most likely
reasons for such a discrepancy were the sparsity of
the data that our group considered, the techniques
that were applied to smooth that data, and an ambi-
guity in many of the algorithms and methods applied
by Ge in his paper. Accordingly, future research in
the anaphora resolution domain might begin with a
correspondence with Ge regarding some of the ma-
jor implementation details that remain unclear in his
publication. Where such clarifications still do not re-
solve the discrepancy between classification rates, a
closer inspection of the techniques that were applied
for smoothing, along with a more intelligent method
for training the weights that those techniques involve
might be applied.

Although the extensions to Ge’s algorithm investi-
gated by our group did prove rather promising, inso-
far as their implementation resulted in an anaphora
resolution system that rarely ranked the correct an-
tecedent for a given pronoun below the top 20% of
those candidate antecedents that it considered.

As suggested in Section 4, a natural extension to
the work reported in this paper would be research
into more effective methods for combining and inter-
preting the scores generated by our algorithm. Ex-
perimentation suggests that the correct results are
there; they want only to be found.

A Graphical Appendix

All figures referred to in this paper are provided be-
low.

B Contribution

Our group compiled this project using pair program-
ming over several late nights in our dorm rooms.
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Figure 1: Anaphora resolution accuracy with for each heuristic individually.
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Figure 2: Anaphora resolution accuracy with for combined heuristics.
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Figure 3: Number of correct antecedents ranked first, second, third, etc. by Hobb’s Score.
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Figure 4: Number of correct antecedents ranked first, second, third, etc. by Hobb’s, Gender, Mention Count,
Parse Probability and MaxEnt.
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