
Balanced Non-blocking Binary Search Trees
Trevor Brown, supervised by Eric Ruppert

DisCoVeri Group, York University

What We Created

I The first non-blocking, balanced binary search tree (BST) that is
simultaneously accessible by many processes
. Balanced

Every leaf is O(log(n) + F) steps from the root
(n = # of keys in dictionary and F = # of accessing processes)

. Non-blocking
Guarantees that, infinitely often, some operation completes
This implies the structure cannot use locks

. Linearizable
Every concurrent execution is consistent with some correct serial execution

I Model of computation
. Asynchronous
. Crash failures are possible
. Shared memory with compare and swap instruction (CAS)

Related Work

I Non-blocking BST of Ellen, et al. [2]
. Helping: Storing sufficient information at nodes to allow any process to

complete an operation in progress (for non-blocking property)
. Flagging and marking: CAS’ing helping information into a node before

changing a child link or removing it from the tree (to coordinate processes)
I Chromatic search trees of Nurmi and Soisalon-Soininen [3]
. Generalization of red-black trees allowing weight > 1
. Decouple rebalancing from updates so that it can be delayed

I Amortized analysis of chromatic search trees by Boyar, et al. [1]
. Presented a modified set of rotations
. Proved any sequence of applicable rotations will restore balance
. Proved bounds on number of rotations needed to restore balance

Tree Structure and Modifications

Insert Operation Example chromatic tree

(Keys in tree: b, d, e)

Delete Operation

 k0,w

 d,1

 c,0

e,1

 e,2 b,1 (b)

Insert(k1)

 k0,w k1,w-1

k0,1 k1,1

(b)

Delete(k1)

 k0,w0

 k1,w1 k2,w2

 k0,w0

 k1,w1 k2,w2

 A B
A

 B

 k2,w0+w2

(In diagrams, square nodes are leaves; round nodes are leaves or internal nodes.)

I Structure is a leaf-oriented tree
. Full binary tree with internal nodes to guide searches to leaves
. Set of keys in dictionary = set of keys in leaves

I Weights used to maintain balance
. 0 and 1 correspond to red and black in a red-black tree
. Red-red violations as in familiar red-black trees
. Red-black trees have only limited overweight violations (weight = 2)
. Chromatic trees allow arbitrary overweight violations (weight > 2)

I Operations create replacement sub-trees of entirely new nodes,
and atomically splice them into the tree with a single CAS
. Insert replaces a leaf with sub-tree containing three new nodes
. Delete replaces a sub-tree with a new copy of the remaining node

(It removes the deleted leaf and a deprecated internal routing node)
. Rotations are similar, with replacement sub-trees of varying size
. Maintains consistent data for “stranded” searching processes

Freezing

I Is a generalization of flagging and marking
. Before an operation can modify a node,

it must freeze it
. A node is frozen when its op field refers

to an active operation object
. Guarantees atomicity of updates

I How is it used in the algorithm?
. A node must be frozen before being

modified or removed from the tree
. All processes respect freezing, and once

an operation’s nodes are entirely frozen,
it will be completed before any of its
nodes are unfrozen

. Searches can safely ignore freezing,
updates, and rotations, and proceed
exactly as in the sequential case.

Read x’s op field

 Yes

No

CAS operation into x.op

 No

Yes

Want to change weight

or child pointer of node x

Is x already

frozen?

We try to freeze it with a

new operation object

describing our change

Is the op. stored

after the CAS?

x has been frozen (by us or a

helper), so we can freeze the

next node, or perform the op.

Another process

has frozen x, so we

help them and retry

our operation

Algorithm for Insert and Delete

Unfreezing Child CAS Freezing Example: steps for Delete(d)

b,1

 d,1

A

B

 c,0

 e,2

 e,1

b,1

 d,1

A

B

 c,0

 e,2

 e,1

b,1

 c,0

 e,2

 e,1 d,1

A

B

 e,3 b,1

 c,0

 e,2

 e,1 d,1

A

B

 e,3

I Algorithm overview
. Create an Operation object op
. Call Help(op) to perform all helping steps
. If the operation is flagged Retry, then restart the algorithm
. Otherwise, Help successfully completed the operation, so

I If the operation created any violations, call Clean-up
I Help(op) steps for an Operation
. Any process can perform these steps to help the operation complete
. Freezing: all affected nodes are frozen in sequence
. Child CAS: a new replacement for the frozen sub-tree is swapped in
. Unfreezing: the parent of the replaced sub-tree is unfrozen

I What if a step cannot be completed?
. If the step was completed by another process, move to the next step
. Otherwise

I If another operation was blocking ours, call Help on it
I Unfreeze all nodes, and set the operation’s retry flag

I The clean-up phase
. Initiated by the process P that invoked the Insert or Delete
. As above, P creates op (appropriate rotation operation) and calls Help
. However, instead of restart on a Retry flag, P attempts to fix all violations

on the search path to the leaf updated by the Insert or Delete
. This phase ends as soon as P does one of the following

I Perform a rotation that does not create a violation
I Encounter no violations along the path from the root to the leaf

Linearizability and Correctness

A linearizable concurrent execution history

p
ro

ce
ss

e
s

time

P

Q

Insert(a)

Search(a) Search(a)

Insert(a)

Delete(a)

Search(a)

true true true

true true false

A non-linearizable version

time

P

Q

Insert(a)

Search(a) Search(a)

Insert(a)

Delete(a)

Search(a)

p
ro

ce
ss

e
s

true false true

true true false

I Linearizability is a correctness condition for concurrent algorithms
I A concurrent execution history (sequence of operation invocations and

responses) is linearizable if one can choose a “linearization point” within each
operation (see stars in the above diagram) such that:
. A correct, sequential execution of the operations, ordered by these points,

produces operation responses consistent with the history
I An algorithm is linearizable if all possible execution histories are linearizable
I For instance, in this algorithm, the linearization points are:
. For an Insert or Delete, the precise moment the new sub-tree is CAS’ed

into the tree structure
. For a Search(k), a point when the leaf was on the search path to key k

(It is proven by induction that every node visited by a search to key k was
on the search path to k at some point during the search.)

Future Work

I Implementation and experimental performance evaluation
I Theoretical performance analysis
I Formal proof of correctness
I Performance improvements
I Making operations wait-free
I Adding more operations (predecessor, successor, clone, etc.)

Bibliography

[1] J. Boyar, R. Fagerberg, K. S. Larsen, Amortization results for chromatic
search trees, with an application to priority queues. In Proc. 4th Intl.
Workshop on Algorithms and Data Structures, WADS ’95, pp. 270–281, 1995.

[2] F. Ellen, P. Fatourou, E. Ruppert, F. van Breugel, Non-blocking binary search
trees. In Proc. 29th ACM Symposium on Principles of Distributed Computing,
pp. 131–140, 2010.

[3] O. Nurmi, E. Soisalon-Soininen, Chromatic binary search trees: A structure for
concurrent rebalancing. Acta Informatica, 33(6):547–557, 1996.

