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What We Created

I The first non-blocking, balanced binary search tree (BST) that is
simultaneously accessible by many processes
. Balanced

Every leaf is O(log(n) + F ) steps from the root
(n = # of keys in dictionary and F = # of accessing processes)

. Non-blocking
Guarantees that, infinitely often, some operation completes
This implies the structure cannot use locks

. Linearizable
Every concurrent execution is consistent with some correct serial execution

I Model of computation
. Asynchronous
. Crash failures are possible
. Shared memory with compare and swap instruction (CAS)

Related Work

I Non-blocking BST of Ellen, et al. [2]
. Helping: Storing sufficient information at nodes to allow any process to

complete an operation in progress (for non-blocking property)
. Flagging and marking: CAS’ing helping information into a node before

changing a child link or removing it from the tree (to coordinate processes)
I Chromatic search trees of Nurmi and Soisalon-Soininen [3]
. Generalization of red-black trees allowing weight > 1
. Decouple rebalancing from updates so that it can be delayed

I Amortized analysis of chromatic search trees by Boyar, et al. [1]
. Presented a modified set of rotations
. Proved any sequence of applicable rotations will restore balance
. Proved bounds on number of rotations needed to restore balance

Tree Structure and Modifications
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(In diagrams, square nodes are leaves; round nodes are leaves or internal nodes.)

I Structure is a leaf-oriented tree
. Full binary tree with internal nodes to guide searches to leaves
. Set of keys in dictionary = set of keys in leaves

I Weights used to maintain balance
. 0 and 1 correspond to red and black in a red-black tree
. Red-red violations as in familiar red-black trees
. Red-black trees have only limited overweight violations (weight = 2)
. Chromatic trees allow arbitrary overweight violations (weight > 2)

I Operations create replacement sub-trees of entirely new nodes,
and atomically splice them into the tree with a single CAS
. Insert replaces a leaf with sub-tree containing three new nodes
. Delete replaces a sub-tree with a new copy of the remaining node

(It removes the deleted leaf and a deprecated internal routing node)
. Rotations are similar, with replacement sub-trees of varying size
. Maintains consistent data for “stranded” searching processes

Freezing

I Is a generalization of flagging and marking
. Before an operation can modify a node,

it must freeze it
. A node is frozen when its op field refers

to an active operation object
. Guarantees atomicity of updates

I How is it used in the algorithm?
. A node must be frozen before being

modified or removed from the tree
. All processes respect freezing, and once

an operation’s nodes are entirely frozen,
it will be completed before any of its
nodes are unfrozen

. Searches can safely ignore freezing,
updates, and rotations, and proceed
exactly as in the sequential case.
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Algorithm for Insert and Delete
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I Algorithm overview
. Create an Operation object op
. Call Help(op) to perform all helping steps
. If the operation is flagged Retry, then restart the algorithm
. Otherwise, Help successfully completed the operation, so

I If the operation created any violations, call Clean-up
I Help(op) steps for an Operation
. Any process can perform these steps to help the operation complete
. Freezing: all affected nodes are frozen in sequence
. Child CAS: a new replacement for the frozen sub-tree is swapped in
. Unfreezing: the parent of the replaced sub-tree is unfrozen

I What if a step cannot be completed?
. If the step was completed by another process, move to the next step
. Otherwise

I If another operation was blocking ours, call Help on it
I Unfreeze all nodes, and set the operation’s retry flag

I The clean-up phase
. Initiated by the process P that invoked the Insert or Delete
. As above, P creates op (appropriate rotation operation) and calls Help
. However, instead of restart on a Retry flag, P attempts to fix all violations

on the search path to the leaf updated by the Insert or Delete
. This phase ends as soon as P does one of the following

I Perform a rotation that does not create a violation
I Encounter no violations along the path from the root to the leaf

Linearizability and Correctness
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A non-linearizable version 
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I Linearizability is a correctness condition for concurrent algorithms
I A concurrent execution history (sequence of operation invocations and

responses) is linearizable if one can choose a “linearization point” within each
operation (see stars in the above diagram) such that:
. A correct, sequential execution of the operations, ordered by these points,

produces operation responses consistent with the history
I An algorithm is linearizable if all possible execution histories are linearizable
I For instance, in this algorithm, the linearization points are:
. For an Insert or Delete, the precise moment the new sub-tree is CAS’ed

into the tree structure
. For a Search(k), a point when the leaf was on the search path to key k

(It is proven by induction that every node visited by a search to key k was
on the search path to k at some point during the search.)

Future Work

I Implementation and experimental performance evaluation
I Theoretical performance analysis
I Formal proof of correctness
I Performance improvements
I Making operations wait-free
I Adding more operations (predecessor, successor, clone, etc.)
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