
1

CSE3221.3
Operating System Fundamentals

Prof. Hui Jiang
Dept of Computer Science and Engineering

York University

No.9

 Memory Management (2)

Memory Management Approaches

·  Contiguous Memory Allocation

·  Paging

·  Segmentation

·  Segmentation with paging

Contiguous Memory Allocation suffers serious external fragmentation

Paging(1)

·  Each page is independently
mapped to (or physically
supported by) one frame.

·  User program sees a contiguous
logical space.

·  But the supporting frames are
scattered in physical memory.

·  The mapping is automatically
done by hardware or OS based
on a page table.

Logical address Logical space

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

000
001

201
202

Frame 0
Frame 1
Frame 2
Frame 3
Frame 4
Frame 5
Frame 6
Frame 7
Frame 8
Frame 9

Frame 10
Frame 11
Frame 12

Physical Memory

•  Logical space is contiguous and consists of pages
•  Physical space is broken into frames
•  Page size = Frame size

Paging Example(1)

Address Translation Architecture

·  p is used to index page
table to find frame
number or base
physical address of this
page.

·  d is the offset in the
mapped frame.

•  The physical address Y:
 Y = f *k + d
 (f is frame number).

•  Convert logical address into page # and offset :
 Logical address (X) = page number (p) + page offset (d).
•  Assume page size k:
 p = X/k (quotient).
 d = X%k (remainder).

Translation of logical address
(for binary address)

·  Page size (frame size) is typical a power of 2. (4k – 16M).
·  Logical address is a concatenated bit stream of page number

and page offset.
·  An example: 1) logical space is 2**m: logical address is m bits.
 2) page size is 2**n: page offset is n bits.
 3) a logical space needs at most 2**(m-n) pages:

 page table contains at most 2**(m-n) elements
 page number needs (m-n) bits to index page table

page number page offset
p d

m-n bits n bits
Given a binary logical address, the last n bits is page offset
and the first m-n bits is page number.

2

Paging Example (2)

·  Physical memory: 32-byte (2**5).
·  Logical memory: 16-byte (2**4).
·  Page size: 4-byte (2**2).
·  Logical memory needs up to 4

pages: 4 entries in page table.
·  m=4, n=2.

page 0

page 1

page 2

page 3

Logical address 9 : 1 0 0 1

frame 0

frame 1

frame 2

frame 3

frame 4

frame 5

frame 6

frame 7

Paging Example (2)

·  Physical memory: 32-byte (2**5).
·  Logical memory: 16-byte (2**4).
·  Page size: 4-byte (2**2).
·  Logical memory needs up to 4

pages: 4 entries in page table.
·  m=4, n=2.

page 0

page 1

page 2

page 3

Logical address 9 : 1 0 0 1

frame 0

frame 1

frame 2

frame 3

frame 4

frame 5

frame 6

frame 7

0 1 0 1 0 Physical address 5 :

Paging Hardware

·  OS maintains a page table for every process.
·  All page tables are kept in physical memory.
·  The currently active page table is page table of the currently

running process.
·  For small active page-table (<256 entries): using registers
·  For large page-table: using two indexing registers

–  page-table base register (PTBR) points to the active
page table.

–  page-table length register (PTLR) indicates size of the
active page table.

–  In this scheme every data/instruction access requires two
memory accesses. One for the page table and one for
the data/instruction.

Paging Hardware: TLB

·  Caching: using of a special fast-lookup hardware cache called
associative registers or translation look-aside buffers (TLBs)

–  Associative registers (expensive) – parallel search
–  speedup translation from page # frame # :

 Assume page number is P:
 -- If P is in associative register, get frame # out. (hit)
 -- Otherwise get frame # from page table in memory (miss)
 Save to TLB for next reference, replace an old one if full

Page #" Frame #"

P1
P2
P3

F1

……

F2
F3

……

P Fx

Paging Hardware with TLB:
 MMU in Paging

Need to flush TLB’s in context switch

Effective Access Time of
paging after TLB

·  Assume memory cycle time is a time unit.
·  One TLB Lookup = b time unit.
·  Hit ratio – percentage of times that a page number is found in the

associative registers; ration related to number of associative
registers.
·  Hit ratio = λ.
·  Effective Access Time (EAT):

 EAT = (a + b) λ + (2a + b)(1 – λ)
 = (2 - λ)a + b

Example: a = 100 nanoseconds, b = 20 nanosecond.

If λ = 0.80, EAT = 140 nanoseconds (40% slower).
If λ = 0.98, EAT = 122 nanoseconds (22% slower).

3

Paging (2)
·  No external fragmentation in paging.
·  Internal fragmentation: process size does not happen to

fall on page boundaries.
–  Average one-half page per process.

·  How to choose page size:
–  Smaller page size:

•  less internal fragmentation.
•  large page table (more overhead).

–  Typical 4K—8KB
·  If each page table entry is 4 bytes long, it can point to

one of 2**32 frames
–  Maximal physical address: frame size * (2**32)
 (from this we can deduce bit number in physical

address)

Paging (3): Memory Allocation
·  OS keeps track of all free frames.
·  To run a program of size n pages, OS needs to find n free frames and load program.
·  OS sets up a page table to translate logical to physical addresses.
·  Each process has its page table and saved in memory pointed by its PCB.

Paging(4): OS data structure

·  OS maintain a page table for each process in memory, pointed by PCB of
this process.

–  Used to translate logical address in a process’ address space into
physical address.

–  Example: one process make an I/O system call and provide an
address as parameter (logical address in user space). OS must use
its page-table to produce the correct physical address.

·  OS maintains a frame table:
–  One entry for each physical frame in memory.
–  To indicate the frame is free or allocated, if allocated, to which page

of which process.

·  In context switch, the saved page-table is loaded by CPU dispatch to
MMU for every memory reference and flush TLB. (This increases context
switch time)

Memory Protection in paging
·  How is memory protected from different processes?

–  In paging, other process’ memory space is protected automatically.
·  Memory protection can be implemented by associating protection bits

with each frame in page table
–  One bit for read-only or read-write
–  One bit for execute-only
–  One Valid-invalid bit

•  “valid” indicates that the associated page is in the process’
logical address space, and is thus a legal page.

•  “invalid” indicates that the page is not in the process’ logical
address space.

•  Use page-table length register (PTLR): to indicate the size of
page table

•  Valid-invalid bit is mainly used for virtual memory
·  In every memory reference, the protection bits are checked. Any invalid

access will cause a trap into OS.

Example:

 --14-bit address
 -- page size 2KB
 -- valid space
 0-16383 (2**14)

Sharing Memory in Paging
·  Different pages of several processes can be mapped to the

same frame to let them share memory.
·  Shared-memory for inter-process communication.
·  Private code and data:

–  Each process keeps a separate copy of the code and data.
–  The pages for the private code and data can appear

anywhere in the logical address space.
·  Shared code:

–  One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, window systems).

–  Shared code must appear in same location in the logical
address space of all processes (i.e. same locations in the
page tables).

4

Shared Pages Example

shared
memory

physical memory

Shared Pages

·  How to share pages with code which has a direct address reference?

Jump <0,10>

Data 1

Data 2

Code

Process 1:

10

40

50

<0,10> 10*100+10=1010

Process 2:

0

1

50

PT

10

<0,10> 50*100+10=5010

Incorrect reference

0

1

10

PT

40

0

1000

4000

5000

Frame # Physical address Assume each page has 100 bytes:

Copy-on-Write
·  For quick process Creation: fork()
·  Traditionally, fork() copies parent’s address space for the

child.
·  Copy-on-Write: without copying, the parent and child process

initially share the same pages, and these pages are marked as
copy-on-write.

–  If either process needs to write to a shared page, a copy of
the shared page is created and stop sharing this page.

·  Advantages of copy-on-write:
–  Quick process creation (no copying, just modify page

table for page sharing)
–  Eventually, only modified pages are copied. All non-

modified pages are still shared by the parent and child
processes.

•  Better memory utilization

Copy-on-Write

Copy of C

Hierarchical Paging
(multilevel paging)

·  In modern computer, we
require a large logical-
address space, which
results in some huge
page table.

·  No contiguous memory
space for the large page
table.

·  Hierarchical paging:
using paging technique
to divide the large page
table into smaller pieces

Address-Translation in two-level paging

·  Logical address 32-bit, page size 4K, maximal physical address 2**32 frames
·  A logical address is divided into 20 bits page number and 12 bits page offset.
·  Since page-table is paged, the logical address is as follows:

where pi is an index into the outer page table, and p2 is the displacement within
the page of the outer page table.

page number" page offset"
pi" p2" d"

10" 10" 12"

4-byte

4-byte

1-byte

Physical address

5

Multilevel Paging and Performance

·  64-bit logical address may require 7-level paging.
·  Since each level is stored as a separate table in memory,

converting a logical address to a physical one may take seven
memory accesses.
·  TBL-based caching permits performance to remain reasonable.
·  Cache hit rate of 98 percent yields:
 effective access time = 0.98 x 120 + 0.02 x 820
 = 134 nanoseconds.

which is only 34 percent slowdown in memory access time.

• But the overhead is too high to maintain many page-tables
• In 64-bit Linux, it uses 4-level paging to page 48-bit address.

