CSE 3221
Operating System Fundamentals

No. 3
Thread

Prof. Hui Jiang
Dept of Computer Science and Engineering
York University

Thread Concept

e What is thread?

e Difference between a process and a thread

One single-threaded Process

Stack pointer Program pointer

v
\2 ™| user
Code

Registe Global

Kernel Space

Process

»

Process data (memory map,
Open files, working directory,
etc)

Multiple single-threaded Process

Process 1 Process 2 Process 3

User

Space

Kerne-l-" as .
Space

One multi-threaded Process

Thread1 Thread2 Thread3
Process

User Space

Kernel Space

Process vs. Thread

Traditional process contains a single stream of control.
(one process can do one thing at a time)

Multithreaded process: contains several different streams of control.
Each stream is called a thread of this process.

(multithreaded process can do multiple jobs simultaneously)
A multi-threaded process contains several threads.
All threads in a process share:
— Code section & data section
— OS resources (memory map, open devices, accounting, etc.)
Each thread includes:
— Athread ID
— A program counter (PC)
— Aregister set
— A stack & stack pointer

Comparison

« One single-threaded process:
— can do one thing at a time

« Multiple single-threaded processes:
— can do many things at the same time

* One multi-threaded process
— Also can do many things at the same time

* Why multiple thread??
— Multi-threaded process requires less OS resources (memory)
— More efficient for OS to handle threads than processes

Multithreading

Time

VO Request Time quantum
request complete expires

Thread A (Process 1) M

Thread B (Process 1) [IESG—_——)
Thread C (Process 2) Time quantum lomommem
expires Val
Process
created

&2 Blocked [Ready W Running

Multithreading Example on a Uniprocessor

Benefits to use threads
* Threads occupy less memory than processes.
» Takes less time to create a new thread than a process.
* Less time to terminate a thread than a process.

* Less time to switch context between two threads within
the same process.

» Since threads within the same process share memory
and files, they can communicate with each other
without invoking the kernel.

Thread-safe or Reentrant code

» To be thread safe, the program must be reentrant:
— Program never modifies itself.
— Each function calling keeps track of its own progress.

— No use of static/global data.

— No use of non-reentrant functions or routines.

Non-reentrant C code

int delta;
int diff (int x, int y)
{
delta = y - x;
if (delta < 0) delta = -delta;

return delta;

Reentrant C code

int diff (int x, int y)
{
int delta;
delta = y - x;
if (delta < 0) delta = -delta;

return delta;

Kernel Threads

* Kernel threads are supported directly by OS.

* The kernel performs thread creation, scheduling, and
management in the kernel space.

* Slow to maintain (need system calls to kernel space).
« Each kernel thread can run totally independently:

— One thread blocks, the kernel will schedule another
thread to run.

— Several kernel threads can run in parallel if many
CPU'’s are available.

— OS to support kernel thread:
» Windows NT/2000/XP
* Solaris 2
* Linux

Directly Use Kernel Threads

» For each user task, make system call to create a
kernel thread.

Kernel
Space

(b) Pure kernel-level

Example of Kernel Thread:
Linux Thread

o Linux kernel support kernel threads, system call clone().
» fork() creates a new process

— Create a new memory space for new process

— Copy from the address space of the calling process
» clone() simulates fork(), but

— It does not create new memory space.

— The new process shares the same address space of
the original process.

- two processes sharing the same memory space.
(something like thread)

Linux Thread

e Linux use clone () to create kernel threads.

#include <sched.h>

int clone(int (*£fn) (void *), void
*child stack, int flags, void *arg);

fn: starting function
child_stack: stack memory space for child thread.
flags: what to share.

for thread creation:

flags = CLONE_FS | CLOSE_VM | CLONE_SIGHAND |
CLONE_FILES

arg: arguments to pass.

User Thread

* User thread: supported above the kernel and
implemented by a thread library in user space.

— The library supports thread creation, scheduling, management in
user space.

— User threads are fast to create and manage (no need to make a
system call to trap to the kernel).

— User threads for better compatibility across OS platforms.

* Problems with user threads:
— The kernel is not aware of the existence of users threads.
— User thread must be mapped to the kernel to execute in CPU.

* Examples:

— POSIX Threads (Pthreads), Java Threads, Win32 Threads, Solaris
Ul-threads

Three Models for User Thread

¢ One-to-One mapping
¢ Many-to-One Mapping

¢ Many-to-Many Mapping

One-to-One Mapping

<«— user thread

BN
bbb

Many-to-One Mapping
$ 8

Threads \ / User

Library S pace
Kernel
Space

Combined Model:
many-to-many mapping

s 1

<«— user thread
| Threads

v ;
<«— kemel thread

User
Space

Kernel
Space

Solaris Threads

Process1 Process2 Process 3 Process 4 Process 5

SILS 818 88 &8 8 88

User

Kernel

Hardwars (1 [=f =] [Lz]
Susrentirod () sermthrt (D gk roces [2] e

Thread data structure in Solaris

LWP ID
process id Registers
priority
memory map Kernel Stack
priority

list of open / | \
files v
—| LWP, H LWP, H LWP, }_ ..

Solaris process

Threading Issues

« fork() and exec() implementation
— One thread calls exec(), it will replace the entire process.

— One thread in a process call fork(), it duplicates all threads in the
process or just one calling thread.

« Thread cancellation: terminating a thread before it finishes.
— Asynchronous cancellation
— Deferred cancellation

« Unix Signal Handling
— Deliver the signal to the thread to which the signal applies.
— Deliver the signal to every thread in the process
— Deliver the signal to certain threads in the process
— Assign a specific thread to receive all signals for the process

Thread Pools

Create a number of threads at process start-up, place
them into a pool, where they sit and wait for work.

When the process receives a request, it awakens a
thread from the pool, and serves the request
immediately.

Once the thread completes, it returns to the pool.

If the pool contains no available thread, the process
waits until one becomes free.

Benefits of thread pools:
— Faster to service a request.

— Thread pool limits the total number of threads in
system (no overload).

Three Models to use Threads

* Pipeline

— Assembly line: each thread repeatedly performs
the same operation on a sequence of data sets,
passing each result to another thread for next step.

e Work Crew

— Each thread performs an operation on its own data
independently, then combine all results to get the
final.

o Client/Server

— A client contacts with an independent server for
each job.

Pipeline

Input

Thread A Thread B @

Y

Output

Work Crew

Input

Thread A Thread B @

'\
Output
Client/Server
Input A Input B Input C

S~
Cowm)

Output A Output B Output C

User Threads: Pthreads

e A POSIX standard (IEEE 1003.1c) API for thread creation
and synchronization.

» API specifies behavior of the thread library,
implementation is up to development of the library.

e Common in UNIX operating systems (Solaris, Linux,
Mac OS X).

10

Multi-threaded Process in Pthreads

Thread1 Thread 2 Thread3

Process

User-Level
Thread Structures

User Space

Kernel Space

Multithread programming

o User thread vs. kernel thread
* Multithreaded programming with POSIX thread (Pthread)

User Threads Pthread Library |

I
I

I
I

I
I

I

Kernel Thread 1 ‘ Kernel Thread 2‘ Operating System

- a

POSIX Thread (1)

* Thread creation and termination:

#include <pthread.h>

pthread_create(pthread_t *thread, const pthread_attr_t
*attr, void *(*start) (void *), void *argv) ;

pthread_exit(void *value_ptr) ;

11

POSIX thread(2)

* Wait for another thread to terminate

pthread_join(pthread_t thread, void **value_ptr) ;

« Cancellation

pthread_cancel(pthread_t thread) ;

e Others

pthread_self(void) ;
pthread_detach(pthread_t thread) ;
pthread_attr_init(pthread_attr_t *attr) ;

Example 1: thread.c
e Example: thread.c (How to use pthread)
e Two threads:

— main() thread
— runner() thread

Example 2: alarm.c

e Example 1: alarm.c (no process/thread)

o Example 2: alarm_fork.c (multiple process)

e Example 3: alarm_thread.c (multiple thread)

12

