
Prepared by Prof. Hui Jiang
(COSC3221)

1/18/12

Dept. of CS, York Univ. 1

CSE3221.3
Operating System Fundamentals

Prof. Hui Jiang
Dept of Computer Science and Engineering

York University

No.2

 Process

How OS manages CPU usage?

• How CPU is used?
– Users use CPU to run programs

• In a multiprogramming system, a CPU always has several
jobs running together.

• How to define a CPU job?
– The important concept:

PROCESS

Process

• Process is a running program, a program in execution.
• Process is a basic unit of CPU activities, a process is a unit of

work in a multiprogramming system.
• Many different processes in a multiprogramming system:

– User processes executing user code
• Word processor, Web browser, email editor, etc.

– System processes executing operating system codes
• CPU scheduling
• Memory-management
• I/O operation

• Multiple processes concurrently run in a CPU.

Prepared by Prof. Hui Jiang
(COSC3221)

1/18/12

Dept. of CS, York Univ. 2

Process vs. Program Code

…

Mov AX, 0x10
Mov BX, CX

Push CX
Mov CX,DX

OUT 0x11,CX

POP CX
…

Program code

Memory

Code
PC CPU

Registers

Stack &
Heap

Process

Process

• A Process includes:
– Text Section: memory segment including program

codes.
– Data Section: memory segment containing global

and static variables.
– Stack and Heap: memory segment to save temporary

data, such as local variable, function parameters,
return address, ...

– Program Counter (PC): the address of the
instruction to be executed next.

– All CPU’s Registers

Process in Memory (I)

Figure 2.8 Typical Process Implementation

Context

Data

Program
(code)

Context

Data

i

Process index

P C

Base
Limit

Other

registers

i

b
h

j

b

h
Process

B

Process

A

Main

Memory

Processor

Registers

Process

list

Program
(code)

Prepared by Prof. Hui Jiang
(COSC3221)

1/18/12

Dept. of CS, York Univ. 3

Process in Memory (II)

Process Control Block

Data Structure to represent a Process:
Process Control Block (PCB)

• Process state
• Program counter (PC)
• CPU registers
• CPU scheduling information
• Memory-management

information
• I/O status information
• Accounting information

Linux PCB

struct task_struct {
 pid_t pid; /* process identifier */
 long state; /* state of the process */
 unsigned int time_slice; /*scheduling info*/
 struct task_struct *parent; /* parent process*/
 struct list_head children; /* all child processes*/
 struct files_struct *files; /* list of open files*/
 struct mm_struct *mm; /* memory space of process */
 …
 …
} ;

Prepared by Prof. Hui Jiang
(COSC3221)

1/18/12

Dept. of CS, York Univ. 4

Process States

• New: the process is just being created
• Running: instructions are being executed by CPU
• Waiting: waiting for some event, I/O completion or a signal
• Ready: waiting to be assigned to CPU to run
• Terminated: it finished execution

Scheduling Queues (I)
• Scheduling Queues:

– List of processes competing for the same resource.

• Queues is generally implemented as linked lists.

• Each item in the linked list is PCB of a process, we extend each
PCB to include a pointer to point to next PCB in the queue.

• In Linux, each queue is a doubly linked list of task_struct.

• Examples of scheduling queues:
– Ready Queue: all processes waiting for CPU
– Device Queues: all processes waiting for a particular device;

Each device has its own device queue.

Scheduling Queues (II)

Prepared by Prof. Hui Jiang
(COSC3221)

1/18/12

Dept. of CS, York Univ. 5

Queuing Diagram

CPU Switch from process to process:
how to use PCB

Context Switch
• Context Switch: switching the CPU from one process to another.

– Saving the state of old process to its PCB.
– CPU scheduling: select a new process.
– Loading the saved state in its PCB for the new process.

• The context of a process is represented by its PCB.
• Context-switch time is pure overhead of the system, typically

from 1–1000 microseconds, mainly depending on:
– Memory speed.
– Number of registers.
– Existence of special instruction.
– The more complex OS, the more to save.

• Context switch has become such a performance bottleneck in a
large multi-programming system:

– New structure to reduce the overhead: THREAD.

Prepared by Prof. Hui Jiang
(COSC3221)

1/18/12

Dept. of CS, York Univ. 6

Context Switch: example
Main MemoryAddress

Dispatcher

Process A

Process B

Process C

Program Counter
0

100

5000

8000

8000

12000

Figure 3.2 Snapshot of Example Execution (Figure 3.4)

at Instruction Cycle 13

Trace of Processes

Trace of Processes

Prepared by Prof. Hui Jiang
(COSC3221)

1/18/12

Dept. of CS, York Univ. 7

Process State

waiting

OS kernel

Process Scheduling: Schedulers
• The scheduler’s role

• CPU scheduler (Short-term scheduler)
– Select a process from ready queue to run once CPU is free.
– Executed very frequently (once every 100 millisecond).
– Must be fast enough for OS efficiency.

• Long-term Scheduler (Job scheduler):
– Choose a job from job pool to load into memory to start.
– Control the degree of multiprogramming – number of process in

memory.
– Select a good mix of I/O-bound processes and CPU-bound

processes.

• Medium-term scheduler: SWAPPER
– Swap out / swap in.

Operations on Processes
(UNIX/Linux as an example)

• Process creation

• Process termination

• Inter-process communication (IPC)

• Multiple-process programming in Unix/Linux
– Cooperating process tasks.
– Important for multicore architecture

Prepared by Prof. Hui Jiang
(COSC3221)

1/18/12

Dept. of CS, York Univ. 8

Process Creation(1)
• A process can create some new processes via a create-

process system call:
– Parent process / children process.

• All process in Unix form a tree structure.

Process Creation(2)

• Resource Allocation of child process
– The child process get its resource from OS directly.
– Constrain to its parent’s resources.

• Parent status
– The parent continues to execute concurrently with its children.
– The parent waits until its children terminate.

• Initialization of child process memory space
– Child process is a duplicate of its parent process.
– Child process has a program loaded into it.

• How to pass parameters (initialization data) from parent to child?

UNIX Example: fork()

• In UNIX/Linux, each process is identified by its process number (pid).
• In UNIX/Linux, fork() is used to create a new process.
• Creating a new process with fork():

– New child process is created by fork().
– Parent process’ address space is copied to new process’ space

(initially identical content in memory space).
– Both child and parent processes continue execution from the

instruction after fork().
– Return code of fork() is different: in child process, return code is

zero, in parent process, return code is nonzero (it is the process
number of the new child process)

– If desirable, another system call execlp() can be used by one of
these two processes to load a new program to replace its original
memory space.

Prepared by Prof. Hui Jiang
(COSC3221)

1/18/12

Dept. of CS, York Univ. 9

Typical Usage of fork()
#include <stdio.h>
void main(int argc, char *argv[])
{
 int pid ;

 /* fork another process */
 pid = fork() ;

 if (pid < 0) { /* error occurred */
 fprintf(stderr, “Fork Failed!\n”) ;
 exit(-1) ;
 } else if (pid == 0) { /* child process*/
 execlp(“/bin/ls”,”ls”,NULL) ;
 } else { /* parent process */
 /* parent will wait for the child to complete */
 wait(NULL) ;
 printf (“Child Complete\n”) ;
 exit(0) ;
 }
}

Process Termination

• Normal termination:
– Finishes executing its final instruction or call exit() system call.

• Abnormal termination: make system call abort().
– The parent process can cause one of its child processes to

terminate.
• The child uses too much resources.
• The task assigned to the child is no longer needed.
• If the parent exits, all its children must be terminated in some

systems.
• Process termination:

– The process returns data (output) to its parent process.
• In UNIX, the terminated child process number is return by

wait() in parent process.
– All its resources are de-allocated by OS.

Multiple-Process Programming in Unix
• Unix system calls for process control:

– getpid(): get process ID (pid) of calling process.

– fork(): create a new process.

– exec(): load a new program to run.
• execl(char *pathname, char *arg0, …) ;
• execv(char *pathname, char* argv[]) ;
• execle(), execve(), execlp(), execvp()

– wait(), waitpid(): wait child process to terminate.

– exit(), abort(): a process terminates.

Prepared by Prof. Hui Jiang
(COSC3221)

1/18/12

Dept. of CS, York Univ. 10

Cooperating Processes
• Concurrent processes executing in the operating system

– Independent: runs alone
– Cooperating: it can affect or be affected by other processes

• Why cooperating processes?
– Information sharing
– Computation speedup
– Modularity
– Convenience

• Inter-process communication (IPC) mechanism for cooperating
processes:

– Shared-memory
– Message-passing

IPC Approaches

Inter-process Communication (IPC):
Message Passing

• IPC with message passing provides a mechanism to allow
processes to communicate and to synchronize their actions
without sharing the same address space.

• IPC based on message-passing system:
– Processes communication without sharing space.
– Communication is done through the passing of messages.
– At least two system calls:

• send(message)
• receive(message)

– Message size: fixed vs. variable
– Logical communication link:

• Direct vs. indirect communication
• Blocking vs. non-blocking
• Buffering

Prepared by Prof. Hui Jiang
(COSC3221)

1/18/12

Dept. of CS, York Univ. 11

Direct Communication

• Each process must explicitly name the recipient or sender of the
communication.

– send(P,message)
– Receive(Q,message)

• A link is established between each pair of processes
• A link is associated with exactly two processes
• Asymmetric direct communication: no need for recipient to name

the sender
– send(P,message)
– receive(&id,message): id return the sender identity

• Disadvantage of direct communication:
– Limited modularity due to explicit process naming

Indirect Communication

• The messages are sent to and received from mailbox.
• Mailbox is a logical unit where message can be placed or removed by

processes. (each mailbox has a unique id)
– send(A,message): A is mailbox ID
– receive(A,message)

• A link is established in two processes which share mailbox.
• A link may be associated with more than two processes.
• A number of different link may exist between each pair of processes.
• OS provides some operations (system calls) on mailbox

– Create a new mailbox
– Send and receive message through the mailbox
– Delete a mailbox

Blocking vs. non-blocking
in message-passing

• Message passing may be either blocking or non-
blocking.

• Blocking is considered synchronous.
• Non-blocking is considered asynchronous.
• send() and receive() primitives may be either blocking

or non-blocking.
– Blocking receive
– Non-blocking receive
– Blocking send
– Non-blocking send

• When both the send and receive are blocking, we have
a rendezvous between the sender and the receiver.

Prepared by Prof. Hui Jiang
(COSC3221)

1/18/12

Dept. of CS, York Univ. 12

Buffering in message-passing

• The buffering provided by the logical link:

– Zero capacity: the sender must block until the
recipient receives the message (no buffering).

– Bounded capacity: the buffer has finite length. The
sender doesn’t block unless the buffer is full.

– Unbounded capacity: the sender never blocks.

IPC in UNIX

• Signals

• Pipes

• Message queues

• Shared memory

• Sockets

• others

Signal function in Unix
• Signal is a technique to notify a process that some events have

occurred.
• The process has three choices to deal with the signal:

– Ignore the signal
– Let the default action occur.
– Provide a function that is called when the signals occurs.

• signal() function: change the action function for a signal

• kill() function: send a signal to another process

#include <signal.h>

void (*signal(int signo, void (*func) (int)) ;

#include <sys/types.h>

#include <signal.h>

int kill (int pid, int signo) ;

Prepared by Prof. Hui Jiang
(COSC3221)

1/18/12

Dept. of CS, York Univ. 13

Unix Signals

Example: signal in UNIX
#include <signal.h>

static void sig_int(int) ;

int main() {

 if(signal(SIGINT,sig_int)==SIG_ERR)
 err_sys(“signal error”) ;

 sleep(100) ;
}

void sig_int(int signo)
{
 printf(”Interrupt\n”) ;
}

• Event SIGINT: type the
interrupt key (Ctrl+C)

• The default action is to
terminate the process.

• Now we change the default
action into printing a
message to screen.

Unix Pipe
• Half-duplex; only between parent and child processes.

• Creating a pipe:
– Call pipe();
– Then call fork();
– Close some ends to be a half-duplex pipe: close().

• Communicate with a pipe:
– Use read() and write().

#include <unistd.h>

int pipe(int filedes[2]) ;

Prepared by Prof. Hui Jiang
(COSC3221)

1/18/12

Dept. of CS, York Univ. 14

Unix pipe: example

fd[0] fd[1]

pipe

kernel

parent

fd[0] fd[1]

child

fd[0] fd[1]

pipe

user process

Unix Pipe: example
int main() {

 int n, fd[2] ;
 int pid ;
 char line[200] ;

 if(pipe(fd) < 0) err_sys(“pipe error”) ;

 if ((pid = fork()) < 0) err_sys(“fork error”) ;
 else if (pid > 0) {
 close(fd[0]) ;
 write(fd[1], “hello word\n”, 12) ;
 } else {
 close(fd[1]) ;
 n = read(fd[0], line, 200) ;
 write(STDOUT_FILENO, line, n) ;
}
 exit(0) ;
}

OS Global Control Structures

• Tables are constructed for each entity that operating system
manages.

– Process table: PCBs and process images.

– Memory table: Allocation of main memory to processes;
 Protection attributes for access to shared memory regions.

– File table: all opened files; location on hardware; current status.

– I/O table: all I/O devices being used; status of I/O operations.

– Scheduling queues.

Prepared by Prof. Hui Jiang
(COSC3221)

1/18/12

Dept. of CS, York Univ. 15

Memory

Devices

Files

Processes

Process 1

Memory Tables

Process

Image

Process

1

Process

Image

Process

n

I/O Tables

File Tables

Figure 3.11 General Structure of Operating System Control Tables

Primary Process Table

Process 2

Process 3

Process n

Operating System Control
Structures

