
Telelogic
Lifecycle Solutions
Get it Right the First Time

L

Telelogic

Get it Right the First Time:
Writing Better Requirements

Part Number: MN-DOR-ED-GTR80-05-01

License Agreement

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor translated into any human or
computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise,
without the prior written permission of the copyright owner, Telelogic AB. Copyright infringement is a serious matter under the
United States and foreign Copyright Laws.
Telelogic AB reserves the right to revise this publication and to make changes from time to time without obligation to notify
authorized users of such changes. Consult Telelogic AB to determine whether any such changes have been made.
The terms and conditions governing the licensing of Telelogic software consist solely of those set forth in the written contracts
between Telelogic AB and its customers.

Restricted Rights Legend/Notice

Use, duplication or disclosure by the government is subject to the Restricted Rights restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or FAR 52.227-14, Alternate III,
subparagraph (g)(3)(i), each clause of current date.

Trademarks

Telelogic®, Telelogic DOORS®, Telelogic Tau®, Telelogic DocExpress®, Telelogic Rhapsody®, Telelogic Statemate®, Telelogic
ActiveCM®, and Telelogic System Architect® are registered trademarks of Telelogic.
Telelogic DOORS®/Analyst™, Telelogic DOORS® XT™, Telelogic DOORS®/Net™, Telelogic Tau®/Architect™, Telelogic
Tau®/Developer™, Telelogic Tau®/DoDAF™, Telelogic Tester™, Telelogic SDL Suite™, Telelogic TTCN Suite™, Telelogic
Synergy™, Telelogic Change™, Telelogic Dashboard™, Telelogic Focal Point™, Telelogic Logiscope™, Telelogic System
Architect®/XT™, Telelogic System Architect®/ERP™, Telelogic System Architect®/Simulator II™, Telelogic System
Architect®/Compare™, and Telelogic System Architect®/Publisher™ are trademarks of Telelogic.
Adobe, the Adobe logo, Acrobat, the Acrobat logo, FrameMaker, and PostScript are trademarks of Adobe Systems Incorporated
or its subsidiaries and may be registered in certain jurisdictions.
HP and HP-UX are registered trademarks of Hewlett-Packard Corporation.
AIX and INFORMIX are registered trademarks of IBM in the United States.
Microsoft, Windows, Windows 2003, Windows XP, Windows Vista and/or other Microsoft products referenced herein are either
trademarks or registered trademarks of Microsoft Corporation.
Macrovision and FLEXnet are registered trademarks or trademarks of Macrovision Corporation.
Netscape and Netscape Enterprise Server are registered trademarks of Netscape Communications Corporation in the United
States and other countries.
Sun, Sun Microsystems, Solaris, and Java are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States
and other countries.
Pentium is a trademark of Intel Corporation.
All other product or company names mentioned herein may be trademarks or registered trademarks of their respective owners.

Notice

The information in this document is subject to change without notice.
Telelogic makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Telelogic AB shall not be liable for errors contained herein nor for incidental
or consequential damages in connection with the furnishing, performance or use of this material.

Copyright © 1993 - 2007 Telelogic AB All rights reserved

Get It Right The First Time: Writing Better Requirements iii

Table of Contents

Chapter 1: About this Manual 1

Chapter 1: How to write better requirements 1
Overview . 1
Guidelines to keep in mind . 1
Remember what requirements are for. 2
Requirements are a human issue . 3

Chapter 2: Definition and structure of a requirement 5
A requirement shall be a complete sentence. 5
Shall, will, and must . 5
Anatomy of a good requirement . 6

Chapter 3: Criteria for a good requirement 7
For each requirement ask the question: . 7
Check the requirements as a set . 7
Guidelines for writing good requirements . 8

Chapter 4: Writing user and system requirements 9
Writing the user requirements . 9
What is a user? . 9
System requirements . 9
Writing system requirements . 10
Making requirements testable . 11

Chapter 5: Sources of user requirements 13
Interview users . 13
Working in the environment . 13
Study analogous or existing systems . 14
Examine suggestions and problem reports . 15

iv Get It Right The First Time: Writing Better Requirements

Requirements from the help desk and support teams. 15
Improvements made by users. 15
Unintended uses . 15
Workshops. 16
Prototypes . 17

Chapter 6: Organizing requirements 19
You need structure as well as text . 19
Organizing requirements in practice . 20
Defining the scope . 20

Agree on exactly what to include. 20
Identify priorities . 21
Work out what can be afforded. 21

Putting the requirements in the right place . 21

Chapter 7: Requirementsó Aids for Analysis 23
Status information is essential . 23
Analysis made simple . 23

Chapter 8: Reviews 25
The review process . 25
The review meeting. 26
Capturing the suggestions. 26
Make the necessary changes . 27
Golden rules for reviewing: . 27

Chapter 9: Traceability 29
The complexity of large systems . 29

Chapter 10: Controlling change 31
Forces of change . 31
Tracking change . 31
Allow for feedback . 31

Get It Right The First Time: Writing Better Requirements v

Requirements effort throughout the lifecycle . 32
Other helpful hints on managing change . 32

Chapter A: Appendix: Writing pitfalls to avoid 33
Avoid ambiguity . 33
Don't make multiple requirements . 33
Never build in let-out or escape clauses . 34
Don't ramble . 34
Refrain from designing the system . 34
Avoid mixing different kinds of requirements . 35
Do not speculate . 35
Do not play on ambiguous requirements . 35
Do not use vague undefinable terms. 35
Do not express possibilities . 36
Avoid wishful thinking. 36

Chapter B: Appendix: List of possible constraints 37
Performance requirements. 37
Interface requirements . 37
Safety requirements . 37
Training requirements . 38
Documentation requirements . 38
Reliability . 38
Portability . 38
Maintainability . 38
Availability . 39

Chapter C: Appendix: Breaking down requirements 41
The goal . 41
Key steps . 41
Decompose or break down into even smaller steps. 42
Define any relationships . 42
An example. 42

vi Get It Right The First Time: Writing Better Requirements

Chapter D: Appendix: Attributes 45
Examples of attributes . 45

Chapter E: Appendix: Formats of User and System documents 47
The User Requirements Document (URD). 47
System Requirements Document (SRD) . 47

Functional Requirements . 48
Non-Functional Requirements . 48
Verification Method. 48
Trace Back to User Requirements. 48

Chapter F: Appendix: Typical requirements problems 49
Top 10 requirements problems . 49
How not to arrange your requirements . 50
Nightmare requirements . 51
Common problems with structure . 51

Chapter G: Appendix: Types of questions to elicit requirements 53

Get It Right The First Time: Writing Better Requirements 1

1 About this Manual
Requirements engineering is a challenge. It involves engineering knowledge, skill
in dealing with people, and experience in assessing business realities such as
competition and political pressures.
The good news is that many of the traps, which ensnare the unwary, can be
avoided by applying the simple guidelines listed here for writing better
requirements. Projects that start out well, with a clear and accurate knowledge of
the goals and needs of its users, have the best possible chance of success.
Requirements are the key to project success. This book is designed to help both
developers and users write better requirements. Because it is about the practical
technique of writing requirements, it should be useful in many different kinds of
system and software projects. This book enables engineers who have been on a
requirements tool course to write requirements well enough for a successful
system. The book also forms an integral part of a one-day course on the same
subject, provided by Telelogic.
This book specifically focuses on how to obtain better requirements. Together,
the book and the associated course, concentrate on the task of actually gathering,
writing, and organizing requirements.
The message of this book can be stated in a sentence:

Understand and agree upon what users want before attempting to create
solutions.

Finding out what is needed instead of rushing into presumed solutions is the key
to every aspect of system development. Most technical problems can be solved,
given determination, patience, a skilled team—and a well-defined problem to
solve.

2 Get It Right The First Time: Writing Better Requirements

Get It Right The First Time: Writing Better Requirements 1

1 How to write better requirements

Overview
Defining a good set of requirements is critical for project success. If you can do a
good job with requirements, you can save a fortune. So don't feel ashamed about
putting effort into ensuring that they are right. The key points of this book are
straightforward. Getting a good set of requirements is hardly a technical
issue—it involves human interaction and an organized approach. Requirements
are the vital communication line between users and developers. System
engineering is a human issue, which works only when everyone involved
cooperates to solve problems. Projects succeed when they stay focused on
results, so that whatever is developed aims only to satisfy the need and deliver
only what users want. This is only possible when users' needs are clearly defined,
and their problem is fully described in writing.
Here are some tips on getting started:

• Start writing requirements now!

• Produce a document at the soonest, then stimulate immediate feedback.

• Clean up the requirements, removing design and multiple requirements as
you go along.

• Define an outline structure first—or if you can't, do it as you go along.

• Brainstorm and hold internal reviews continually.

• Exposure to users and rapid correction is much better than analysis by
experts.

Guidelines to keep in mind
1. Keep focused on results during development work, especially within a large

project—the objective is to solve a problem experienced by users. Users do
not necessarily want the system to have elaborate controls. They do not
always need it to look good, to use the latest technologies, or to offer
comprehensive documentation compliant with some standard or other. The
results that users want are described in the user requirements. The results
wanted by users are the developers' goals. They drive the development, and
they are the primary test of the system. The system is acceptable if it delivers
the desired results.

2 Get It Right The First Time: Writing Better Requirements

2. Satisfy the need, and pay continual attention to what it is your users need.
Users are human, and will certainly change their views as time goes on. Their
working environment is in constant change. Your system, if it is at all
successful, will certainly change their way of working still further—so it will
change their needs. Be on the lookout for new requirements. These may lead
to new business opportunities for your products.

3. Demonstrate success and do not wait for the project to end before showing
results. Start on day one by demonstrating that you are in tune with your
users’ wishes and needs. Early on, create presentations and prototypes to
show progress, and to check out your understanding. Divide your project
into a series of small and successful steps. That way, there can be no large
and unpleasant surprises.

4. Deliver what users want. If the contract is wrong, take steps to agree on
changes with your customer. Ensure that the system does whatever it takes
to keep deliverables in line with what your users really need. If you help your
users to get what they want, they'll do all they can to help you with additional
time or resources.

Remember what requirements are for
Writing requirements is not an end in itself. It is not merely extra work or an
additional activity to ensure checks and balances or to meet a standard.
Requirements have a real purpose in the development of any system.
They are essential:

• To show results the users want from the system.

• To show traceability back to sources and the history of changes.

• To show what the organization needs.

• To show what the system must do.

• To form a basis for the design and design optimization.

• To enable a logical approach to change management.

• To partition the work out to contractors.

• To act as a foundation for testing and payment.

• To test the system or any of its parts during development.

• To communicate the basics about the system in non-technical terms to all
participants.

Get It Right The First Time: Writing Better Requirements 3

Requirements are a human issue
Requirements are the primary means of communication between users and
developers. Within a large project, they may easily be the only way users can tell
the developers what they want. A requirements document has the force of a
contract behind it, but the needs that it expresses come from people.
The people who write requirements have a difficult job. They must understand
the requirements, and be able to organize them into a coherent structure. They
have to be able to understand solutions, but not to impose them on the
designers. Perhaps the most difficult of all, they have to be good writers. They have
to produce text that is clear, short, precise, and unambiguous—yet also readable
and complete.
In summary, to create better requirements:

• Find out what users want.

• Help organize their needs into a clear document structure.

• Fill the structure with neatly sorted requirements.

• Check it out with users.

• Have it formally reviewed.

• Ensure that the solution stays in line with the requirements as they evolve.

4 Get It Right The First Time: Writing Better Requirements

Get It Right The First Time: Writing Better Requirements 5

2 Definition and structure of a requirement

A requirement shall be a complete sentence
A single, individual (atomic) requirement must be a sentence. Single words,
phrases, and collections of acronyms and abbreviations do not make a
requirement. For a requirement to be understood (the first criterion), it must be a
complete, correct sentence.
An example of this is as follows:

The reader shall be able to understand the requirement.

This requirement has a subject (the reader) and a predicate (understand the
requirement). The phrase shall be able to joins the two together to form a
complete requirement. Each atomic requirement written must be in this form, or
it will not serve the user or the reader well.
The use of a subject implies a user, owner, system under discussion, or design
entity to which the requirement will be related.
The predicate should be an action phrase or expression of something that must
get done for, by, with, or to the subject.

Shall, will, and must
Consistent use of the verb to be solidifies the link between subject and predicate.
In requirements language, however, shall has a very significant meaning. It
signals that this sentence is a requirement and, which must be followed or
adhered to.
Other shall words include will and must to signify a mandatory condition
surrounding the requirement.
For example:

The reader must comply with this documentation convention.

This statement relates to what is acceptable to the user insofar as compliance to
this requirement.
Less restrictive words are often used to denote non-mandatory or optional
requirements.
For example:

The document should take no longer than one hour to read.

6 Get It Right The First Time: Writing Better Requirements

Of course, if the document is not readable in one hour, the overall system might
still be acceptable. One criterion is merely desirable or optional and is so written
with should, may, or words like it is desired that.

Anatomy of a good requirement
To some extent, each requirement can be analyzed and broken down to perform
basic checks. Each user requirement should have:

• a user type who benefits from the requirement

• a defined, desirable state for the user to reach

• a person responsible for implementing the requirement

• metrics or some mechanism to allow a test to be written against the
requirement

The requirement,

The order entry clerk shall be able to complete ten customer orders in less than
an hour.

can be broken up into component parts. The order entry clerk is the user type.
The state that the order entry clerk reaches is to complete ten customer orders.
The requirement is clearly measurable and even shows some performance
criteria in completing ten orders per hour. The challenge is to seek out the user
type, end result, and success measure in every requirement.

Get It Right The First Time: Writing Better Requirements 7

3 Criteria for a good requirement
Good requirements should all follow the same set of criteria no matter the area
or description being written about. Check that each requirement is valid against
this list. You will find that quite soon you do this automatically whenever you see
a requirement.

For each requirement ask the question:
• Is it correct? (asks for something possible, do-able, legal)

• Is it complete? (a complete sentence, as discussed above)

• Is it clear? (unambiguous and not confusing)

• Is it consistent? (not in conflict with other requirements)

• Is it verifiable? (can we determine that the system meets the requirement?)

• Is it traceable? (uniquely identified and can be tracked)

• Is it feasible? (accomplished within cost and schedule)

Other criteria to strive for:

• Is the requirement modular and able to standalone? (non complex, non
run-on requirements with few and/or references and few external references)

• Does it have a reasonable priority?

• Is it genuinely a user or system requirement? (not a design constraint)

• Is its source shown?

Check the requirements as a set
Next, check the set of requirements as a whole. You need to assess that all the
requirements together are realistic, complete, consistent, and concise. These are
much tougher questions than those on individual requirements. The only way to
be sure they are adequately addressed is for you and the users to have a clear
picture in your minds of what the problem is, and for the user requirement
structure to reflect that picture accurately. Then you can see when you check
over the requirements that they are in fact complete.
Questions of consistency and realism make you think about what each
requirement implies, and whether that requirement can be fulfilled in the real

8 Get It Right The First Time: Writing Better Requirements

world, given all the other requirements. As we shall see, good document
structure is vital.

Guidelines for writing good requirements
Provided below are some simple guidelines to follow in writing any requirement.
For consistency, the example of an aircraft is used throughout.

1. Define one requirement at a time.

The pilot shall be able to control the aircraft's angle of climb with one hand.

The pilot shall be able to feel the angle of climb from the climb control.

2. Avoid conjunctions (and, or) that make multiple requirements.

The navigator shall be able to view the aircraft's position relative to the route's
radio beacons. The navigator shall be able to view the aircraft's position
estimated by inertial guidance.

3. Avoid let-out clauses (unless, except, if necessary, but).

Each cabin crew member shall be provided a rear-facing seat.

4. Use simple direct sentences.

The pilot shall be able to view the airspeed.

5. Use a limited (500 word) vocabulary (especially if your audience is
international).

The airline shall be able to change the aircraft from business to holiday charter
use in less than 12 hours.

There is no need to use words like reconfigured.

6. Identify the type of user who wants each requirement.

The navigator shall be able to...

7. Focus on stating what result is to be provided for that type of user.

...view storm clouds by radar...

8. Define verifiable criteria.

...at least 100 miles ahead.

Get It Right The First Time: Writing Better Requirements 9

4 Writing user and system requirements
User and system requirements differ in what they define and how they define it.
User requirements define the results and qualities the user wants; system
requirements define what the system must do to achieve this. User requirements
are owned by the users, whereas system requirements are owned by the
developers.

Writing the user requirements
The main task of a user requirement is to help users express their needs in
writing. For an engineer with a technical or software bias, getting into your users'
way of thinking is difficult. Typically, technical people come from a range of
different professions, but they usually have their own language and concepts.
Requirements are hard to formulate exactly and you may need several revisions
to get them just right. Start with a draft and sharpen up the wording later.
Initially, just aim to get the basic intention down on paper.

What is a user?
The first step is to define the different user types. Each group of users has a
unique set of requirements for the system. The first thing to realize, therefore, is
that what you hear depends on whom you ask.
A user is someone involved in using the system when it is actually working. Using
is not restricted to only mean operating a system. Anyone involved in
maintaining, interacting with, involved in the approval cycle or even checking
safety are all users, but a safety inspector is certainly not a system operator.
Examples of users are:

• An order entry clerk

• A shipping and handling clerk

• A salesperson

• A department supervisor responsible for order approval and of course the
customer who places the order

System requirements
System requirements define what a future system must do. In this sense they
differ from user requirements because they talk about the end product, not just

10 Get It Right The First Time: Writing Better Requirements

the results that are needed. The system requirements must define how the system
has to interface with the systems around it.
System requirements provide an abstract model that shows that they solve every
part of the problem, so they must all trace back to the user requirements, which
made them necessary.
Systems for businesses of all kinds have to work within limits of safety,
performance, reliability, or whatever else is important to the business.
Constraints are just as important as actual system functions. What it must not do
is as important as what it must do.

Writing system requirements
You can look at system requirements in much the same way as you do user
requirements—they say in writing what a system must do to meet the needs of
its users.
The big difference is that the system requirements define the system in abstract,
sometimes dynamic terms. The user requirements just look at the problem; the
system requirements look at the solution and commit to specific technologies
while still leaving space for designers to work. System requirements define the
system without going into the detail of design. Eventually the designers will
come up with just one particular solution, which is their job.
Your job in specifying the system is to make clear to the designers whether any
particular solution would be acceptable. To start designing unintentionally is all
too easy because it is more comfortable to be definite than to leave choices open.
Just as you make each user requirement begin with a kind of user who wanted
that particular result, so you make each system requirement refer to a specific
function.
For example:

The order entry system shall provide the ship date of ordered items.

It is then easy for the order entry designers to select only their requirements to
work on; not distracted by requirements of other subsystems.
Another distinction of system requirements is that they are not the start of your
project. You already have some user requirements, which state what is wanted.
You need to show that the system requirements completely satisfy the user
requirements. To do this, trace between the two documents so that it is clear
where each item comes from, and that it is sufficient for its purpose.

Get It Right The First Time: Writing Better Requirements 11

The table below distinguishes between user and system requirements.

Making requirements testable
During the requirements work, you need to plan to make the system testable.
The system requirements say what the system must do, but these need to be
combined with test criteria so that anyone testing the system knows exactly how
to carry out each test. For example, the thrust of a jet engine depends on the air
temperature and pressure, so the test of that system requirement is not
completely specified without these conditions. The details of the tests can be
worked out while the design is being made, but the overall plan for the tests
needs to be in place first—so it should be ready with the system requirements.

User Requirements System Requirements

Description of the problem Abstract solution

In user language In developer language

Organized by goals Organized by functions in a hierarchy or by
objects

Subject: a type of user Subject: the system or subsystem

Defines what the user gets Defines what the system does

Owned by users Owned by developers

12 Get It Right The First Time: Writing Better Requirements

Get It Right The First Time: Writing Better Requirements 13

5 Sources of user requirements
Good requirements start with good sources. Finding those quality sources is an
important task and fortunately, one that takes little in the way of resources. Time
is what is most needed to meld them together to get it right the first time. This
task is easiest when you start early and use good people.
So, to get the requirements down on paper, you have to do the following:

• interview users

• visit where they work

• look at other systems

• study suggestions and problem reports

• talk to support people

• study improvements

• look at unintended uses

• assemble prototypes

• arrange workshops and meetings

The best idea is to get the requirements down quickly and then to encourage the
users to correct and improve them. Put in those corrections, and repeat the cycle.
Do it now, keep it small, correct it at once. Start off with the best structure you
can devise, but expect to keep on correcting it throughout the process.

Interview users
Face-to-face contact with users through individual interviewing is the primary
source of requirements and an important way you gather and validate them.
Remember that it is not the only possible technique, and that interviews can be
run in many different styles. Develop a repertoire of styles to suit different
situations. Unless you are a user yourself, you will need to make an effort to
understand and experience the user's problem to describe it successfully.

Working in the environment
Experience the work of the users for yourself. Working with users helps you
understand problems that have resisted previous solutions. Familiar systems
developed in this way inevitably include tools for programmers, such as
interactive editors and compilers, as the developers naturally have both the

14 Get It Right The First Time: Writing Better Requirements

expertise in the subject area, and the desire to solve their own problems. It would
be good to see the same dedication devoted to solving problems in other areas
too. Where the work cannot easily be experienced in this way, it may still be
possible to do a bit more than just sit quietly and observe. Users can give you a
commentary on what they are doing, what the problems are, and what they
would like to have to make the work easier.

Study analogous or existing systems
The starting point for many projects often consist of a similar or existing system.
Sometimes comparable products and systems contain working versions of good
ideas for solving user problems. You can save the time lost in reinventing the
wheel by looking at systems already on the market—whether installed at the
user's site, or products made by rival organizations. Even if they are trying to
solve slightly different problems, they often give valuable clues as to what you
should be doing.
Listen when a customer asks why a product couldn't do something that the
customer wanted and keep a list of these suggestions. Later, use it to start
discussions with other users. You should be able to obtain some requirements
directly. If not, capture and store suggestions for future use.
You can describe to users some features of other products, explaining that the
system is in another area but contains an interesting concept, ask whether it
would help them. Sometimes these systems are described in documents—either
a contract from another organization or a report written for management. Often
these documents were never intended as formal requirements, and were written
to communicate a stream-of-consciousness. Define a process of going from a
disorganized to an organized information state.
Such a process might involve the following activities:

• Read the document from end to end (several times) to comprehend what the
customer wants and what actually has been written.

• Classify all of the types of information in the document. (user, system
requirements, design elements, plans, background material, irrelevant detail)

• Mark up the original text to separate out such requirements.

• Find a good structure for each of the different types of information—a
scenario for the user requirements, functional breakdown for the system
requirements, architecture for the design.

• Organize the information to show gaps and overlaps. You should feel free to
add missing elements—but confirm these decisions with the users.

Get It Right The First Time: Writing Better Requirements 15

• Create traceability links between these information elements to show the
designers exactly what is wanted.

• Convince the customer to accept the new information as the basis for the
contract.

Examine suggestions and problem reports
Requirements can come from change suggestions and user problems. A direct
road to finding requirements is to look at suggestions and problems as first
described. Most organizations have a form for reporting system problems or
software defects. You can ask to look through the reports and there will probably
be many. Sort them into groups so you can identify the key areas that are
troubling users. Ask users some questions about these areas to clarify the users
actual needs.

Requirements from the help desk and support teams
All large sales organizations have a help desk, which keeps a log of problems and
fixes, and some support engineers who do the fixing. Many organizations have
similar facilities to support their own operations. Talking to the help desk staff
and the support engineers may give you good leads into the requirements, and
save you time. Talk to the training team and installation teams on what users find
difficult.

Improvements made by users
This is an excellent source of requirements. Users of a standard company
spreadsheet may have added a few fields, or related different sheets together, or
drawn a graph, which exactly meets their individual needs. You need only ask,
what is that for?, Why did you add that? to get to the heart of the actual
requirement. This applies also to hardware and non-computer devices. For
example, a lathe operator may have manufactured a special clamp, or an arm that
prevents movement of the tool beyond a certain point. Any such modification
points to something wrong with the existing product—and is therefore a valid
new requirement for the new version.

Unintended uses
They are an immensely creative way to get new ideas and innovations. An
observant product manager noticed that an engineer was staying in the office late
to use an advanced computer-aided design system to design a new kitchen layout

16 Get It Right The First Time: Writing Better Requirements

for his home. Inexpensive commercial products, with names like Kitchen
Designer, are now widely available for home use.

Workshops
They can rapidly pull together a good set of requirements. In two to five days,
you can create a set of requirements and then review and improve them. If
everyone in a workshop tries to estimate the cost and value of each requirement,
the document becomes much more cost-effective.
Workshops are quicker and better at discovering requirements than other
techniques such as sending out questionnaires. You are bringing the right
collection of people together, and getting them to correct and improve on their
requirements document.
A workshop is inherently expensive because of the number of people involved,
but it does save a large amount of time. If you can define the product right the
first time and cut three months off the requirements phase, the savings could be
enormous. The workshop has to be thoroughly organized to take advantage of
people's time.
Choose a quiet location for the workshop so that people are not disturbed by
day-to-day business. Mobile phones should be discouraged; arrange to take
messages externally. Take advantage of informal interactions by choosing a site
so that people don't go home at night or go out separately. The example below
shows the logic of a requirements workshop.

Get It Right The First Time: Writing Better Requirements 17

Prototypes
They allow us to immediately see some aspects of the system. Showing users a
simple prototype can provoke users into giving good requirements or changing
their mind about existing requirements. The techniques described here help you
gather ideas for requirements. Prototypes and models are an excellent way of
presenting ideas to users. They can illustrate how an approach might work, or
give users a glimpse of what they might be able to do. More requirements are
likely to emerge when users see what you are suggesting.
A presentation can use a sequence of slides, storyboard, an artist's impression, or
even an animation to give users a vision of the possibilities. When prototyping
software, make a mock-up of the user interface screens, emphasizing that there is
no code and that the system has not been designed or even specified yet (there
are dangers here for the unwary).
This prototyping aims to get users to express (missing) requirements. You are
not trying to sell users an idea or product, you are finding out what they actually
want. Seeing a prototype, which invariably is wrong in some ways and right in
others, is a powerful stimulus to users to start saying what they want. They may
point out plenty of problems with the prototype! This is excellent, as each
problem leads to a new requirement.

18 Get It Right The First Time: Writing Better Requirements

Get It Right The First Time: Writing Better Requirements 19

6 Organizing requirements

You need structure as well as text
A medium-sized project typically demands hundreds of requirements. Readers
can only understand these fully when the requirements document is organized
logically. The best structure for user requirements follows the natural patterns of
use, structured like a scenario or use case.
Everyday language is the only medium that users and developers share. Everyone
can immediately understand requirements so written; therefore you might think
writing in plain language would be the ideal way to define user needs. But simple
text isn't good at showing how different user needs fit together. After all, you
want to make a system, not a mass of unrelated functions. So, you need to make
a structure that will organize the requirements.
The structure must give readers insight into the text. A good structure shows the
requirements at different levels of detail and allows readers to focus on one
section at a time. The users have to understand and dominate the user
requirements, whoever wrote them. A combination of textual requirements and a
scenario-like structure of section headings is very effective. This can be
supplemented if you use simple diagrams.
Diagrams must be easy for users to understand. Most kinds of engineering
diagrams are not suitable for non-technical users. Dataflow analysis creates
hundreds of diagrams, so users feel lost, and they give up. Flowcharts can get big,
losing users in a mass of detail.
The goal is to show users just one simple structure, but also allow for any
amount of detail. To do this, arrange what users need under chapter headings.
Users can then see the whole pattern before diving into the details. You probably
need three levels of headings to organize the requirements. Try not to use many
more than that. Your structure should explain itself.

20 Get It Right The First Time: Writing Better Requirements

Organizing requirements in practice
The following example shows you one way to organize your document.

Work out a complete scenario-like heading structure (top two levels, as
illustrated) for the capabilities chapter of the user requirements document for a
passenger aircraft.

Defining the scope
Projects only succeed when they know what they must accomplish. It is vital to
define exactly what your system does and does not have to cover, from the start.
System scope is like a hole, perhaps defined by what it is not, rather than what it
is.

Agree on exactly what to include

A clear view about what to include is critical. All too often there is confusion
about whether something is in or out of a system. For example, users may have
legitimate requirements that are impossible to meet in the time available or too
expensive for the customer's pocket. So the system's scope has to be cut down to
ensure success.

Get It Right The First Time: Writing Better Requirements 21

The scope of any system is defined by negotiation between the customer, who
states what is needed from a business perspective, and the developer, who says
what is practical. Technical users always want more than the customer is willing
to pay for. Make sure you know who has the final say on system scope.

Identify priorities

The best approach to scoping is for the customer to state up-front what is
needed, even before the requirements are collected. Of course, the customer
must never stop users from asking for what they want, even if it is slightly
out-of-scope. That does not mean that those requirements will necessarily be
implemented. Keep them, but mark them as to be implemented later—in other
words, give them a priority. This is far better than deleting requirements, only to
have them re-introduced and re-argued at the next review meeting.

Work out what can be afforded
Sometimes a system has to be limited in scope because a requirement cannot be
met with the available budget. The first rule here is not to despair. Developers
can often suggest simpler alternatives that will do 80% of what the users wanted.
Once the customer has made clear how much can be afforded, developers and
users can sit down with the requirements and work out how to get as much as
possible done within the budget. They may well be able to implement several of
the to be implemented later requirements in a modified form.

It is vital that you agree upon any such compromises in advance.

Putting the requirements in the right place
After collecting user requirements from different sources, you need to sort them
out so that they make sense and can be understood when taken as a whole.
The most natural way to make the document do this is to arrange requirements
around a basic sequence of goals which deliver what users want, enhanced with
extra sequences to cope with exceptions. You'll know you have the structure
right when users of any type instantly see how their part fits into the whole thing.
Identify where each requirement fits into the structure and put it there. This task
demands that you view the structure as a hierarchy, not just as a list or table. If
there is still no appropriate section for a requirement, create one and agree on
changes with the users.

22 Get It Right The First Time: Writing Better Requirements

Get It Right The First Time: Writing Better Requirements 23

7 Requirements—Aids for Analysis
One of the key benefits of having requirements is that you can view and manage
the system without having it physically built. This is especially important in
software-intensive projects. Two key uses of the body of requirements are to
make engineering decisions and to manage the project.

Status information is essential
Up to now, this book has described requirements as if they were just pieces of
text, probably single sentences containing the word shall and as few other words
as possible. This is fine as far as it goes, but it is not the whole story. Each
requirement consists of attributes, or status values, as well as text.
Here's a checklist of actions to enable people on your project to track the source
and status of your requirements. The values attached to each requirement are
most easily handled with a requirements tool.

• Record the source or who suggested the requirement (also record when it
was created and any rationale along with the original text).

• Record how far the requirement is towards being accepted (proposed,
reviewed, accepted, rejected, to be modified).

• Record how urgently the requirement is wanted (mandatory, useful, optional,
luxury).

• Record the requirement's priority in the development of any future system
(date, version, or release number).

• Identify how the requirement will be verified (test, simulation, inspection,
analysis).

• Record any other constraint or related information (safety, performance, or
reliability attributes).

• Record any questions against the requirement (comments, action items or
recommended changes).

Analysis made simple
As you can see, a wealth of information can be captured in addition to just the
narrative requirement. Once this information is captured, questions concerning
the status of the project can be answered.

24 Get It Right The First Time: Writing Better Requirements

• Show all the high priority requirements from the pilot on the flight control
sub-system.

Priority = High

User = Pilot

Subsystem = Flight Control

• Show those mandatory requirements in this release or version of the
product.

Urgency = Mandatory

Release = 1.0

• Show all the requirements the maintainers proposed that could affect safety
and performance.

User = Maintainer

Requirement Status = Proposed

Related Constraints = Safety & Performance

There is no limit to the power of this kind of structured analysis. Without
requirements, the project may still ask some of these questions but the answers
might not be based on the same data, or yield consistent results. A word of
warning as well, be careful of using more attributes than you have time to
maintain. The result is often out-of-date data.

Get It Right The First Time: Writing Better Requirements 25

8 Reviews
Reviews are meant to discover problems early enough to solve them quickly and
cheaply. Reviews can be informal—showing draft documents to your colleagues,
or correcting an outline structure. These informal reviews are excellent for
getting the right structure and removing obvious mistakes.
Formal reviews are more wide-ranging and expensive. They start with careful
preparation, so that comments are organized in time for the formal meeting. The
meeting itself produces decisions on all review items. After the meeting, the
review actions must be pursued to completion.

The review process
The review process involves three main steps:

• collecting review comments from all stakeholders

• deciding what to do about the comments, usually by agreeing to changes to
the requirements

• making the agreed upon changes to the document

Only the middle stage happens in the review meeting. Getting all the participants
or stakeholders together in a meeting is expensive, so perform as much work as
possible beforehand.
The stakeholders should review the document on their own time before the
meeting, writing comments and sending them in to the review organizer. The
organizer has an intense job, collecting and sorting all the comments to ensure
the meeting runs smoothly.
The purpose of the meeting is to make decisions on the review suggestions,
which are available in advance to everyone.

26 Get It Right The First Time: Writing Better Requirements

The job of editing the requirements document or taking any other action (such
as finding out extra information) is done as soon as possible after the meeting.
The following example shows the structure of requirements for holding a review.

The review meeting
The review meeting aims to improve the quality of requirements. In reviewing,
focus the maximum amount of intelligence onto a document to get it as close as
possible to telling the developers exactly what users want.
Reviewing needs to be treated as an opportunity to improve the state of the
program to get the best results. Different participants have their own intentions;
such as to make their own lives as convenient as possible, or to get their own
requirements satisfied regardless of the impact on everybody else. This is why
reviews must involve everybody with an interest in the problem, and why a
leader must be in control of the proceedings.

Remember, take the attitude that every suggestion is a gift.

Capturing the suggestions
First, the requirements have to be frozen. Keep an exact record of the version
number and date of everything you send out to reviewers, and keep a reference
copy in your project library. Make a backup of the review documents on a disk or
tape. For small informal developments, reviewers can write over (identical)
printed copies of the document and send them back in. But for bigger projects, it
is better to suggest changes on a specific form.
Collect all the suggestions, and sort them into the order of the document. Where
several people have made the same point, staple the suggestions together so that
they are handled as one.

Get It Right The First Time: Writing Better Requirements 27

Make the necessary changes
After the review, plan to step through the suggestions, deciding whether to
accept or reject them. Document all your decisions as you go along. If more
work is needed before a decision can be reached, allocate some time for that
work. Be sure to address all the decisions and have them implemented in an
updated version of the requirements document. Publish minutes that identify the
suggestions and decisions, and provide the disposition of the actions.

Golden rules for reviewing:
1. Encourage criticism—remember that people are improving the document,

not criticizing you. Even the harshest criticism often contains a grain of
truth.

2. A few specific people make the best reviewers, time and again. Cultivate
them and make sure they have time allocated for the work.

3. It's not over until the corrections have been made and agreed upon. Allocate
the available time sensibly so that you cover all suggestions. Only three
decision outcomes are allowed: accept, reject, and accept with modifications.
Try to make about 30 decisions per hour. You don't have to be nice to be a
good reviewer—in fact it might help if you are not!

4. Reviews are great for making small decisions, but useless where a large
amount of work is required. Get the structure of the document right before
the review meeting, and then all the change suggestions can easily be
accommodated.

5. Work hard to minimize inter-relationships and make the requirements easy
for people to understand. To review any individual requirement in a
document, people have to understand the whole set of requirements, and the
inter-relationships between them. 800-page specifications can destroy a
project because they are simply impossible to read.

6. Reviews are expensive because they tie up so many people, so aim to get
everything right in a single formal review. Small-scale reviews and
inspections with your local colleagues can happen anytime. Continue with
these until you are sure that passing the formal review will be just a
formality.

28 Get It Right The First Time: Writing Better Requirements

Get It Right The First Time: Writing Better Requirements 29

9 Traceability
Large systems are complicated. Their complexity can only be handled if you
divide up the problem into manageable parts. The largest parts are
levels—system, subsystem, and so on. Each of these parts has its own
requirements, and is run as a separate project or subsystem.

The complexity of large systems

An aircraft maker places thousands of requirements on a new type of plane. The
people who make the components and subsystems for the plane—engines,
control units, fire detectors, navigation devices, radios, lights—place many
thousands more. The airlines who buy the plane have simpler needs: it can fly so
far, so fast, carrying so many passengers and so much cargo, in such-and-such
comfort, using only this amount of fuel and needing servicing only that often.
Finally, the passengers, who are the ultimate users, just want to arrive quickly and
safely, and preferably cheaply. The above example shows some of this
relationship.
Many relationships exist between all these people and requirements. The engine
maker is the user of the engine's fire detector and, in a different way, of the
engine control unit. The aircraft maker is the user of the engine. The airline is the

30 Get It Right The First Time: Writing Better Requirements

customer for the aircraft. The passengers are, in a different way, the customers
for the airline, but they don't buy the planes. Instead, the airline's marketing
department asks existing passengers what they want from an airline of the future,
and writes a report, reflecting the many statements they get back.
Systems can be critical to business for safety, for public liability, for damage to
property, or more directly for collecting (or failing to collect) revenue. A
telecommunications company customer billing system brings in all the firm's
income. If it goes down for just an hour it will give the customers free calls for
that time, and probably millions of dollars' worth, money which can never be
recovered.
Requirements allow customers to get what they want, but only if they effectively
control developers (or subcontractors). Control means that each item can be
traced to its requirements, and tested against them. Traceability is therefore a
vital tool in managing system development through requirements.

Get It Right The First Time: Writing Better Requirements 31

10 Controlling change
Controlling change is a matter of recognizing the forces of change and being
prepared to respond to that change.

Forces of change
Even after a good set of requirements has been created, reviewed, and agreed
upon, these requirements will continue to change. This is an inevitable fact of
system development. New requirements and design possibilities emerge.
Schedules shift; organizations such as regulatory agencies, customers, and
suppliers reorganize, merge, are taken over, and go bankrupt; offices are
relocated, disrupting your infrastructure and carefully optimized network
architecture. New technology may make some requirements easier to implement.
A competitor may add a critically important feature that demands a quick
response.

Tracking change
As a result of these risks, you constantly need to check for changes in the design
and requirements, just to keep up. To do this, you have to trace from each
requirement to the design component that satisfies it. You have to check that the
design is in fact sufficient to meet the requirement. A single requirement change
may affect several design elements. As well, a single design modification can
sometimes affect several requirements, so the change relationships can become
complicated. A well-run project will have a method of tracking change in place
before the change begins to occur. Many organizations couple their requirements
change proposal system with their action item or defect tracking system. This is
not altogether a bad idea, if it makes tracking and managing change easier and a
more natural part of business.

Allow for feedback
Always make sure you allocate enough time for user feedback. After your first
attempt you have set up a framework in which users feel comfortable making
informal comments on their requirements. Take time and effort to co-operate in
a relaxed and open way with your users. Foster an environment that encourages
and allows for feedback. Make clear to your team that the users are part of the
team. A spirit of co-operation is essential. If users and program participants feel

32 Get It Right The First Time: Writing Better Requirements

their comments are not listened to, the suggestions and ultimately the support
will stop coming and everyone will suffer.

Requirements effort throughout the lifecycle
Some effort is needed throughout the project, because compromise and change
are inevitable. Do not be discouraged that requirements are inevitably changed
through the course of a project. As it becomes clear what is feasible, and how
much requirements will cost, you will have to compromise. At this time, you will
need to know how important the requirements are to users.

Other helpful hints on managing change
1. Allow for change—Organize the requirements so that you can cope with the

changes and fund efforts to periodically review and update the requirements
throughout the project.

2. Allow for users' feelings—Some users may be defensive about giving their
opinions, especially if, for instance, they think their jobs may be affected by
the system being developed. In that situation, it is essential to gain their trust
before trying to start developing a system. Make sure that management,
users, and developers share an understanding of what the system will mean
for the workforce.

3. Keep the requirements in the forefront—Once the formal reviews are
completed and the design is well under way, make sure everyone keeps in
mind why we are building the system. Plan to stop and re-review the user
and system requirements periodically in design and again in test. Several
months or perhaps a year may have passed since these requirements have
been written. If the requirements need to be changed, then start that
process. If the implementation is not tracking them, it's time to adjust.

Get it Right the First Time: Writing Better Requirements 33

A Appendix: Writing pitfalls to avoid
Listed below are some pitfalls to avoid in defining and writing requirements. In
some senses they are an inverse of the definition of writing good requirements.
In other cases showing examples of what not to do can help explain better.

Avoid ambiguity
Avoidance of ambiguity is one of the subtlest and most difficult issues in writing
requirements. Try to write as clearly and explicitly as possible. Remember if this
is carried too far, the text becomes dull and unreadable—and therefore cannot
be improved by other people. Although this book emphasizes structured written
expression of requirements, informal text, diagrams, conversations, and phone
calls are excellent ways of removing ambiguity.
Dangerous ambiguities can be caused by the word for, and also by many more
subtle errors.
Example:

The same subsystem shall also be able to generate a visible or audible
caution/warning signal for the attention of the co-pilot or navigator.

Which subsystem? Is the signal to be visible, audible, or both? Is it both caution
and warning, just caution, or just warning? Is it for both the co-pilot and the
navigator, or just one of them? If just one of them, which one and under what
conditions?

Don't make multiple requirements
Requirements which contain conjunctions (words that join sentences together)
are dangerous. Problems arise when readers try to puzzle out which part applies,
especially if the different clauses seem to conflict, or if the individual parts apply
separately.
Dangerous conjunctions include and, or, with, also.
Example:

The battery low warning lamp shall light up when the voltage drops below 3.6
Volts, and the current workspace or input data shall be saved.

34 Get it Right the First Time: Writing Better Requirements

Never build in let-out or escape clauses
Requirements which contain let-outs or escapes are dangerous. They look as
though they are asking for something definite, but at the last moment they back
down and allow for other options. Problems arise when the requirements are to
be tested, and someone has to decide what (if anything) could prove the
requirement was not met.
Dangerous let-outs include: if, when, but, except, unless, although.
Examples:

The forward passenger doors shall open automatically when the aircraft has
halted, except when the rear ramp is deployed.

The fire alarm shall always be sounded when smoke is detected, unless the alarm
is being tested or the engineer has suppressed the alarm.

(This is a truly dangerous requirement!)

Don't ramble
Long rambling sentences, especially when combined with arcane language,
references to unreachable documents, and other defects of writing, quickly lead
to confusion and error.
Example:

Provided that the designated input signals from the specified devices are received
in the correct order where the system is able to differentiate the designators, the
output signal shall comply with the required framework of section 3.1.5 to
indicate the desired input state.

Refrain from designing the system
Requirements specify the design envelope, and if we supply too much detail we
start to design the system. Going too far is tempting for designers, especially
when they come to their favorite bits. Danger signs include names of
components, materials, software objects/procedures, and database fields.
Example:

The antenna shall be capable of receiving FM signals, using a copper core with
nylon covering and a waterproof hardened rubber shield.

Specifying design rather than actual need increases the cost of systems by placing
needless constraints on development and manufacture. Often knowing why is
much better than knowing what.

Get it Right the First Time: Writing Better Requirements 35

Avoid mixing different kinds of requirements
The user requirements form a complete model of what users want. They need to
be organized coherently to show gaps and overlaps. The same applies to system
requirements—form a complete functional model of the proposed system. A
quick road to confusion is to mix up requirements for users, systems, and how
the system should be designed, tested, or installed. Danger signs are any
references to system, design, testing, or installation.
Example:

The user shall be able to view the currently selected channel number which shall
be displayed in 14pt Swiss type on an LCD panel tested to Federal Regulation
Standard 567-89 and mounted with shockproof rubber washers.

Do not speculate
Requirements are part of a contract between customer and developer. There is
no room for wish lists—general terms about things that somebody probably
wants.
Danger signs include vagueness about which type of user is speaking, and
generalization words: usually, generally, often, normally, typically.
Example:

Users normally require early indication of intrusion into the system.

Do not play on ambiguous requirements
Some constructions (such as the use of or and unless in requirements) allow
different groups of readers to understand different things from the same
wording. Developers could use this technique deliberately, so as to postpone,
until too late, any possibility of the customer's asking for what was truly wanted.
This is dangerous and could easily backfire.
The only approach that works is for developers to make requirements as clear as
possible, and for all stakeholders to co-operate. In the long run, project success
is in everybody's interest.

Do not use vague undefinable terms
Many words used informally to indicate system quality are too vague for use in
requirements.
Vague terms include: user-friendly, versatile, flexible, approximately, as possible.

36 Get it Right the First Time: Writing Better Requirements

Requirements using these terms are unverifiable because there is no definite test
to show whether the system has the indicated property.
Examples:

The print dialog shall be versatile and user-friendly.

The OK status indicator lamp shall be illuminated as soon as possible after the
system self-check is completed.

Do not express possibilities
Suggestions that are not explicitly stated as requirements are invariably ignored
by developers.
Possible options are indicated with terms such as: may, might, should, ought,
could, perhaps, probably.
Example:

The reception subsystem probably ought to be powerful enough to receive a
signal inside a steel-framed building.

Avoid wishful thinking
Engineering is a real-world activity. No system or component is perfect. Wishful
thinking means asking for the impossible.
Wishful terms include: 100% reliable; Safe; Handle all unexpected failures; Please
all users; Run on all platforms; Never fail; Upgradeable to all future situations.
Examples:

The gearbox shall be 100% safe in normal operation.

The network shall handle all unexpected errors without crashing.

Get it Right the First Time: Writing Better Requirements 37

B Appendix: List of possible constraints
Many requirements are not functions, but qualities of behavior that users want.
In this way they constrain the system within acceptable operational bounds.
These constraints are also referred to as non-functional requirements—again,
because they do not specify functions of the systems. Examples of the most
common and important non-functional requirements include performance,
interface, safety, and a group referred to as the ilities (reliability, availability,
maintainability, portability, and others). Provided below is a list of some
constraints and a brief definition of each. Your system may have other
constraints resulting for the uniqueness of your problem area. Do not hesitate to
define new and specific constraints.
Two general guidelines about constraints:

1. They are best linked to a functional requirement.

2. Group them together in your information model or document to review and
evaluate them together.

Performance requirements
Performance requirements typically quantify the operational value of other
requirements. Performance requirements are often a numeric value assigned to
the requirement, or even more typically have a relationship between two or more
requirements. Make sure they are visualized together and that the end-to-end
performance constraints apply to the whole system. Examples of performance
requirements include calls per hour, response time, flight range, and number of
fixes.

Interface requirements
Interface requirements in a User or System requirements document usually
means a wholly external companion or co-operating system. In this case an
interface requirement should specify only two end points and specify the
purpose and what the payload across the interface is.

Safety requirements
Safety requirements define those qualities the system must have to ensure safety
of the system. These include rounded edges, grounding, hazardous materials,
noise levels, and all the hazards and faults that could threaten safety. Define

38 Get it Right the First Time: Writing Better Requirements

safety requirements by analyzing the functions, and later the design, of a system
to consider how likely each hazard is, what can be done to reduce it to an
acceptable level, and what to do if a breach of safety occurs.

Training requirements
Training is often an issue in large systems as a good number of people must be
trained, retrained, and perhaps certified. Training requirements should specify
the type and location of training (embedded, classroom, individual, and field),
desired length of training (hours, days, and weeks) and type of people to be
trained. State any pre-requisites or start-of-training criteria the system might
place on those trained.

Documentation requirements
Most systems require a large amount of documentation upon system delivery.
Types of documents, such as user manuals, installation guides, training material
(related to training requirements), and maintenance manuals are some examples.
Guidelines on length of documents, reading level, format, and medium (paper,
CD, or Web-Based) may also be specified.

Reliability
How long must the system function under normal and abnormal conditions?
Minimum times (minutes, hours, days) should be specified as to how long the
system should operate before incurring downtime, reboots, or going off-line.

Portability
Defines the desired level of system portability to other platforms, usually in
terms of percentage of code to be rewritten in order for the software to run on
another system. Portability requirements can also mean requirements for
different methods of transportability (rail, air, truck or ship) and any such
consideration like fuel level, max wind speed protection, shake, rattle, and roll.

Maintainability
Description of the system's maintenance requirements should be specified.
Types and level of maintenance (User, Level 1, Field, preventative, and
manufacture) should be defined as well as distribution method for updates, who
will perform the maintenance, and any documentation required (related to

Get it Right the First Time: Writing Better Requirements 39

documentation requirements). Others include time between repairs, time to
repair, and any warranty information.

Availability
Length of time the system should be ready for use is in-service, or operational.
Often specified as a percentage of time during a given interval. Can also specify
or point to what actions to take if the time or percentage drops below that level
(call maintenance, issue a report, and so on).

40 Get it Right the First Time: Writing Better Requirements

Get it Right the First Time: Writing Better Requirements 41

C Appendix: Breaking down requirements
Part of defining a good set of requirements is in breaking a high-level activity or
function down into smaller steps or sub-functions. This part of getting it right
means the following:

1. Set the main goal.

2. Define the key steps.

3. Decompose or break them down into smaller steps.

4. Relate any links between smaller steps or other requirements.

The goal
First, identify the goal for the whole problem. This is simple if you begin with
the word to, as this gets you thinking about a single action or mission. For
example, the goal for a transportation enterprise is to get the goods delivered.
The goal for an accounting office is to get payment for the company's products.

Key steps
Next, write down the short sequence of key steps that you must take, to achieve
the goal. You may be able to do this directly with the help of some users. Starting
at the end (having reached the goal) and working backwards is the easiest
approach.
For example:

• To get payment into your company's account, you have to pay in the
customer's checks.

• To get the checks, you have to send out invoices to the customers.

• To send the invoices, you obviously have to work out what they owe you.

• To work out ...

You can see why it helps to work backwards a step at a time, because the answer,
for each small step, is usually simple.
Organizing the user requirements into a time sequence (or operational scenario)
works well. For a first cut, the key results needed by users form a single normal
business sequence: a clear flow from first to last. You can step through the
structure like a scenario, and quickly detect gaps and duplication. Later, you will

42 Get it Right the First Time: Writing Better Requirements

add other sequences, such as abnormal behavior or exception handling. These
will build more structure around the first-cut sequence. For example, you can
expect emergency actions to branch off from the sequence of normal actions.

Decompose or break down into even smaller steps
Once the high-level steps to achieving the goals are agreed upon, decompose
each step into the smaller steps needed to reach its goal, and again check out
your understanding with the users.
If progress towards the goal is built up in stages, the final step to reaching the
goal is similar to the goal itself. Conversely, sometimes several goals can be
worked on simultaneously. For example, to respond to a major incident, three
sub-goals can be worked on in parallel, and none of them resemble the goal.
Some steps may involve plenty of work. Calculating the invoiced amount for an
important customer may mean keeping a complete database covering orders,
previous payments, discounts, state taxes, delivery charges, credit notes, and
much more. So you can repeat the process just explained, breaking each step
down as if it were the goal.
The steps leading to a goal are usually simple for users to identify. See how much
easier it is to understand the problem when it is arranged in order! Structure
makes it easy to see what is there—and what is missing.
Make the structure easier to understand by:

• emphasizing the sequences with numbered headings

• choosing larger type for the higher-level headings

• indenting the headings differently from the text

Define any relationships
One of the main by-products of decomposition is the relationship between other
requirements as we break them down. Make sure you take time to understand
and capture each of these relationships, as they will be extremely valuable later
on.

An example
To illustrate this, the following example shows a simple patient aid system. Start
with the top-level goal—the end result that the user actually wants from using
the system—to help the patient recover. Then define the steps or subclass
leading to that goal. Review the set of results that these high-level goals provide:

Get it Right the First Time: Writing Better Requirements 43

are they what the users actually want? In the illustration, the results are that the
patient's call is received, the aid needed by the patient is defined, the patient is
taken to a hospital, and the defined medical aid is supplied to the patient.
Together, these results plainly do achieve the top-level goal, which is to help the
patient recover. How each of the results is to be achieved is not yet defined; but
fortunately, even without that knowledge, users can agree with—or correct your
understanding of—the goals. Using this approach, you can therefore be sure at
every stage that the requirements are correct.

To prepare to treat patients in a major incident:

• Summon backup medical staff to hospital.

• Prepare casualty department.

• Summon backup ambulances to incident.

44 Get it Right the First Time: Writing Better Requirements

Get it Right the First Time: Writing Better Requirements 45

D Appendix: Attributes
Attributes are a very important source of requirements information. Just as every
person has attributes (age, hair color, gender), each requirement has a source, a
relative importance, and time it was created. Attributes not only extend the
meaning of each requirement; if created properly, they can yield significant
information about the state of the system. Just as a query can be made on all men
with brown hair over age 30 given our human example, queries on the status of
requirements can be made such as all high-priority requirements from the
customer in the last 30 days.

Examples of attributes
Listed below is a partial list of some common attributes and a brief description
of their meaning. Some attributes are best described as a number, date, boolean
(true or false) or a text field for entering free format comments. Other attributes
can be expressed as lists. For instance, priority type is a list of high, medium, and
low; Weekday is a list which includes Monday, Tuesday, and so on.
Source—Person, document or other origin of a given requirement, useful in
determining whom to call for questions or whether the requirement needs to be
grouped by persons making the demands.
Priority—Statement of relative importance of the requirement, either to the
system (mandatory, critical, optional) or to other requirements (high, medium,
low). It is good to track the mandatory or high as an indication of how well the
system will meet the greatest needs or for metrics concerning compliance.
Assigned to—Who in the organization is responsible for making sure the
requirement is met (person's name or organizational name).
Comments—Reviewer's or writer's comments on a requirement.
Difficulty—An indication of the level of effort needed or how hard it will be to
implement the requirement (high, medium, low).
Status—Degree of completeness (completed, partial, not started).
Risk—Confidence measure on the likelihood of meeting (or not meeting) a
requirement. Could be high, medium, low or one through ten.
Due By—Date the requirement must be provided.
Method of verification—Qualification type to be used to verify that a
requirement has been met: analysis, demonstration, inspection, test, and
walkthrough.

46 Get it Right the First Time: Writing Better Requirements

Level of Test—Describes the verification lifecycle stage at which the
requirement is determined to be met: unit test, component, system or product.
Subsystem Allocation—Name of system or subsystem a requirement is to be
assigned to (flight control module, wing assembly, passenger cabin).
Test Number—Identification of a test or other method of verification.

Get it Right the First Time: Writing Better Requirements 47

E Appendix: Formats of User and System
documents

Once requirements data is gathered, it needs to take shape as an information
source. One of the best ways of ensuring that the results of the requirements
effort are put to good use is by effectively formatting requirements documents.
Two of the main documents used to contain requirements are the User and
System Requirements documents.

The User Requirements Document (URD)
Provided below is an outline for a User Requirements Document (URD), based
on a widely used standard. The vital thing is to communicate the user's needs to
the designers. You can always extend or modify a standard document as long as
you explain why you are doing so. If the standard does not provide a section for
a necessary piece of information, just insert the information.

System Requirements Document (SRD)
Provided below is an outline for a System Requirements Document (SRD),
based on a widely used standard. The SRD is much more involved and detailed.
This is the first time the system takes shape and is defined. Many of the formats of

Product Perspective Introduce the system and its context

General Capabilities What & why these capabilities are
needed

General Constraints What & why the constraints are needed

User Characteristics Who will use the product and when

Operational Environment Other systems and their interfaces

Assumptions and Dependencies Assumptions requirements are based on

Capabilities The Scenarios

Constraints The qualities demanded by users

48 Get it Right the First Time: Writing Better Requirements

the URD are present, but greater emphasis is placed here on constraints and how
the system is to be verified.

Functional Requirements

Non-Functional Requirements

Verification Method
Describes how and when system is tested

Trace Back to User Requirements
Relationship on which to base requirement

System Description Describe the system and its purpose

System Context diagram Position of system to the rest of world

Functional Breakdown Core details of functions to be performed

Operating Modes and States Different operating options and forms the final
system will take on

Performance This is often the largest section

External Interface One for each external interface

Safety See Appendix D List of possible constraints

Get it Right the First Time: Writing Better Requirements 49

F Appendix: Typical requirements problems
Below are some problems commonly found with requirements. Be careful to
learn these dangers and avoid them on your project.

Top 10 requirements problems
Any one of the following 10 problems commonly found could seriously affect
your project:

1. Design mixed into the requirements

2. Mixture of user and system requirements

3. Methods and plans in the product requirements

4. No clear owner of the requirement

5. No visible means of testing the requirement

6. Customer too passive or too intrusive

7. Lack of structure: repetition or missing requirements

8. Configuration of requirement version not managed

9. Ambiguity, vagueness, poor wording

10. Commitment to impractical set of requirements

50 Get it Right the First Time: Writing Better Requirements

How not to arrange your requirements
The following example shows you how not to arrange your requirements.

In the real world, requirements are sometimes organized very confusingly. If you
see a document like the one above, you'll know you have some serious work to
do.
Work out which documents each of the headings should be in. Hint: likely
candidates are the User Requirements, System Requirements, Architectural
Design, Development Plan, and Maintenance Plan (among others).

Get it Right the First Time: Writing Better Requirements 51

Nightmare requirements
Many people can unknowingly find themselves writing contorted and ambiguous
requirements. Here are some examples of what can go wrong.

Common problems with structure
Listed below are some common problems that affect requirement structure and
suggested solutions.

Problem Solution

All readers need to understand the
requirements

Write requirements in everyday language

Long list of requirements is impossible
to understand

Make a simple structure of chapters and
sections to group the requirements

52 Get it Right the First Time: Writing Better Requirements

Requirements don't show what comes
first

Organize the chapters and sections in
time order

Some requirements can be applied
simultaneously, or in any order—a
sequence is an unnecessarily tight
ordering

Mark whether sections in the structure
are sequences, parallels, or alternatives

The basic sequence of requirements
doesn't show what to do if something
goes wrong

Add a section for each exception, at the
place where it could occur in the normal
sequence

Some constraints apply to several
requirements

Use a requirements tool to link them
together

Users find it hard to get an overview of
the whole document

 All the above solutions, or

• Add a simple diagram

• Write an overview

• Find out why they find it hard and
restructure the document

Problem Solution

Get it Right the First Time: Writing Better Requirements 53

G Appendix: Types of questions to elicit
requirements

Listed below are some types of questions you can use to elicit good requirements
from the people you interview. Generally, the questioning will proceed from the
general to the specific.

Types of
Questions

Definition Usefulness Dangers

Open Ended Prompt for a broad
response in a general area

Open up a quiet
customer

Avoid with
customers who
will wander

Is Not Prompt for broad responses
on topics not covered
before

Obtains
completeness

Could imply
distrust

Pregnant Planned silence after which
the customer talks first

Open up a quiet
customer

Can intimidate

Vanilla Comment requesting
expansion by the customer

Directs statements
to more detail

May encourage
trivia

Assertion Statement inviting
agreement and expansion

Requests
commitment and
amplification

Interruptions
can intimidate

Negative Asking for conditions when
previous statements become
untrue

Fills in gaps and
exceptions

May encourage
excess detail

Closed-ended Questions to produce a
limited set of answers

Focuses on
specifics

Too many are
intimidating

Chin first Phrasing to imply a
“correct” answer

Lead customer
towards a
conclusion

Customer may
feel trapped

Summary Rephrase of prior
statements

Test completeness
and confirmation

May encourage
invention

54 Get it Right the First Time: Writing Better Requirements

World Headquarters
P.O. Box 4128  •  SE-203 12 Malmö, Sweden
Phone: +46 40 650 00 00  •  Fax: +46 40 650 65 55
American Headquarters
9401 Jeronimo Road  •  Irvine, California 92618 USA
Phone: +1 949 830 8022  •  Fax: +1 949 830 8023
Offices in Europe, America, Asia and Australia.
Distributors worldwide.
info@telelogic.com  •  www.telelogic.com
Visit www.telelogic.com/support for more information
on our support centers across the world.

	About this Manual
	How to write better requirements
	Overview
	Guidelines to keep in mind
	Remember what requirements are for
	Requirements are a human issue

	Definition and structure of a requirement
	A requirement shall be a complete sentence
	Shall, will, and must
	Anatomy of a good requirement

	Criteria for a good requirement
	For each requirement ask the question:
	Check the requirements as a set
	Guidelines for writing good requirements

	Writing user and system requirements
	Writing the user requirements
	What is a user?
	System requirements
	Writing system requirements
	Making requirements testable

	Sources of user requirements
	Interview users
	Working in the environment
	Study analogous or existing systems
	Examine suggestions and problem reports
	Requirements from the help desk and support teams
	Improvements made by users
	Unintended uses
	Workshops
	Prototypes

	Organizing requirements
	You need structure as well as text
	Organizing requirements in practice
	Defining the scope
	Agree on exactly what to include
	Identify priorities
	Work out what can be afforded

	Putting the requirements in the right place

	Requirements-Aids for Analysis
	Status information is essential
	Analysis made simple

	Reviews
	The review process
	The review meeting
	Capturing the suggestions
	Make the necessary changes
	Golden rules for reviewing:

	Traceability
	The complexity of large systems

	Controlling change
	Forces of change
	Tracking change
	Allow for feedback
	Requirements effort throughout the lifecycle
	Other helpful hints on managing change

	Appendix: Writing pitfalls to avoid
	Avoid ambiguity
	Don't make multiple requirements
	Never build in let-out or escape clauses
	Don't ramble
	Refrain from designing the system
	Avoid mixing different kinds of requirements
	Do not speculate
	Do not play on ambiguous requirements
	Do not use vague undefinable terms
	Do not express possibilities
	Avoid wishful thinking

	Appendix: List of possible constraints
	Performance requirements
	Interface requirements
	Safety requirements
	Training requirements
	Documentation requirements
	Reliability
	Portability
	Maintainability
	Availability

	Appendix: Breaking down requirements
	The goal
	Key steps
	Decompose or break down into even smaller steps
	Define any relationships
	An example

	Appendix: Attributes
	Examples of attributes

	Appendix: Formats of User and System documents
	The User Requirements Document (URD)
	System Requirements Document (SRD)
	Functional Requirements
	Non-Functional Requirements
	Verification Method
	Trace Back to User Requirements

	Appendix: Typical requirements problems
	Top 10 requirements problems
	How not to arrange your requirements
	Nightmare requirements
	Common problems with structure

	Appendix: Types of questions to elicit requirements

