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Abstract— Convex optimization methods are widely used in
the design and analysis of communication systems and signal
processing algorithms. This tutorial surveys some of recent
progress in this area. The tutorial contains two parts. The
first part gives a survey of basic concepts and main techniques
in convex optimization. Special emphasis is placed on a class
of conic optimization problems, including second-order cone
programming and semidefinite programming. The second half
of the survey gives several examples of the application of
conic programming to communication problems. We give an
interpretation of Lagrangian duality in a multiuser multi-antenna
communication problem; we illustrate the role of semidefinite
relaxation in multiuser detection problems; we review methods
to formulate robust optimization problems via second-order cone
programming techniques.

Index Terms—convex optimization, digital communications,
signal processing, second-order cone programming (SOCP),
semidefinite programming (SDP).

. INTRODUCTION

The use of optimization methods is ubiquitous in communi-
cations and signal processing. Many communication problems
can either be cast as or be converted into convex optimization
problems, which greatly facilitate their analytic and numerical
solutions. This tutorial paper gives a survey of some of
recent progress in convex optimization techniques for digital
communications and signal processing applications.

Convex optimization refers to the minimization of a convex
objective function subject to convex constraints. Convex opti-
mization techniques are important in engineering applications
because alocal optimum is also a global optimum in a convex
problem and a rigorous optimality condition and a duality
theory exist to verify the optimal solution. Consequently, when
adesign problemis cast into a convex form, the structure of the
optimal solution, which often reveals design insights, can often
be identified. Further, powerful numerical algorithms exist to
solve for the optimal solution of convex problems efficiently.

There have been significant advances in the research in
convex optimization (e.g. interior-point method [1] and conic
optimization [2]) over the last two decades. The first part of
this tutorial provides an overview of these developments and
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describe the basic optimization concepts, models and tools
that are most relevant to signal processing and communication
applications. The second half of the paper includes examples
illustrating Lagrangian duality, the method of relaxation, and
robust optimization techniques, which are useful in many
engineering applications. Open problems and future research
directions are also discussed.

Il. CONVEX OPTIMIZATION

In order to recognize convex optimization problems in
engineering applications, one must first be familiar with the
basic concepts of convexity and the commonly used convex
optimization models. This section provides a concise review of
these optimization concepts and models including linear pro-
gramming, second-order cone programming, and semidefinite
cone programming, al illustrated through concrete examples.
In addition, the Karush-Kuhn-Tucker optimality conditions
are reviewed and stated explicitly for each of the convex
optimization models, followed by a description of the well-
known interior-point algorithms and a brief discussion of their
worst-case complexity.

Here and throughout, vectors are in lower case letters, and
matrices are in capital case letters. The transpose is expressed
by (-)7; the conjugate transpose is expressed by () ; the trace
is expressed by tr(-). The set of n by n positive semidefinite
real symmetric matrices is denoted by S%; the set of n by n
positive semidefinite complex Hermitian matrices is denoted
by H' . For two given matrices A and B, we use ‘A = B’
to indicate that A — B is positive semidefinite, and Ae B :=
> AiBij = tr(ABT) to denote the matrix inner product.
The Frobenius norm of A is denoted by || A|| r = 1/tr(AAT).
The Euclidean norm of a vector € R™ is denoted as ||z||.

A. Basic Optimization Concepts

Convex sets: A set S C R™ is said to be convex if for any
two points z, y € .S, theline segment joining x and y also lies
in .S. Mathematically, it is defined by the following property

bxr+(1-0)yesS, Vvoelo,ljandz, yeS.

Many well-known sets are convex, for example, the unit ball
S = {z | ||lz|| < 1}. However, the unit sphere S = {z |
[z = 1} is not convex since the line segment joining
any two distinct points is no longer on the unit sphere. In
general, a convex set must be a solid body, containing no
holes, and always curve outward. Other examples of convex
sets include ellipsoids, hypercubes, polyhedral sets, and so
on. In the rea line R, convex sets correspond to intervals
(open or closed). The most important property about convex



set is the fact that the intersection of any number (possibly
uncountable) of convex sets remains convex. For example, the
st S = {z | |z|]| <1, = > 0} is the intersection of the
unit ball with the nonnegative orthant (%"} ), both of which are
convex. Thus, their intersection S is also convex. The union
of two convex sets is typically nonconvex.

Convex cones: A convex cone K is a special type of convex
set which is closed under positive scaling: for each = € X and
each o > 0, ax € K. Convex cones arise in various forms in
engineering applications. The most common convex cones are

1) Nonnegative orthant 37 ;
2) Second-order cone (also known as ice-cream cone):

K =380C(n) = {(t,z) | t = ||=[};

In practice, sometimes it is more convenient to
work with the so-called rotated Second-Order Cone:
{(t,s,z) € R* | ts > |z, t > 0, s > 0}. This
cone is equivalent to the standard SOC(n + 1) via a
simple linear transformation.

3) Positive semidefinite matrix cone

K=S8"={X|X symmetric and X > 0}.
For any convex cone KC, we can define its dual cone
K*={z|(z,y) >0, Yy €K},

where (-,-) denotes the inner product operation. In other
words, the dual cone K* consists of al vectors y which forms
anon-aobtuse angle with all vectorsin K. We say K is self-dual
if £ = KC*. It can be shown that the nonnegative orthant cone,
the second-order cone and the symmetric positive semidefinite
matrix cone are all self-dual. Notice that for the second-order
cone, the inner product operation (-, -) is defined as

((t.2),(s,y)) =ts +aTy,
vV (t,x) and (s,y) with ¢ > [lz|| and s > [|y[|, (1)

and for the positive semidefinite matrix cone

(X,Y)=XeV =) X;;V;.
i
Convex functions: A function f(z) : ®™ — R is said to be
convex if for any two points x, y € R"

[0z + (1= 0)y) < 0f(x) + (1—0)f(y),

Geometrically, this means that, when restricted over the line
segment joining = and y, the linear function joining (x, f(x))
and (y, f(y)) dways dominates the function f. There are
many examples of convex functions, including the commonly
seen univariate functions |z, e®, 2% as well as multi-variate
functions a”z + b, || Az||?, where A, a and b are given data
matrix/vector/constant. We say f is concave if —f is convex.
The entropy function — >, x; log «; is aconcave function over
R% . If f is continuoudly differentiable, then the convexity of
f is equivalent to

fy) > f@)+ Vi) (y— ),

V6 elo,1].

Vo, y € R™.

In other words, the first order Taylor series expansion serves as
a global under-estimator of f. Furthermore, if f is twice con-
tinuoudly differentiable, then the convexity of f is equivalent
to the positive semidefiniteness of its Hessian: V2 f(x) = 0,
YV z € R™.Thus, a linear function is always convex, while a
quadratic function 27 Pz 4+ aTx + b is convex if and only if
P = 0. Notice that the linear plus the constant term o™z + b
does not have any bearing on the convexity (or the lack of) of
f. One can think of numerous examples of functions which
are neither convex nor concave. For instance, the function a3
is convex over [0, 00) and concave over the region (—oo, 0],
but is neither convex nor concave over R.

The most important property about convex functions is the
fact that they are closed under summation, positive scaling, and
the point-wise maximum operations. In particular, if the { f;}'s
are convex, then so ismax;{ f;(x)} (eventhoughitistypicaly
non-differentiable). A notable connection between convex set
and convex function is the fact that the level sets of any convex
function f(x) are always convex, i.e, {z | f(z) < ¢} is
convex for any ¢ € R. The converse is not true, however.
For example, the function f(z) = +/[z] is nonconvex, but its
level sets are convex.

Convex optimization problems. Consider a generic opti-
mization problem (in the minimization form)

minimize  fo(x)

subject to  fi(z) <0, i =1,2,...,m, @
hj(x) =0, j=1,2,..,r,
T €S,

where f; is caled the aobjective function (or cost function),
{fiyiz, and {h;}};_, are caled the inequality and equality
congtraint functions respectively, and S is called a constraint
set. In practice, S can be implicitly defined by an oracle such
as a user-supplied software. The optimization variable = €
R™ is said to be feasible if x € S and it satisfies all the
inequality and equality constraints. A feasible solution z* is
said to be globally optimal if fo(x*) < fo(x) for al feasible
x. In contrast, a feasible vector z is said to be locally optimal
if there exists some ¢ > 0 such that fo(z) < fo(z) for dl
feasible z satisfying ||z — z|| < e.

The optimization problem (2) is said to be convex if (1)
the functions f; (i = 0,1,2,...m) are convex; (2) h;(z) are
affine functions (i.e, h; is of the form a] 2 + b; for some
a; € R™ and b; € R); and (3) the set S is convex. Violating
any one of the three conditions will result in a nonconvex
problem. Notice that if we change “minimize” to “maximize”
and change direction of the inequalities from “ f;(z) < 0"
to “ f;(z) > 0", then (2) is convex if and only if al f;(z)
(: = 0,1,2,...,m) are concave. For example, the following
entropy maximization problem is convex:

maximize sz log x;
=1
subjectto Y x;=1, 2; >0, i=1,2,...,n,
i=1
Ax=b, j=1,2,...,r,
where the linear equalities Az = b may represent the usual
moment matching constraints.



Let us now put in perspective the role of convexity in
optimization. It is well known that, for the problem of solving
a system of equations, linearity is the dividing line between
the “easy” and “difficult” problems.® Once a problem is
formulated as a solution to a system of linear equations, the
problem is considered done since we can simply solve it either
analytically or using existing numerical softwares. In fact,
there are many efficient and reliable softwares available for
solving systems of linear equations, but none for nonlinear
equations. The lack of high quality softwares for solving
nonlinear equations is merely areflection of the fact that they
are intrinsically difficult to solve.

In contrast, the dividing line between the “easy” and
“difficult” problems in optimization is no longer linearity,
but rather convexity. Convex optimization problems are the
largest subclass of optimization problems which are efficiently
solvable, whereas nonconvex optimization problems are gener-
icaly difficult. The theory, algorithms and software tools
for convex optimization problems have advanced significantly
over the last fifty years. There are now (freely downloadable)
high quality softwares which can deliver accurate solutions
efficiently and reliably without the usual headaches of initial-
ization, stepsize selection or the risk of getting trapped in a
local minimum. Once an engineering problem is formulated
in a convex manner, it is reasonable to consider it “solved”
(or “game over"), at least from a numerical perspective.

For any convex optimization problem, the set of global opti-
mal solutions is aways convex. Moreover, every local optimal
solution is also a global optimal solution, so there is no danger
of being stuck at a local solution. There are other benefits
associated with a convex optimization formulation. For one
thing, there exist highly efficient interior-point optimization
a gorithms whose worst-case complexity (i.e., the total number
of arithmetic operations required to find an e-optimal solution)
grows gracefully as a polynomial function of the problem data
length and log 1/e. In addition, there exists an extensive duality
theory for convex optimization problems, a consequence of
which is the existence of a computable mathematical certificate
for infeasible convex optimization problems. As a result, well-
designed softwares for solving convex optimization problems
typically return either an optimal solution, or a certificate (in
the form of a dua vector) that establishes the infeasibility
of the problem. The latter property is extremely valuable in
engineering design since it enables us to identify constraints
which are too restrictive.

B. Lagrangian Duality and Karush-Kuhn-Tucker Condition

Consider the following (not necessarily convex) optimiza
tion problem:

minimize  fo()

subject to  fi(z) <0, i =1,2,....,m, 3
hj(z) =0, j=1,2,..,r,
r € S.

Let p* denote the global minimum value of (3). For symmetry
reason, we will call (3) the prima optimization problem, and

1These notions can be made precise using the computational complexity
theory; e.g., NP-hardness results.

call x the primal vector. Introducing dual variables A € R™
and v € R, we can form the Lagrangian function

m

L(z,\v) := fo(z) + Z Aifi(x) + Z vih;(z).

The so-called dua function g(\,v) associated with (3) is
defined as

g\ v) = ;I:gglL(a:, A V).

Notice that, as a point-wise minimum of a family of linear
functions (in ()\,v)), the dua function g(\,v) is aways
concave. We will say (A,v) is dual feasible if A > 0 and
g(\, v) isfinite. The well-known weak duality result says the
following.

Proposition 1: For any primal feasible vector « and any
dua feasible vector (A, v), there holds

fo(z) = g(A,v).

In other words, for any dual feasible vector (), v), the dua
function value g(\, v) aways serves as a lower bound on the
prima objective value fo(x). Notice that = and (\,v) are
chosen independent from each other (so long as they are both
feasible). Thus, p* > g(\, v) for al dual feasible vector (A, v).
The largest lower bound for p* can be found by solving the
following dual optimization problem:

maximize g(\,v) @
subjectto A >0, v e R".

Notice that the dual problem (4) is always convex regardless
of the convexity of the primal problem (3), since g(\,v) is
concave. Let us denote the maximum value of (4) by d*. Then,
we have p* > d*. Interestingly, for most convex optimization
problems (satisfying some mild constraint qualification con-
ditions, such as the existence of a strict interior point), we
actually have p* = d*. This is called strong duality.

In general, the dua function g(\, v) is difficult to compute.
However, for special classes of convex optimization problems
(see Section 11-C), we can derive their duals explicitly. Below
isasimple exampleillustrating the concept of duality for linear
programming.

Example: Let us consider the following linear programming
problem
minimize x1 + o
subject to 1 + 2z5 = 2, (5)
(l’l,l’g)T € ?Ri

The primal optimal solution is unique and equal to (z 7, z5) =
(0,1), with p* = =7 + 25 = 1. The Lagrangian function is
given by L(z,v) = 1 + z2 + v(2 — 21 — 222), and the dua
function is given by

glv) = min ) {z1+ 22+ v(2 — 21 — 229)}

(z1,22)T€RT
= 2v+ min
(xl,xz)TGERi

_ 2v, if v < %
— e,

{1 =v)z1 + (1 - 2v)xs}

otherwise.



Thus, the dual linear program can be written as

maximize 2v
subject to v < 1.

Clearly, the dual optimal solution is given by »* = 1/2 and
the dua optimal objective value is d* = 1. Thus, we have
in this case p* = d*. In light of Proposition 1, the dual
optimal solution v* = 1/2 serves as a certificate for the primal
optimality of (x7,x3).

Next, we present a local optimality condition for the opti-
mization problem (3). For ease of exposition, let us assume
S = R. Then, a necessary condition for z* to be a local
optimal solution of (3) is that there exists some (A*, v*) such
that

filz®)y < 0, Vi=1,2,..,m (6)
hj(z*) = 0, Vji=1,2,..,r @)
A >0, (8)

A filz®) = 0, Yi=1,2,...,m 9

and
Vi) + Y NV fi(a*)+ ) v Vhi(a*) =0. (10)
i=1 j=1

Collectively, the conditions (6)—<10) are called the Karush-
Kuhn-Tucker (KKT) condition for optimality. Notice that the
first two conditions (6)—7) represent primal feasibility of
x*, condition (8) represents dua feasibility, condition (9)
signifies the complementary slackness for the primal and dual
inequality congtraint pairs: f;(z) < 0 and A\; > 0, while the
last condition (10) is equivalent to V. L(z*, \*,v*) = 0.

For the above linear programming example, we can easily
check that the vector (z7,23) = (0,1) and the Lagrangian
multipliers (A, A3,v*) = (3,0, 1) satisfy the above KKT
condition. Moreover, they are the unique solution of (6)—10).
Thus, (z7,x3) = (0,1) is the unique primal optimal solution
for (5).

In general, the KKT condition is necessary but not sufficient
for optimality. However, for convex optimization problems
(and under mild constraint qualification conditions), the KKT
condition is also sufficient. If the constraints in (3) are absent,
the corresponding KKT condition simply reduces to the well-
known stationarity condition for unconstrained optimization
problem: Vfo(z*) = 0. That is, an unconstrained loca
minimum must be attained at a stationary point (at which
the gradient of f, vanishes). However, in the presence of
congtraints, local optimal solution of (3) is no longer attained
at a stationary point; instead, it is attained at a KKT point
a*, which, together with some dual feasible vector (A*, v*),
satisfies the KKT condition (6)—(10).

Detecting infeasibility: Efficient detection of infeasibility
is essential in engineering design applications. However, the
problem of detecting and removing the incompatible con-
straints is NP-hard in general, especialy if the constraints are
nonconvex. However, for convex constraints, we can make use
of duality theory to prove inconsistency. Let us consider the
following example.

Example: Determineif the following linear system is feasible:

1 +x2 <1,
1 —12 < —1,
—T1 S —1.

Let us multiply the last inequality by 2 and add it to the first
and the second inequalities. The resulting inequality is 0 <
—1, which is a contradiction. This shows that the above linear
system is infeasible.

In general, a linear system of inequalities

Az <b (12)
is infeasible if and only if there exists some A\ > 0, such that
MAa=0, AT <o. (12)

Clearly, the existence of a such A\ serves as a certificate for
the incompatibility of the linear inequalities in (11). What is
interesting (and nontrivid) is the fact that the converse is also
true. That is, if the system (11) isinfeasible, then there always
exists a mathematical certificate )\ satisfying (12). Results of
thiskind are called the theorems of alternatives, and are related
to the well-known Farkas' lemma for the linear feasibility
problem.

The above result can also be extended to the nonlinear
context. For instance, consider a system of convex (possibly
nonlinear) inequality system:

filz) <0, fa(x) <0, -+, fm(z) <O. (13)

Then, either (13) isfeasible or there exists some nonzero A > 0
satisfying

g(A) = igf{)\1f1($) +Xafo(z) + -+ A f(2)} > 0. (14)

Exactly one of the above two conditions holds true. The
existence of a nonzero A > 0 satisfying (14) proves the
infeasibility of (13). Such a \ serves as a certificate of infeasi-
bility. Modern softwares (e.g., SeDuMi [3]) for solving convex
optimization problems either generate an optimal solution or
a certificate showing infeasibility. In contrast, softwares for
nonconvex optimization problems typically fail to converge
either due to data overflow or because the maximum number
of iterations is exceeded. They cannot detect infeasibility.

C. Linear Conic Optimization Models

We now review several commonly used convex optimization
models in engineering design applications. Consider a primal-
dua pair of optimization problems:

minimize Ce X

subjectto AX =b, X € K (15)

and

maximize b7y

subjectto A*y+S=C, S e K,
where A is a linear operator mapping an Euclidean space
onto another Euclidean space, .A* denotes the adjoint of A,
K signifies a pointed, closed convex cone, and X * is its dual
cone. Recall that C' e X denotes matrix inner product. The
problems (15)—(16) are known as linear conic programming.
They include many well-known specia cases listed below.

(16)



Linear Programming (LP) K = R . In this case, the linear
conic optimization problem reduces to

minimize Tz
subjectto Az =b, x>0 (7
and its dual becomes
imi T
maximize b’y (18)

subject to ATy +s=c, s>0.
The optimality condition is given by

Ar=b, >0, ATy+s=¢, s€0, 2Ts=0.

Second-Order Cone Programming (SOCP) K = H OC(n;):

i=1
Let z = (ii’l,(i'g,...,ii’k)T with z; = (ti,l'i)T S SOC(nZ
(namely, t; > ||z;]|). Similarly, we denote § = (31, 32, ..., 5x) T
with 5, = (7;,s;))7 € SOC(n;). The data vector ¢ =
(¢1,82,....¢)T with & € R, and the data matrix A €
gmx(mt+nk) - |n this case, the linear conic optimization
problem (15) reduces to

T

minimize ¢z (19)
subject to Az =b, z; € SOC(n;), Vi
and its dual becomes
imi T
maximize b'y (20)

subject to ATy + 5 =¢, 5 € SOC(n;), Vi.

In practice, the SOCP constraints usualy take the form of
|A’z + ¥|| < t', which can be easily mapped to the form in
(19). The optimality condition for (19) is given by

Az =b, #T5=0

- 21
ATy +s5=¢, x4 § € SOC(’I%), V1. ( )

Semidefinite Programming (SDP) K = S¢ or (K ): Inthis
case, the linear conic optimization problem reduces to

minimize Ce X

SijeCt to A;jeX=0b;,i=1,2,....m, X =0 (22)
and its dual becomes
imi T

maximize b'y (23)

subjectto S ATy, +S=C, S=0.

In practice, linear matrix inequalities of the form A, +
S i = 0 can be easily mapped to the form in (23). The
optimality condition is given by

Ai.X:bi, XtO,

ZAiTyi+S:C7S§O,XOS:O. (249)

i=1

D. Interior-Point Methods for Linear Conic Optimization

We now discuss numerical algorithms for solving linear
conic optimization problems. For ease of exposition, we will
focus on the SDP case with K = S*. The other cases can be
treated similarly (in fact they are special cases of SDP).

Assume that the feasible regions of the SDP pair (15)—(16)
have nonempty interiors. Then we can define the central path

of (15)16) as {(X (1), S(1))} satisfying

Aty(p) +S(p) = C
AX(p) = b
X(p)S(p) = nl

where p is a positive parameter. By driving i — 0 and under
mild assumptions, the central path converges to an optimal
primal-dual solution pair for (15)—16). Notice that the central
path condition (25) is exactly the necessary and sufficient
optimality condition for the following convex problem:

(25)

minimize C e X — plogdet(X)

subjectto AX =0, X € ST. (26)

In other words, the points on the central path corresponds to
the optimal solution of (26) and the associated optimal dual
solution. Here, the function — log det(X) is called the barrier
function for the positive semidefinite matrix cone S*'.

Many interior-point algorithms follow (approximately) the
central path to achieve optimality. As a result, the iterates are
required to remain in a neighborhood of the central path which
can be defined as:

Ni(y) = {(X,y,swx:b, Ayt S=C X0,

<22 @

With this definition, a generic interior-point path-following
algorithm can be stated as follows.

S =0, HX1/25X1/2 _ X5,
n

F

GENERIC PATH-FOLLOWING ALGORITHM
1) Given a strictly feasible primal-dua pair
(X0,949,5% € N(y) with 0 < v < 1. Set

k=0

2) Let X = XF y=9F S=8Fand pu =
X o S/n.

3) Compute a search direction
(AXF Ayk, AS¥)  and the largest

step ¢, such that (X + t*AXF y +
thFAyF S + tFASK) € N(y). Set
Xk-l—l — X+tkAXk,yk+1 — y+tk’Ayk’,
SkHl = G 4+ thASE,

4) Set k= k+ 1 and return to 2) until conver-
gence.

There are many choices for the search direction
(AX, Ay, AS). For example, we can take it as the solution
of the following linear system of equations:

A'Ay+AS = C—S—A'y
AAX = b (28)
Hp(AXS + XAS) = ul —Hp(XS)

where P is a honsingular matrix and

Hp(U) = %(PUP*1 + (PuP~HT).



Different choices of P lead to different search directions.
For example, P = I corresponds to the so-called Alizadeh-
Haeberly-Overton (AHO) direction [2].

The standard analysis of path-following interior-point meth-
ods shows that a total of O(y/nlogup/e) main iterations
are required to reduce the dudity gap X e S to less than
€. Each main iteration involves solving the linear system of
equations (28) whose size depends on the underlying cone
K. If £ = %7 (linear programming), the linear system is
of size O(n), implying each main iteration has an arithmetic
complexity of O(n?). In the case where K = []}__, SOC(n;)
(SOCP), the linear system (28) will have size O(}_, n;), so
the complexity of solving (28) is O((}_, n;)*). For the SDP
case where K = 8%, the size of the linear system (28) is
O(n?), so the amount of work required to solve (28) is O(n 9).
Combining the estimates of the number of main iterations
with the complexity estimate per each iteration yields the
overall complexity of interior-point methods. In general, the
computational effort required to solve SDP is more than that
of SOCP, which in turn is more than that of LP. However, the
expressive powers of these optimization models rank in the
reverse order.

The brief overview here is by no means exhaustive. Severa
important classes of convex problems, such as geometric
programming [4], have not been included. The readers are
referred to many excellent texts (e.g. [5]) in this area.

I1l. CONIC PROGRAMMING FOR MULTIUSER
BEAMFORMING

The rest of the paper treats several applications of convex
optimization in communications and signa processing to illus-
trate the concepts covered so far. Communication problems of -
ten involve the optimization of some design objective, such as
transmit power or the detection probability of error, subject to
resource constraints, such as bandwidth and power. Traditional
optimization methods in communications focus on analytic or
adaptive solutions to the problem — as in minimum mean-
squared error (MM SE) adaptive equalizer design. The MM SE
problem is essentially a convex quadratic program (QP). This
section focuses on the application of modern techniques such
as linear conic programming.

A. Downlink Beamforming Problem as SDP and SOCP

Consider a transmitter beamforming problem for a wireless
downlink channel in which the base station is equipped with
multiple antennas and each remote user is equipped with a
single antenna as shown in Fig. 1. The channel is modeled as

yi=ho 42, i=1,... K, (29)

where € C" represents the transmit signal, hf’ e C" are
channel vectors assumed to be known to al the transmitter and
the receivers, and z;'s are the i.i.d. additive complex Gaussian
noises with variance o2 /2 on each of its real and imaginary
components. For now, we restrict our attention to the single-
receive-antenna case in which y,;’s are complex scaars.

In a beamforming design, the transmit signal is of the form
T = Zfil viw;, where v; is a complex scalar denoting the

information signal for user 4, and w; € C" is the beamforming
vector for user i. Without loss of generdity, let E|v;|? = 1.
The received signals are y; = hf’ (Ele viw; | + 2z, i =
1,---, K. The signal-to-interference-and-noise ratio (SINR)
for each user is expressed as.

i w2
Zj;ﬁq’, |hinj|2 + 02
An important class of optimal downlink beamforming problem
involves finding a set of w;’s that minimizes the total transmit
power, while satisfying a given set of SINR constraints ;:
K

minimize Z [, ||?

Jj=1

SINR, = (30)

(31)

|7 wi?
H 2 ’yiv
>z it wil? +o?

For simplicity, we make the assumption that the set of v, is
feasible.

As stated in (32), the SINR constraint is not convex.
However, this seemingly nonconvex problem has many of the
features of convex problems. For example, as shown in [6]—
[9], this downlink problem can be solved in an iterative fashion
via a so-called uplink-downlink duality. Further, it turns out
that the above problem can be relaxed [10] or transformed
[11] into a convex optimization problem. This section gives
an overview of the approaches in [10] and [11] to illustrate
the application of convex optimization. In the next section,
we take advantage of the convex formulation and illustrate an
engineering interpretation of Lagrangian duality in this setting.

One approach to solving the beamforming problem is based
on a reformulation of (31) in terms of new matrix variables
B; = w;wH [10]. Clearly, B; is a positive semidefinite matrix.
Define H; = hihf] . The optimization problem (31), in terms
of B;, then becomes the following SDP

Vi

subject to (32

K
minimize Z tr(B;)
=1

subject to tr(H;B;) — v; th(HiBj) > 707, (33

J#

B; =0, B;iscomplex Hermitian.

However, the original problem (31) requires the optimal solu-
tion w;w! to be rank-1, which is not guaranteed a priori in
the above formulation. In effect, the above formulation relaxes
the rank-1 constraint. For this reason, (33) is referred to as a
SDP relaxation.

Surprisingly, as shown by Bengtsson and Ottersten [10], the
above SDP relaxation is guaranteed to have at least one opti-
mal solution whichisrank one. This unexpected property lends
tremendous power of convex optimization to this apparently
nonconvex problem. In Section 1V-B, we will return to SDP
relaxation and consider a closely related multicast problem for
which this property does not hold.

The fundamental reason that the SDP relaxation is optimal
for the above problem is that this problem can be reformulated
as a convex problem. This is shown in [11] using SOCP.
Observe that an arbitrary phase rotation can be added to the
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beamforming vectors without affecting the SINR. Thus, h kH Wi
can be chosen to be real without the loss of generality, Now,
let W = [w1,...,wk]. The SINR constraints become

QRENN

Because h,C wg, can be assumed to be real, we may take the
square root of the above equation. The constraint becomes a
second-order cone constraint, which is convex. The optimiza-
tion problem now becomes

2
, Vi (34)

minimize T

1
subject to 4 /1 + —hf‘rwz >
Yi
K
> sl <
j=1

which is in the form of a second-order cone program (19).

7\vli7

hw
H ) (3

B. Uplink-Downlink Duality via Lagrangian Duality

In engineering design, one is often interested in not only the
numerical solution to the problem, but aso the structure of the
optimal solution. When a problem is formulated as a convex
optimization problem, exploring its dual often reveas such
structures. In this section, we illustrate this point by showing
that the Lagrangian dual of the SOCP problem [11] has an
engineering interpretation, which is known as uplink-downlink
duality and was discovered independently in the literature [6],
(71, [9], [12], [13].

Several different versions of uplink-downlink duality have
been developed in the literature. In the beamforming context,
uplink-downlink duality refers to the fact that the minimum
power needed to achieve a certain set of SINR targets in a
downlink MIMO channel is the same as the minimum power
needed to achieve the same set of SINR targets in the uplink
channel, where the uplink channel is derived by reversing
the input and the output of the downlink [6]-{9], [14]. A
very similar uplink-downlink duality can be derived from an
information theory point of view. As shown in [12], [13], [15],
[16], the capacity region of a downlink broadcast channel is
identical to the capacity region of an uplink channel with the
same sum power constraint. These two duality results can be
unified via Lagrangian duality in convex optimization, first
shown in [17]. The following outlines the main steps.

7 ~ N(0,0%1)
& — hy \ Pocsoooooy
[ ;
| T i

B = h T |

min Y, E[#7]

Uplink-downlink beamforming duality can be interpreted as a Lagrangian duality in convex optimization.

We begin the development by writing down the Lagrangian
of the downlink beamforming problem (31) :

L(wi,)\z)
K K 1
=> whw; - Z)\Z—{V|hflwi|2 = hffw;)? - 0—2}
j=1 i=1 ¢ J#i
K
=) Nio? + ) wf {I+Z>\h hhH}wZ (36)
=1 =1 VE]

The dual objective is
g(\i)

It is easy to see that if 7+ 3>, Ajh;hj’ — 2th;h! is not
a positive semidefinite matrix, then there eX|sts a set of w;
which would make g(\;) = —oco. As \; should be chosen to
maximize g(;), the second term in (36) leads to a positive
semidefinite constraint in the dual problem. In particular, the
Lagrangian dual problem is:

= min L(wj, A;). (37

maximize E o2

i=1

(38)

K
subject to » _ Ajh;hil +1 = (1 + l) Aihihf!.
5 i
j=1
Interestingly, the above dual problem can be shown to cor-
respond to an uplink problem with \; as the (scaled) uplink
power, h; as the uplink channel and ~; asthe SINR constraint.
The uplink channel is depicted in Fig. 1. The sum power
minimization problem for the uplink channel can be formu-
lated as:
minimize Z Pi (39)
i=1
p7|uAJth |2

subject to 7 = Vs

E]yﬁz Pj |w7 h; |2 + O-Qw Wy
where the optimization is over the uplink power p; and the
receiver beamforming vectors ;. Clearly, the optimal1 i
is just the MMSE filter ; — (ZJ  pihyh ! +a21) h;.
2Technically, we should take the dual of (35), as an optimization problem

may in genera be written in different forms, each of which may lead to a
different dual. In this case, the duals of (31) and (35) turn out to be the same.



Substituting the MM SE filter into the constraints of (39) and
after a matrix manipulation, it is possible to show that the
uplink problem is equivalent to:

K
minimize E Di

i=1

(40)
K 1
subject to E pjhjhf + 0% < (1 + 7) pihihE.

J=1

Identifying p; = \;02, we see that (40) is identica to
(38), except that the maximization and the minimization are
reversed and the SINR constraints are also reversed. In a
downlink beamforming problem, the SINR constraints are
aways met with equality. Thus, the maximization problem
(38) and the minimization problem (40) in fact give the same
solution. Finally, because strong duality holdsfor this problem,
the primal and the dual problem must have the same solution.
It is interesting to note that the dual variables of the downlink
problem have the interpretation of being the uplink power
scaled by the noise variance.

As mentioned earlier, this uplink-downlink duality has been
derived earlier in the literature [6]-{9], [14]. This section
reinterprets this duality as an example of Lagrangian duality
to illustrate the use of convex optimization. The duality can be
further enhanced if we also take different base-station antenna
congtraints into consideration. This is explored in the recent
work [17]. Duality is useful because the uplink problem is
easier to solve. For example, an iterative optimization of p;
and w; leads to the optimal solution for the downlink [6],
[7], [9]. Algorithms based on convex optimization have been
considered in [11], [17].

C. Capacity Region Duality

Instead of considering a power minimization problem sub-
ject to SINR constraints, in many applications, it is useful
to consider the reverse problem of maximizing a rate region,
subject to a power constraint. Under many practical coding
and modulation schemes, the SINR can be directly related to
the achievable rate using an SNR-gap approximation: R =
log (14 SINR/T"), where T" is the gap to capacity, which
is adways greater than 1. The SINR dudlity stated in the
previous section directly leads to a rate-region duality as well.
The argument follows from the fact that since the minimum
transmit power for each fixed set of SINR’s is the same for
both uplink and downlink, the set of achievable SINR regions
under a fixed power must also be the same in both uplink and
downlink. Therefore, the rate regions must be the same.

This argument can be further generalized to a downlink
channel with multiple receive antennas for each user, and
it directly leads to the information theoretical duality of the
multiple-access channel and the broadcast channel [12], [13]
by letting I" = 1 and by using interference subtraction tech-
niques. Interference can be directly subtracted in the multiple-
access channel at the receiver, and can be pre-subtracted at the
transmitter in the broadcast channel. The previous proof of this
capacity region uplink-downlink duality relies on an intricate

transmit covariance matrix transformation. The Lagrangian
approach shows an aternative way of deriving the same thing.

For completeness, the most general capacity region duality
[12], [13] is stated as follows. Consider a MIMO downlink

channel where each user is equipped with multiple antennas

where H;'s are now matrices and y;’'s complex vectors. The
capacity region of the downlink channel can be found by
solving the following weighted rate-sum optimization problem

|Hi (X, S)H + 1
|Ho (S0 SOHE + 1

K
maximize Z 1 log (42

k=1

K
subject to Ztr(Si) <pr, S;i>=0.
=1
where pr is the total power constraint. The optimal weighted
rate-sum turns out to be exactly the same as the optimal
weighted rate-sum of a dual multiple-access channel under
the same total power constraint:

K
§=> Hl'&+2.
=1
The capacity region for the multiple-access channel may be
expressed as:

(43)

K k Ha

C CHIS;H; +1

maximize E 1y log | Ziill 1H‘S: +1
k=1 |Z¢,=1 H;*S;H; + I

(44)

K
subject to Ztr(S’l) <pr, S;=0.

i=1

Here, S; and S; are the transmit covariance matrices for
user ¢ in the downlink and in the uplink, respectively; al
noise vectors are assumed to be i.i.d. with unit variance;
n1 > pe > ... > ug > 0 are weights characterizing different
boundary points of the capacity region. Again, this duality
is useful because the multiple-access channel problem (44)
is convex, while the broadcast channel problem (42) is not.
This fact has been exploited in [18] and [19] for efficient
computation of the sum capacity. The authors are not yet
aware of adirect Lagrangian duality derivation of this capacity
region duality, except for the sum capacity case for which a
Lagrangian interpretation has been given in [20]. It would be
interesting to see whether it is possible to find a way to do so
in general.

D. Open Problems

Optimization is expected to play an increasingly important
role in multiuser MIMO system design. As the previous
sections illustrate, for both the uplink and downlink scenarios,
the capacity maximization problem (subject to power con-
straint) and the power minimization problem (subject to SINR
constraints) can both be formulated as a convex optimization
problem. Thus, both problems can be considered as solved.
However, the SINR-constrained power minimization solution
is applicable only to the single-remote-antenna case. When the



remote users have multiple antennas as well, it can be shown
that aduality still exists, but an optimal solution is till lacking.

An important but difficult problem in this areais that of the
interference channel, where multiple transmitters and multiple
receivers interfere with each other in a shared medium. Even
for the single-antenna case, the rate maximization problem is
not yet amendable to a convex formulation. The fundamental
problem is that the achievable rate expression

R = log (1 b piGa )

PjGji + o2 (45)

where [G;;] is the channel coupling matrix, is not a concave
function of p;. (Nevertheless, a network duality result is still
available [21].) Recent progress has been made in this area for
both wireline [22]{24] and wireless applications [25]. Further
progress is still needed.

IV. SDP RELAXATIONS FOR NONCONVEX PROBLEMS

Convex optimization can aso play an important role in
inherent nonconvex problems. In this case, the method of
relaxation can produce excellent results. This section gives two
such examples and discusses open issues and future directions
in this area.

A. Multiuser Detection

Consider a detection and estimation problem in the receiver
processing of a MIMO channel:

y=/p/n Hs +z,

where p is the (normalized) average SNR at each receive
antenna, H € C™*™ denotes the (known) channel matrix,
y € C" is the received channel output, s is the transmitted
information binary symbol vector from the signal constellation
set {—1,1}™, z denotes the additive white Gaussian channel
noise with unit variance. The capacity of thisMIMO channel is
known to be proportional to the number of transmit antennas.
To reap the benefits brought by the MIMO channel, one must
develop an efficient detection algorithm used in such a system.

Central to the MIMO maximum likelihood channel detec-
tion is the following constrained optimization problem

min |ly —/p/nHs|?,

ze{-1,1}m

(46)

fur = (47)
where s is the unknown (to be determined) transmitted binary
information vector.

A popular method to solve (47) is with the sphere decoder
[26]. This method, while enjoying a good practical complex-
ity/performance tradeoff for small system size and high SNR,
is known to have exponential average-case complexity for
each fixed SNR value [27]. Below we describe a semidefinite
programming relaxation method, which provides an effective
polynomial time approach for this problem.

For simplicity, consider the case m = n and H, s and z
are real; the extension to the general case is relatively ssimple.
First, we rewrite the log-likelihood function as

ly = /p/n Hs|* = tr(Quz™),
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where matrix @ € R+*D*(+1) and vector z € R"H! are
defined as

o=| (PMH'H —\/P/—nHTy},x:[i] (48)

—/p/ny"H vl

Let X = z2T and notice that X > 0, X;; = 1 and
rank(X) = 1 if and only if X = x2” for some x with
x; = £1. By rewriting (47) in terms of X and relaxing the
rank-1 constraint, we arrive at a SDP relaxation for (47):

min tr(QX),
st. X = 0, Xi,i =1, V1.

fspp = (49)

Once the optimal solution X ,,: of (49) is computed, we use
the following randomized procedure to generate a feasible
rank-1 solution Zspr:

1) Compute the largest eigenvalue of X,,. and the
associated eigenvector v = (v1,v2, ..., Vpi1)? .

2) Generate L i.i.d. binary vector samples z,, ¢ =
1,...,L,whosei-thentry (: = 1,...,n+1) follows
the distribution:

Prizi=—1} = (1 —v)/2.

3) Pick & = argmin, 7 Q7, and assign
fspr = i‘TQi‘ and set Zspr (the quasi-ML
estimate) to be the first n-entries of 2 multiplied
by its last entry (to correct the sign).

(50)

Due to the diagonal structure of the constraints, the SDP
(49) can be efficiently solved with a worst-case complexity
of O(n3®) (rather than O(n®%) for a genera SDP). The
complexity of the randomization procedureis negligible. (The-
oretically, L should be chosen as a polynomia of n, but
practically is usually set to 10 - 30.) So the overall complexity
of SDP detector is O(n35).

Compared to the existing polynomial-time linear subopti-
mal MIMO detectors, the above SDP detector performs sur-
prisingly well, offering an excellent performance-complexity



tradeoff in practical SNR ranges; see Fig. 2. Moreover, com-
pared to the sphere decoder which has exponential average-
case complexity, the polynomial-time SDP detector runs faster
when the problem size becomes large and SNR is low (e.g.,
p =10dB and n > 45).

An interesting research direction is to investigate the
average-case performance of SDP relaxation for large systems.
In particular, it is interesting to see if the gap in bit-error-
rate (BER) between the maximum-likelihood (ML) curve and
the SDP curve in Fig. 2 remains bounded for large n. An
affirmative answer to this question will likely lead to the first
polynomial-time quasi-ML detector which is guaranteed to
offer a bounded SNR loss for large systems. Some encour-
aging results in this direction can be found in [28] where a
probabilistic analysis of the SDP relaxation method has been
given for a standard Rayleigh flat fading MIM O channel model
under additive Gaussian noise model. In particular, it has been
shown that for any fixed p > 0, the average ratio fspr/fmL
remains bounded by a positive constant (depending on p) for
al n>0.

B. Multicast Beamforming

We now return to the multiuser transmit beamforming
problem of Section I11-A, but consider a broadcast application
[29] in which a transmitter utilizes an array of n transmitting
antennas to simultaneously broadcast common information to
m radio receivers, with each receiver ¢ € {1, ..., m} equipped
with |I;| receiving antennas. Let hy, ¢ € I, denote the
n x 1 complex channel vector modelling propagation loss and
phase shift from the transmitting antennas to the /¢th receiving
antenna of receiver 1. Assume that the transmitter uses asingle
beamforming vector w to transmit common information to all
receivers and each receiver performs optimal matched filtering
and maximum-ratio combining. Then, the constraint

> hfw> > 1

Lel;

models the requirement that the total received signal power at
receiver + must be above a given threshold (normalized to 1).
Thisis equivalent to the SNR constraint considered in Section
[11-A (but without interference.) To minimize the total transmit
power subject to individual SNR requirements (one per each
receiver), we are led to the following nonconvex QP:

[[w]?
st. wlHyw > 1,

qu = min (51)

i=1,2,....,m,

where H; := Z hghf . Unlike the independent-information

LeT;
problem considered in Section I11-A, the above problem has
no known convex reformulation.
Let B = ww®. The SDP relaxation of (51) is:

U, ‘= min tr(B)
st. tr(H;B)>1, i=1,...,m, (52
B =0, B iscomplex Hermitian.

Since we assume H; # 0 for al i, it is easily checked that
(52) has an optimal solution, which we denote by B*.
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Upon obtaining an optimal solution B * of (52), we construct
a feasible solution of (51) using the following randomized
procedure:

1) Generate a random vector ¢ € C™ from the
complex-valued normal distribution N.(0, B*).

2) Letw"(§) =&/ min ETHE

Experimentally, this relaxation approach works very well.
For example, in experiments with measured digital subscriber
line channel data[29], v /v,,, = 1 in over 50% of instances.
We also observed that semidefinite relaxation can almost
double the minimum received signal power relative to no
precoding.

Recent theoretical analysisin [30] shows that the worst-case
performance ratio v_, /v, can be bounded as follows:

sdp

m < ’qu <8
2m2(24+7/2)2 T v, T i
In other words, the worst-case performance ratio deteriorates
linearly with the number of users in the system. For the
problem of transmit beamforming for broadcasting with sin-
gle receiving antenna per subscriber node, simulations have
confirmed the above worst-case analysis of the performance
raio v /v, ; see Fig. 3. Interestingly, when matrices H;

and the vector z are required to be real-valued, then the above
approximation ratio becomes quadratic in m [30].

C. Future Research

An interesting future direction is to generaize the above
formulation to a situation of 1 < G < M multicast groups,
{G1,...,Gc}, where G, is the index set for receivers partic-
ipating in multicast group &, and k£ € {1,...,G}. Common
information is transmitted to members within each group;
independent information is transmitted to different groups.
Assume that G, NGy, = 0, £ # k, UpGr = {1,...,M}.
Denote G, := |gk|, ch,;:l Gr = M.

Let wy € C™ denote the beamforming weight vector applied
to the n transmitting antenna elements to transmit multicast



stream k. The signal transmitted by the antenna array is
equal to Y | wi s, where s, is the information-bearing
signal directed to multicast group k. This setup includes the
case of broadcasting G = 1 (51) and the case of individual
transmissions G = M (31) as special cases. If s;’s are
i.i.d. with zero-mean and unit variance, then the total transmit
power is equal to Zszl |lwg||?. The joint design of transmit
beamformers subject to received SINR constraints can be
posed as follows:

G
. 2
min Wi
Lmn 3l
Hp |2
wit h
| kH Z|2 2 2 Cyp,
Z#k, |w; he|? 4 0
VeegG, Vke{l,... G}

It can be seen that this problem is exactly the kind of
nonconvex QP's considered in (51) except that here H; is no
longer positive semidefinite. Simulation results show that the
corresponding SDP relaxation (52) still provides an excellent
solution for this multi-group multicast beamforming problem.
The beamforming problem (53) is NP-hard in general (even
the single group case (51) is NP-hard); see [29]. However,
there are severa specia cases of (53) which are polynomial-
time solvable. For example, as discussed in Section Il1-A, the
SDP relaxation of (53) is exact when |G| = 1 for al k& (i.e,
each group has exactly one user); so this is a polynomial-
time solvable case. Another efficiently solvable case is when
the channel vectors h,’'s have the Vandermonde structure
[1 ed% 20 ... i(n=1)0T asin the case of auniform linear
transmitting antenna array. In this case, the SDP relaxation
of (53) is again tight. It would be interesting to anayze the
worst-case performance of the SDP relaxation algorithm of the
general homogeneous® nonconcave (and nonconvex) QP.

(53)

s.t.

V. ROBUST OPTIMIZATION

Robust optimization models in mathematical programming
have received much attention recently; see, e.g. [31]{33]. In
this section we briefly review some of these models and their
extensions.

Consider a convex optimization of the form:

minimize  fo(z)

subject to  fi(z) <0, i=1,2,...,m, (54)

where each f; is convex. In many engineering design ap-
plications, the data defining the constraint and the objective
functions may be inexact, corrupted by noise or may fluc-
tuate with time around a nominal value. In such cases, the
traditional optimization approach simply solves (54) by using
the nominal value of the data. However, an optimal solution
for the nominal formulation (54) may yield poor performance
or become infeasible when each f; is perturbed in the actual
design. A more appropriate design approach is to seek a high
quality solution which can remain feasible and deliver high
quality performance in all possible realizations of unknown

3A QP is homogeneous if it does not have linear terms. A homogeneous
QP aways has an SDP relaxation.

11

perturbations. This principle was formulated rigorously in
[31]33]. Specifically, we consider a family of perturbed
functions parameterized by 6: f;(x; ), with § taken from an
uncertainty set A. Then a robustly feasible solution z is the
one that satisfies

fi(xz;6) <0, Vo€ A orequivaently max fi(z;6) <0.

Thus, a robustly feasible solution x is, in a sense, strongly
feasible, since it is required to satisfy all dightly perturbed
version of the nominal constraint. The robust optimal solution
can now be defined as a robust feasible solution which
minimizes the worst-case objective value maxsea fo(x;9).
This gives rise to the following formulation:

minimize maxgsea fo(x;0)

subject to fy(230) <0, Vo€ A, i=1,2,.. (55)

, M.

Let us assume the perturbation vector § enters the objective
and the constraint functions f; in such a way that preserves
convexity, i.e.,, each f;(z;J) remains a convex function for
each § € A. In this case, the robust counterpart (55) of the
original (nominal case) convex problem (54) remains convex
since its constraints are convex (for each i and ¢) and the
objective function maxgsea fo(z;d) is aso convex.

Much of the research in robust optimization focuses on
finding a finite representation of the feasible region of (55)
which is defined in terms of infinitely many constraints (one
for each § € A). Assume that the uncertainty parameter
§ can be partitioned as § = (dg,d1,02...,0,,)7 and that
the uncertainty set has a Cartesian product structure A =
Ag X Ay X -+ x A,,, with §; € A;. Moreover, assume that ¢
enters f;(x;d) in an affine manner. Under these assumptions,
it is possible to characterize the robust feasible set of many
well-known classes of optimization problems in a finite way.
For instance, consider the robust linear programming model
proposed by Ben-Tal and Nemirovskii [32]:

max (c+ Ac)'x
[ Acl|<eo
SUb]eCt to (aq; =+ Aaq;)Ta: > (bz + Abz),

for al [|(Aas, Aby)| < ¢, Vi

minimize

(56)

where each ¢; > 0 is a pre-specified scalar. In the above for-
mulation, we have ¢; = (Aa;, Ab;) and A; = {(Aa;, Ab;) |
[[(Aa;, Ab;)|| < €;}. The main observation is that the robust
constraint

(ai + Aai)T{E > (bz + Abl), for all ||(Aal, Abl)” <€
is equivalent to the following second-order cone constraint

al'c —b; > e;/1+ ||z

In this way, the robust linear program (56) is reformulated as
an equivalent SOCP:

minimize ¢
subject to  alx —b; > ;\/1 + [|z]|?,

'z + eollz]| <t



The references [31]-{33] have shown that the robust coun-
terpart of some other well-known convex optimization prob-
lems can aso be reformulated in a finite way as a conic
optimization problem, often as an SOCP or SDP.

As an application example, we consider the robust beam-
forming problem of finding a w € C™ such that

minimize w Rw (57)
subject to  |afw| > 1, foral |a—a| <e,

where a is the nominal steering vector, R is the sample
correlation matrix and e represents the error size in the
estimation of steering vector a. As it stands, the above robust
beamforming formulation has an infinitely many nonconvex
quadratic congtraints. Interestingly, by exploiting the phase
ambiguity in w and using the same transformation outlined
above, we can show [34] that (57) is equivalent to the
following convex optimization problem (SOCP):

minimize wf Rw
subject to  afw > 1+ €l|wl|, Im(affw) =0,

which can be solved efficiently with O(n?-%) complexity.

V1. CONCLUDING REMARKS

Convex optimization provides a powerful set of tools for the
design and analysis of communication systems and signal pro-
cessing algorithms. Convex optimization techniques are useful
both in obtaining structural insights to the optimal solution, as
well asin providing provably optimal solutions to the problem
efficiently. This tutorial contains only a small sample of recent
applications of convex optimization in communications and
signal processing. Future applications of these techniques will
likely yield many more interesting results.
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