

Reference Materials
Lecture notes
 Assigned reading materials through the course
Reference books:
[1] Pattern Recognition and Machine Learning by C. M. Bishop. (Springer, ISBN 0-387-31073-8)
[2] Pattern Classification (2 nd Edition) by R. O. Duda, P. Hart and D. Stork. (John Wiley & Sons, Inc., ISBN 0-471-05669-3)
[3] Spoken Language Processing: a guide to theory, algorithm, and system development by X.D. Huang, A. Acero, H.W. Hon. (Prentice Hall PTR, ISBN 0-13-022616-5)
[4] Foundations of Statistical Natural Language Processing by
C. D. Manning and H. Schutze. (The MIT Press, ISBN 0-262-13360-1
Prerequisite:
First course in probability or statistics
First course in linear algebra or matrix theory
C/C++/Java and perl/shell programming skill (for project)
<u>╢┾═╪</u> ╫┼┪╌┞╜┼┍┙╓╧╪╦╢╓╧╪╦╢╓╧╪╦╢╓╧╪┽╢╚╌╪╜╵┕╶╤╬╼┧╫╪╪╪╖┝╧╪╕┙╫╧

Speech Research and Technology

- Speech Communication
- Speech Production and Perception
- Speech Analysis and Synthesis
- Speech and Audio Coding & Compression
- Speech Recognition and Understanding
- Speaker Identification and Verification
- Speech Enhancement
- Language Identification
- Dialogue Processing

Language Research and Technology Written vs. Spoken Languages • **Computational Linguistics** • Corpus-Based Language Technologies • Statistical Language Modeling • Language Analysis and Generation • Statistical Part-of-Speech Tagging • **Modeling Syntax and Semantics** • Statistical Text Understanding / Text Mining • **Probabilistic Parsing** • • **Text Categorization Statistical Machine Translation** • Information Retrieval

Applications of Speech and Language Technologies

- Voice typewriter dictation systems:
 - IBM, Microsoft, Nuance, etc.
- Applications in telecommunications:
 - AT&T, Lucent Bell Labs, Nuance, Philips, Motorola, etc.
 - Automatic Call Centers.
 - Google 411, Microsoft Tellme, Free 411.
- Applications related to the Internet:
 - Google's voice search
 - Apple's Siri (voice assistant)
 - More and more to emerge

Statistical Pattern Classification Feature extraction: Need to know objects to extract good features Varies a lot among different applications (speech, audio, text, image, video, biological sequences, etc) Statistical model training/learning Inference, matching, decision

1400:	-529	-405	-601	-1038	5 51	323	-324	115	698	465			
1410:	400	201	670	433	-340	-900	-303	-414	-//3	-4/5			
1420.	729	400	760	500	710	911	-304	1/0	417	476			
1430.	726	407	556	273	175	-011	-718	-733	-130	-661			
1450	-754	-11	318	684	782	1088	999	-108	559	409			
1460:	-704	-789	-509	-833	-735	-762	-712	205	80	-88			
1470:	576	847	390	552	369	170	-193	-833	-719	-481			
1480:	-739	-707	143	408	811	888	1321	685	-101	815			
1490:	33	-963	-795	-498	-966	-741	-809	-456	399	66			
1500:	-5	817	892	294	496	279	-9 -(696 -8	320 -	698			
1510:	-534	-753	-254	392	757	985	1265	1187	-260	657			
1520:	517	-887	-1134	-406	6 -830	-987	-568	3 -691	239	424			
1530:	15	507	1212	474	325	435	-24	-784	-741	-812			
1540:	-653	-532	-278	240	982	999	1221	1196	6 -463	630			
1550:	500	-1023	-133	1 -29	8 -81	9 -111	0 -59	97 -52	20 34	4 443			
1560:	49	526	1297	406	184	367	-438	-883	-589	-949			
1570:	-704	-90	-74	261	1413	1188	1332	292	-234	895			
1580:	-213	-1468	-106	5 -19	1 -101	7 -83	38 -64	40 2	0 68	8 379			
1590:	157	941	1170	194	88	-313	-689	-674	-952	-938			
1600:	-124	257	-30	1089	1539	150	545	636	5 687 0 70	269			
1610:	-1439	-1/5	1 -25	J - 53	4 -103	JJ -6	1 -/	4 86	2 /0	9 156			
1620:	500	1400	002	4527	4022	-4/0	074	640	245	1606			
1640	040 1061	3/	302	132/	1922	309	-0/4	010	315	-1006			
1650	1224	-320	-410	0.10	7 -0/3 7 -070	70/	102	1 317	200	494			
1050.	1231	439	-591	-940	-2/0	-124	-103	-/2	0 22	5 013			

