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Model Parameter Estimation 
·  Maximum Likelihood (ML) Estimation: 

–  ML method: most popular model estimation 
–  EM (Expected-Maximization) algorithm 
–  Examples: 

•  Univariate Gaussian distribution 
•  Multivariate Gaussian distribution 
•  Multinomial distribution 
•  Gaussian Mixture model 
•  Markov chain model: n-gram for language modeling 
•  Hidden Markov Model (HMM) 

·  Discriminative Training 
–  Maximum Mutual Information (MMI)  
–  Minimum Classification Error (MCE)  

·  Bayesian Model Estimation: Bayesian theory 
·  MDI (Minimum Discrimination Information)  

alternative model estimation method 
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Discriminative Training(I): Maximum 
Mutual Information Estimation (1) 

·  The model is viewed as a noisy data generation channel 
 class id ω  observation feature X. 

·  Determine model parameters to maximize mutual information 
between ω and X. (close relation between ω and X) 
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Discriminative Training(I): Maximum 
Mutual Information Estimation (2) 

·  Difficulty: joint distribution p(ω,X) is unknown. 
·  Solution: collect a representative training set (X1, ω1), (X2, ω2), …,  
    (XT, ωT) to approximate the joint distribution. 
 
 
 
 
 
 
 

·  Optimization:  
–  Iterative gradient-ascent method 
–  Growth-transformation method 
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Discriminative Training(II): Minimum 
Classification Error Estimation (1) 

·  In a N-class pattern classification problem, given a set of training 
data, D={ (X1, ω1), (X2, ω2), …, (XT, ωT)}, estimate model parameters 
for all class to minimize total classification errors in D. 

–  MCE: minimize empirical classification errors 
·  Objective function  total classification errors in D 

–  For each training data, (Xt, ωt), define misclassification 
measure: 

 
or 
 
 
 
   if d(Xt, ωt)>0, incorrect classification for Xt  1 error 
   if d(Xt, ωt)<=0, correct classification for Xt  0 error 
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Discriminative Training(II): Minimum 
Classification Error Estimation (2) 

·  Approximate d(Xt, ωt) by a differentiable function: 

or 
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Discriminative Training(II): Minimum 
Classification Error Estimation (3) 

·  Error count for one data, (Xt, ωt),  is  
    H(d(Xt, ωt)), where H(.) is step function. 
·  Total errors in training set: 

·  Step function is not differentiable, approximated by a sigmoid 
function  smoothed total errors in training set.   
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a>0 is a parameter to control its shape. 

Discriminative Training(II): Minimum 
Classification Error Estimation (3) 

·  MCE estimation of model parameters for all classes: 

·  Optimization: no simple solution is available 
–  Iterative gradient descent method. 
–  GPD (generalized probabilistic descent) method. 

)('minarg}{ 11
1

NMCEN Q
N

λλλλ
λλ




=

)(|)(' 1
)()1(

n
ii

N
i

n
i

n
i Q

λλ
λλ

λ
ελλ

=
+

∂
∂⋅−= 



Prepared by Prof. Hui Jiang 
(CSE6328) 

12-02-01 

Dept. of CSE, York Univ. 5 

The MCE/GPD Method 
·  Find initial model parameters, e.g., ML estimates 

·  Calculate gradient of the objective function 

·  Calculate the value of the gradient based on the 
current model parameters 

·  Update model parameters 

·  Iterate until convergence  
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How to calculate gradient? 

·  The key issue in MCE/GPD is how to set a proper 
step size experimentally. 
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Overtraining (Overfitting) 
·  Low classification error rate in training set does not always 

lead to a low error rate in a new test set due to overtraining. 

Measuring Performance of MCE 

·  When to converge: monitor three quantities in the MCE/GPD 
–  The objective function 
–  Error rate in training set 
–  Error rate in test set 
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Bayesian Theory 
·  Bayesian methods view model parameters as random variables 

having some known prior distribution. (Prior specification) 
–  Specify prior distribution of model parameters θ as p(θ). 

·  Training data D allow us to convert the prior distribution into a 
posteriori distribution. (Bayesian learning) 

·  We infer or decide everything solely based on the posteriori 
distribution. (Bayesian inference) 

–  Model estimation: the MAP (maximum a posteriori) estimation 
–  Pattern Classification: Bayesian classification 
–  Sequential (on-line, incremental) learning 
–  Others: prediction, model selection, etc. 
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The MAP estimation of  
model parameters 

·  Do a point estimate about θ based on the posteriori distribution 

·  Then θMAP is treated as estimate of model parameters (just like ML 
estimate). Sometimes need the EM algorithm to derive it. 

·  MAP estimation optimally combine prior knowledge with new 
information provided by data. 

·  MAP estimation is used in speech recognition to adapt speech 
models to a particular speaker to cope with various accents 

–  From a generic speaker-independent speech model  prior 
–  Collect a small set of data from a particular speaker 
–  The MAP estimate give a speaker-adaptive model which suit 

better to this particular speaker. 
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Bayesian Classification 
·  Assume we have N classes, ωi (i=1,2,…,N), each class has a class-

conditional pdf p(X|ωi,θi) with parameters θi.  
·  The prior knowledge about θi is included in a prior p(θi). 
·  For each class ωi, we have a training data set Di. 
·  Problem: classify an unknown data Y into one of the classes. 
·  The Bayesian classification is done as: 
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Recursive Bayes Learning 
(Sequential Bayesian Learning)  

·  Bayesian theory provides a framework for on-line learning (a.k.a. 
incremental learning, adaptive learning).  

·  When we observe training data one by one, we can dynamically 
adjust the model to learn incrementally from data. 

·  Assume we observe training data set D={X1,X2,…,Xn} one by one, 
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21 nXX DpXXpXpp θθθθ ⎯→⎯⎯→⎯

likelihoodpriorposteriori ×∝Learning Rule: 

Knowledge about  
Model at this stage 

Knowledge about  
Model at this stage 

Knowledge about  
Model at this stage 

Knowledge about  
Model at this stage 

How to specify priors 
·  Noninformative priors 

–  In case we don’t have enough prior knowledge, just 
use a flat prior at the beginning. 

·  Conjugate priors: for computation convenience 
–  For some models, if their probability functions are a 

reproducing density, we can choose the prior as a 
special form (called conjugate prior), so that after 
Bayesian leaning the posterior will have the exact 
same function form as the prior except the all 
parameters are updated.  

–  Not every model has conjugate prior. 
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Conjugate Prior 
·  For a univariate Gaussian model with only unknown mean: 

·  If we choose the prior as a Gaussian distribution (Gaussian’s 
conjugate prior is Gaussian) 

·  After observing a new data x1, the posterior will still be Gaussian: 
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The sequential  MAP Estimate  
of Gaussian  

·  For univariate Gaussian with unknown mean, the 
MAP estimate of its mean after observing x1: 

·  After observing next data x2: 
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Pattern Verification 

·  For an unknown pattern/object P, we can observe/measure some 
features X of the pattern P. 

·  Based on the features X, we need to answer a binary question 
(Yes/No) regarding P. 

·  Example of pattern verification: speaker id verification 
–  A user claims its id as abc; 
–  System prompts and records some voice X from the user. 
–  Based on the voice X, system makes a decision whether the 

user is abc or not. (voiceprints for security) 
·  Pattern verification can be viewed as a 2-class classification 

problem; but better not to do so. 
·  A proper view is to cast it as a statistical hypothesis testing 

problem. 

Statistical Hypothesis Testing(I) 
·  In statistics, we normally need test a hypothesis based on some 

observation data. The problem is formulated as a test between two 
complementary hypotheses: 

–  H0: null hypothesis 
–  H1: alternative hypothesis  

·  Example: Given                           is a random sample from a Gaussian 
distribution               , where variance       is known. We need to 
verify whether its mean is a given value or not. Thus we do 
hypothesis testing between: 

–                           against 

·  In Hypothesis testing, we have two types of errors: 
–  Type I:  false rejection error; falsely reject H0 when H0 is true. 
–  Type II: false alarm error; falsely accept H0 when H1 is true. 
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Statistical Hypothesis Testing(II) 
·  In essence, a hypothesis test will partition the observation space into 

two disjoined parts, C and U. When an observation X lies in the 
region C, we reject H0; when X in U, we accept H0. C is called critical 
region (or rejection region). 

·  So type I error probability (also called significant level) of a test: 

·  Type II error probability of a test: 

   
   where                                    is defined as the power of the test. 

·  At the significant level α, the most powerful test is defined as the one 
which maximizes the power γ  (in turn minimizes Type II error β). 
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Statistical Hypothesis Testing(III) 

·  A hypothesis can be simple or composite: 
–  Simple hypothesis: completely specifies the 

distribution, e.g. 
  

–  Composite hypothesis: involves a region or 
interval, e.g. 

00 : θθ =H

0101 :or          : θθθθ >≠ HH
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Statistical Hypothesis Testing(IV) 
·  Neyman Pearson Theorem:  

–  For a simple H0 and simple H1, if the distributions under both H0 
and H1 are known, i.e., f0(X|θ0) and f1(X|θ1). Given any i.i.d. 
observation data D={X1,…,XT}, for any significance level α, the 
most powerful test is formulated as: 
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The threshold     is adjusted to make the significance of the test to be α. 
If the both pdf’s have the same form, the only difference is parameters,  
The ratio is also called likelihood ratio (LR). 

τ

Statistical Hypothesis Testing(V) 
·  The Neyman Pearson Theorem provides a method of constructing 

the most powerful tests for simple hypotheses when the 
distribution of the observation is known. 

·  How about if the hypothesis is composite  
·  Likelihood Ratio Test (LRT): assume the distributions are known 

except some parameters, 

–  LRT is not always uniformly most powerful but has some 
desirable properties. 

–  Distribution of T is complicated, p(T); only computable  
asymptotically.  

–  Widely used for many practical applications. 
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Pattern Verification as  
Statistical Hypothesis Testing 

·  Based on the question to be answered, design two complementary 
hypotheses,  

–  The null hypothesis H0: corresponds to YES of the answer. 
–  The alternative hypothesis H1: corresponds to NO. 

·  The feature distribution under either H0 or H1 is unknown. 
·  Training: apply the same idea of data modeling:  

–  Choose proper statistical model for either H0 or H1.  
–  The model parameters are estimated from some training 

samples collected from H0 or H1. 
·  Decision: use likelihood ratio test (LRT) to make decision 
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where f0(.) is the model chosen for H0, f1(.) for H1.                    are  
parameters estimated from data.   

1̂ and ˆ θθo

Distributions of LR 

)|( 0HTg

)|( 1HTg

τ

U C 



Prepared by Prof. Hui Jiang 
(CSE6328) 

12-02-01 

Dept. of CSE, York Univ. 15 

Pattern Verification 
·  More generally, T can be any test statistics from observation data. 

–  LRT is a special case for T. 

·  Given a test statistic T, we can’t minimize both type I error and 
type II error at the same time. 

·  Improve verification by choosing different test statistics 
–  Distributions of T: less overlap  better separation  better 

verification accuracy (smaller type I and type II errors) 

·  The key in designing a pattern verification is to find a test statistics 
T and its corresponding parameters so that the overlap between 
the two distributions is minimized.  

·  What does it mean by a better verification accuracy? 
–  Type I error (false rejection error) 
–  Type II error (false alarm error) 

Evaluating Verification (I) 

Total Error 

0 τThreshold 

Type I Error 

Type II Error 

Equal Error 
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Evaluating Verification (II): ROC curve 
(Receiver Operating characteristic) 

False Alarm Error (Type II)  

False  
Rejection  
Error (Type I) 

 100%  

 100%  

 0%  

A Not-so-good 
System  

A Better System  

Equal Error  
Performance  

Speaker Verification (SV) 

Open Sesame 

What is your 
secret pass-
phrase ? 

What is your account number? 

530-203-1230-2390 

Speaker 
Verification 

Server 
Call Center 

System 

Customer 
Voice Model 
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Example(I): Speaker Verification(1) 
·  Speaker verification: verify user ID based on the voice. The user 

first claims a user ID, the system records some voice sample from 
the user and try to answer YES/NO to the question “Is the person 
the claimed user or not?”. 

·  Speaker verification: if a person claims to be the user A,   
–  Observation: a segment of voice  feature vectors X 
–  H0: X is from the claimed user A. 
–  H1: X is NOT from the claimed user A. 

·  Data modeling: commonly use GMM for both H0 and H1.  
–  Mixture number depends on the amount of available data, 

usually from 16 to 256. 
–  For simplicity or estimation reliability, each Gaussian mixand 

is assumed to be diagonal.  
–  For each known user a registered in the system, we must 

estimate two GMM’s        and         for its H0 and H1.  
aΛ aΛ

Example(I): Speaker Verification(2) 

·  Model estimation: 
–  For         in H0: collect some training samples from the 

known user and train it based on ML criterion. 
      (how to do ML estimation for GMM?) 
–  How about        in H1 ? 

•  Anti-speaker model: Train it based on training data 
collected for all other known users (except a). (ML 
estimation) 

•  Training it based on training data from some “cohort” 
speakers who are confusing with the current speaker a.  
(how to choose cohort speaker?) 

•  For simplicity, use the same background model       for 
all known users in the system.        is trained based on 
all users’ training data. 

aΛ

aΛ

Λ
Λ
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Example(I): Speaker Verification(3) 
·  Verification Decision: 

–  A new user claim id as A, based on the recorded voice feature Y: 

Speaker  
Scoring 

Speaker 
Model 

Input 
Speech 

Output 
Decision 

Speaker 
Claimed ID 

Decision 
Making 

Speaker 
Threshold 

τ>
Λ
Λ==
)|(
)|(

)|(
)|(

1

0

A

A

Yp
Yp

HYp
HYpTIf , accept the user as A; otherwise, 

   reject the user. 

τThe decision threshold        is determined empirically in practice. 

Example(II): reject outliers  
in pattern classification 

·  How to reject outliers (belonging to none of known classes) in 
pattern classification ? 

–  In speech recognition, how to detect unknown words, called 
out-of vocabulary (OOV ) words used by users?? 

·  Solution 1:  treat outliers as another class  (N+1)-class patterns 
·  Solution 2:  

–  Stage 1: do N-class pattern classification, find the best match, 
say class k; 

–  Stage 2: verify the decision made in stage 1. 
–  Stage 2 is a pattern verification problem: 

•  H0: the pattern X really comes from class k 
•  H1: the pattern X does NOT come from class k 

reject otherwise decision; accept the  
)|Pr(
)|Pr(

1

0 ζ>=Λ
HX
HX


