

General Info of the project (1)

- Use HTK to build an ASR system from training data.
- Do experiments to improve your system.
- Evaluate your systems on test data and report the best.
- Requirements:
 - Use mixture Gaussian CDHMM.
 - Use mono-phone and state-tied tri-phone models
 - Can't use any test data in HMM training.
- Progressive model training procedure:
 - Simple models \rightarrow complex models
 - Single Gaussian → more mixtures
 - Mono-phone → tri-phone

- Large vocabulary size
 - exponential growth of various n-grams
 - ➔ exponential increasement of LM model parameters
 - ➔ much more training data and computing resources
- Need to control vocabulary size in LM.
- Given the training text data,
 - limit vocabulary of LM to the most frequent words occurring in the training corpus, e.g., the top N words.
 - All other words are mapped as unknown word, <UNK>.
 - This gives the lowest rate of out-of-vocabulary (OOV) words for the same vocabulary size.
- Example: English newspaper WSJ (Wall Street Journal)
 - Training corpus: 37 million words (full 3-year archive)
 - Vocabulary: 20,000 words
 - OOV rate: 4%
 - 2-gram PP: 114
 - 3-gram PP: 76

LM Training (3): ML estimation Maximum Likelihood (ML) estimation of multinomial distribution is easy to derive. The ML estimate of n-gram LM is: $\arg \max_{p(w|h)} \sum_{w \in V} N(hw) \cdot \ln p(w \mid h) = \arg \max_{p_{hw}} \sum_{w \in V} N(hw) \cdot \ln p_{hw}$ subject to constrants $\sum_{w \in V} p_{hw} = 1 \text{ for all } h.$ $\Rightarrow p_{hw}^{(ML)} = \frac{N(hw)}{\sum_{w \in V} N(hw)} = \frac{N(hw)}{N(h)}$

LM Training (3): MAP estimation

The natural conjugate prior of multinomial distribution is the Dirichlet distribution.

Choose Dirichlet distribution as priors:

 $p(\{p_{hw}\}) \propto \prod [p_{hw}]^{K(hw)}$

– where { K(hw)} are hyper-parameters to specify the prior.

Derive posterior p.d.f. from Bayesian learning:

$$p(\{p_{hw}\} \mid S_h) \propto \prod_{w \in V} [p_{hw}]^{K(hw) + N(hw)}$$

Maximization of posteriori p.d.f. → the MAP estimate:

$$p_{hw}^{(MAP)} = \frac{N(hw) + K(hw)}{\sum_{v \in V} [N(hw) + K(hw)]}$$

MAP estimates of n-gram LM can be used for smoothing.

.

.

- occurring exactly *r* times.
- Good-Turing discounting rule:

$$r^* = (r+1)\frac{E(N_{r+1})}{E(N_r)} \quad (< r)$$

• Total probability mass reserved for unseen n-grams:

$$\lambda(h) = \frac{E(N_1)}{N(h)}$$

How to calculate expectation *E(Nr)*?

Re-normalize to a proper prob dist

1 '	14/	
0	212,522,973	
1	138,741	
2	25,413	
3	10,531	
4	5,997	
5	3,565	
6	2,486	
7	1,754	
8	1,342	
1366	1	
1917	1	
2233	1	
2507	1	

Back-off Scheme(1): Good-Turing Discounting (II) How to get $E(N_r)$? r* Nr r - Directly use Nr to approximate 0.0007 0 212,522,973 the expectation. 1 0.3663 138,741 Only adjust low frequency 2 1.228 25,413 words (to say, r<=10) 3 2.122 10,531 · No need to adjust high 4 3.058 5,997 frequency words (r>10) 5 4.015 3,565 - Fit all observed (r,Nr) to a 6 4.984 2,486 function S, then use the 7 5.96 1,754 smoothed value S(r) as the 8 6.942 1,342 expectation. Usually use hyperbolic 1366 1365 1 function 1917 1916 1 $E(N_r) = S(r) = a \cdot b^r$ (with b < -1) 2233 2232 1 Good-Turing estimate is *r*/N(h)*. 2507 2506 1

$\begin{array}{l} \textbf{Discriminative Training}\\ \textbf{S. f.}\\ \textbf{S. f.}\\ \textbf{C}_{tij} + \sum_{d} d^{u}_{ikd} \psi^{\mu}_{ikd} + d^{\omega}_{ik} \psi^{\omega}_{ik} - \sum_{d} d^{u}_{jk'd} \psi^{\mu}_{jk'd} - d^{\omega}_{jk'} \psi^{\omega}_{jk'} \succ \rho \ (t_{s})\\ \sum_{d} e^{\psi^{\omega}_{dd} 0} \psi^{\mu}_{ikd} \leq \sum_{d} e^{\psi^{\omega}_{dd} 0} \psi^{\mu}_{ikd} \ (ik_{s})\\ \psi^{\mu}_{ikd} \leq \psi^{\mu}_{ikd} + \xi \ (ikd_{s})\\ \psi^{\mu}_{ikd} \geq \psi^{\mu}_{ikd} - \xi \ (ikd_{s})\\ \sum_{k} e^{\psi^{\omega}_{dd} 0} \psi^{\mu}_{ik} \leq \sum_{k} e^{\psi^{\omega}_{dd} 0} \psi^{\mu}_{ik} \ (i_{s})\\ \psi^{\mu}_{ikd} \geq \psi^{\mu}_{ikd} + \xi \ (ik_{s})\\ \psi^{\mu}_{ik} \geq \psi^{\mu}_{ik} \ (i_{s}) \in e^{\psi^{\omega}_{dd} 0} + \xi \ (ik_{s})\\ \psi^{\mu}_{ik} \geq \psi^{\omega}_{ik} \ (j_{s}) \in e^{\psi^{\omega}_{dd} 0} + \xi \ (ik_{s})\\ \psi^{\mu}_{ik} \geq \psi^{\omega}_{ik} \ (j_{s}) \in e^{\psi^{\omega}_{dd} 0} + \xi \ (ik_{s})\\ \psi^{\omega}_{ik} \geq \psi^{\omega}_{ik} \ (j_{s}) \in e^{\psi^{\omega}_{ik} \ (j_{s})} \in e^{\psi^{\omega}_{ik} \ (j_{s})} = e^{\psi^{\omega}_{ik} \ ($

Ex	perim	ental R	esults	51
Text C	lassif	ication	Error	Rate

• The USAA corpus:

Method	Bank-HT	Bank-ASR
Vector-based	06.84%	09.10%
NBCv1+DT	05.86%	09.09%
NBCv2+DT	05.54%	09.42%
soft margin LS MAM	05.54%	08.82%

• The RCV1 corpus:

		Training set	Test set
Multinomial (m=1)	MLE	n/a	7.5%
Mix of multinomial (m=6)	MLE-EM	n/a	5.5%
Mix of multinomial (m=6)	LME-AM	0.71%	3.9%

┱╙╴┲╄╀

▏──╻┍╉╢