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ASR Solution
W= argmax p(W | X)=argmax P(W)- p(X |W)

werll well
=argmax B (W) p, (X | W)
wel

PAX | W) — Acoustic Model (AM): gives the
probability of generating feature X when W is uttered.

B r (W) — Language Model (LM): gives the probability
of W (word, phrase, sentence) is chosen to say.
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Overview of Statistical ASR
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How to postulate word sequence?

First thought: enumerate all possible word sequences one by one
— Expand into a large composite HMM
— Calculate the score and look for the best sequence
— Impossible even for small vocabulary task, e.g., digit string.

- Solution: build an overall recognition network accommodating all
possible word sequence - search for the best path

— Consider the task grammar and the language modeling
constraints (FSG, n-gram, context-free)

— Build search network based on the task grammar
— Expand into a single huge composite HMM

— Given a speech feature sequence, use the Viterbi algorithm to
search for the best alignment path through the network.

— The alignment path 2> the most likely word sequence (output)

— Each alignment path corresponds to one word sequence; but
each word sequence has many possible alignment paths.

* Viterbi Approximation - easy implementation
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Search Space Representation

Postulating word sequences is a typical search problem in CS.
First of all, how to specify search space in ASR?
- Obviously, the search space depends on the underlying grammar.
In ASR, language grammar is given in the following forms:
— Finite State Grammar (FSG):
Applications: voice dialing, digit string recognition, etc.

— N-gram: uni-gram, bi-gram, tri-gram, 4-gram
Applications: Dictation system, broadcast news transcription, etc.

— Context-free Grammar (CFG) - recursive transition network

CFG is convenient to refer to high-level task-specific concepts,
such as dates, names, inquiry patterns, etc.

Useful in speech understanding

Search Space(1): FSG

FSG itself is a search network; directly expand into composite HMM
based on lexicon and acoustic models.

sent-end

(a) single digit

(b)single digit with start/end silence
(c) Digit string with start/end silence
(d)Digit string with optional silence

H

call
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Search Space(2): Unigram

- Word-loop network is sufficient for unigram LM.

Pr(w=

/@ a
Pr(w=b -

be

Pr(w=been)

Co =iy >—Ca D been|\

start T
-

J

J

Search Space(3): Bigram

- Network for bi-gram is a bit complex; need more glue nodes.

Sil
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Search Space(4): Back-off Bi-gram

- If back-off bi-gram is used, glue nodes can be merged for back-off
contexts to reduce links. (used in HTK)

P (wj[w;) is full bigram

B(w;)
backoff
weight

P(w;) is unigram

Search Space(5):
Back-off Bigram LM with WFST

- No full context in back-off n-gram LM.
— Observed context: use n-gram condition probabilities.
— Unobserved context: back-off to lower level n-1 gram.
- WFST for back-off bi-gram LM:

O
W1: P(wl}<s> / Wk
W2: p(w2|<s>
w2 oo 0 @

w1

€:p(</s>)
backoff </s>
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Search Space(6): Trigram

- Network for tri-gram becomes significantly complicated.
- Network example for 2-word (w1,w2) vocabulary

Pr(w1lw2/w2)

Search Space(7): Back-off Trigram

- Representation of a full trigram LM for large
vocabulary is prohibitive.

- It is possible to represent a back-off trigram LM even
for very large vocabulary.

- WFST example ...
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Search Space(8): Back-off Trigram
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Token Passing (1): simple implementation
model for Viterbi decoding

- For a large or even medium one
size HMM, hard to maintain o
2-D trellis to implement the Q\'ngup —
Viterbi decoding algorithm. //‘ two
- Token passing paradigm: — Q.QQ_Q — 0
equivalent; easy to e
implement for large HMM’ s. \‘ e
. —0a
- Token passing:

— Each HMM state holds a
movable token which
contains all info about —
its partial travel from a
HMM start state up to the
current state, e.g. partial ‘

(5
keep best token
arriving at each
state

propagate and
update tokens at
each time frame

log prob &(.) and the
partial path.

— Viterbi search becomes
a token propagation
process.

Dept. of CSE, York Univ.
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Token Passing Algorithm

- Initialization: each HMM initial state holds a token with value 0;
- Propagation:
— For each observation feature vector ot, t=1,2,..., T,

* For each HMM state i do

(1) Pass a copy of the token in state i to all connecting states j by
following HMM state transition; updating value of the new tokens

by aij+bj(oy);

(2) Discard the original tokens;
keep best token

End
* For each HMM state i do

arriving at each
state

propagate and
update tokens at
each time frame

if more than one tokens enter state i
keep the best one, discard the rest;
End
End
- Termination:

— Examine all final states, the token with the best value passed the
best path; its value = Viterbi score; recover path.

Token Passing Example
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Token Passing: record boundaries

Best ; Recording Decisions 7
Token
came
from
"one" 1

Before  After
logP logP

logP logP logP logP
-— — - — Record

-
-

t-3 t-2 t-1 t

two two one one

Word Ends

Recording Word Boundary Decisions

Techniques to Accelerate Search in ASR

Beam search
— Prune unlikely candidates at the earliest stage.
- Tree-organized pronunciation lexicon
— For data sharing and better pruning strategy.
— How to structure search space for tree lexicon.
— Language Model Look-Ahead: how to apply LM earlier?
Fast-match
- One-pass search vs. Multi-pass search

— Integrated one-pass search: integrate all available knowledge
sources and explore the whole search space once; slow.

— Multi-pass search: use partial knowledge (e.g., simﬁler models)
to reduce search space; explore the reduced search space by
more complicated models; fast.

Dynamical network expansion
- Static decoding based on minimized WFST
- Alternative outputs:
— N-Best list: how to generate?
— Word-graph: compact representation of more candidates.

Dept. of CSE, York Univ.
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Beam Search (I)

Beam Search: every time frame, the best score in all partial paths
(tokens in token passing) is noted and any partial paths (tokens)
whose score lies more than a beam-width below this best score is
pruned from further consideration.

Instead of searching for the entire dark room, just follow the beam
of your flashlight.

Beam-width is a pre-set constant to control the degree of pruning.
Beam search makes the prohibitive search problem feasible.
In beam search, search space never goes out of control.

Best score
X
Best score x * **
Best score *"* x5 ¥
Best score * XK *o
Best score * * 5 By K.k, ~
* * Xk
Bestscore © % * o K RE-X &
Best score * KX K W *
* *, % " * %
** * K
* x ** Y* * A *
A *
*y ™
*
t

Beam Search (II)

Beam search is THE most important pruning strategy to accelerate
search in speech recognition.

Beam search is not admissible: it may miss the best path; but this
seldom happens in practice if the beam-width is set properly.

o o
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Beam Search (III)

- Acoustic pruning: retain only hypotheses with a score close to the
best hypothesis for further consideration.

— Regular beam search for in-HMM partial candidates.
— Acoustic beam-width Pa.
- Language model pruning (word ending pruning):

— The optimal path seems more stable at the word-ending points
during the search especially after applying LM scores.

— More aggressive pruning is possible at word-end.

— Word-ending (LM) beam-width P.m. (PLm can be chosen to
smaller than Pa to ward off more unlikely candidates)

- Histogram Pruning:

— Each time, instead of setting a beam width, survive only the
best N candidates.

— Sorting is prohibitive; usually implement by histogram.

ASR Search Algorithms

- Dynamic search network expansion
— Tree lexicon
— Language model look-ahead
— Dynamic expansion

- Static optimized network
— Static back-off LM network
— Expansion using WFST composition

— Optimization using WFST determinization and
minimization

Dept. of CSE, York Univ. 11
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Tree Lexicon Organization

- Linear lexicon: each word in
vocabulary is modeled separately:

— Essentially, it is a linear
sequence of phonemes
according to its pronunciation.

- Tree lexicon: all words in
vocabulary can be organized into
a prefix tree:

— Better data sharing; more
effective pruning.

speak

speech

— Each leaf node represents one
word. t

— Extremely important for large

vocabulary cases. tell

Tree Lexicon: problems

- Problems with a tree lexicon:

— The identity of the hypothesized word is unknown until
reaching a leaf node.

+ Language model (LM) scores can’t be applied until at the
end of tree - ineffective pruning in beam search

— Search space is hard to formulate unless making lots of tree
copies.

- Conceptual example:
— Three words in vocabulary
— A network for only 2-word sentences
— For bi-gram: introducing merging nodes for previous word

— For tri-gram: introducing merging nodes for previous two
words

Dept. of CSE, York Univ. 12
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Search Space for Tree Lexicon:

For Bi-gram LM

For Tri-gram LM

T il
o o o
ACOUSTIC LANGUAGE ACOUSTIC <
MODEL | MODEL ! MODEL 9
T T 26 0
J cc
S 4 2 B,
c
o o

Language Model Look-ahead
- In tree lexicon, can’ t apply LM score due to unknown id of
current word.

- Better to incorporate LM knowledge as soon as possible to
prune those unlikely candidates in grammar.

- LM look-ahead: apply maximum LM scores of all words which
can be reached from the current node.

wrg%){p(ww)} W)
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Dynamic Network Expansion

How to handle huge search space in
large vocabulary

Fast Match: phoneme look-ahead

— Look-ahead some feature vectors to determine a small set of
most likely phoneme from the current time point.

Multiple-pass search strategy:

— 1stpass: use simple language model (unigram, bi-gram) to
reduce search space.

— 2 pass: use more complicated model (such as tri-gram) to
search for the result only in the above reduced space.

- Single-pass search strategy:
— Dynamic network expansion:
* No a whole static network is built beforehand (too big).
* Expand the net dynamically during the search process.

Dept. of CSE, York Univ.
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Static Optimization Network
using WFST

- Build a huge static search network from LM: Composition
— LM-based Grammar WFST (G)
— Pronunciation Lexicon (L)
— Context-Dependency Transducer (C)
— Sub-word HMM (H)

F=HoColLoG
- Compact the network using graph algorithms.
— Determinization

— Minimization

min( det (F) )

Pronunciation Lexicon WFST

Dept. of CSE, York Univ. 15
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Context Dependency WFST
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Context Dependency

(a)
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WFST for ASR

eh:<eps>/0 16 ) 4<ep>0 [ 50 ) 40:ceps=i0

. bbil1386 5" dhicepse0 4\ L<eps0 g\ #0:<epsi0 coeann [ 10 L<eps20 ("5 chreadd [ 13 ) d=epsn0 (5 ,gk,y,,ofm\
D iceps0693. 7K hecepeoi0 /5 Ljill) (7)) B0 g r:ceps=/0.400 (it iyreadd p— #0:cepz=10 \1'0/‘
S i el owwrote1432 4 14 18 g
H
15 }t=eps=0 [ 1o
T £
det(L o @)
- = Li<eps>i0 g7\ ehi<eps=i0

| bbill0ees /) Meepsi0 ) k<epssio £6ed/1371 7 trmeed0 7 10 dcepsoio .
() g-rey _— LV g #0ieps0 o r<eps=/0 g ehresdd . 3 { #0:<eps=/1.093 (40"
) sesep: 3 Mesepsi0 7 N0 603 8 ) owwrow1 431 o B R \m)

min(det(L o G))

WFST for ASR
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WFST for Speech Recognition

network states transitions
G 1.339.664 | 3.926,010 | >
LoG 8.606,72 T.406,721
def(L o G) 7.082.404 | 9.836,629
Code(LoQ)) 7.273.035 | 10,201,269 .
def(loCoLoG) | 18.317.359 | 21.237.092 comparable size
i3 3.188.274 |_6.108.907 /
min(F') 2.616.948 | 5.497.952

Table 1: Size of the first-passs recognition networks in the NAB
40, 000-word vocabulary task.

network x real-time
CoLoG 12.5
Codet(LoQ) 1:2
det(H oC o Lo(G) 1.0
min(F) 0.7

Table 2: Recognition speed of the first-pass networks in the NAB
40, 000-word vocabulary task at 83% word accuracy

Weighted Finite State Transducer
(WFST)

- WFST: weighted finite state transducer (or acceptor):

is/0.5

T TR )
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WFST Operations

- Composition: C=AoB

- Determinization: D = det(C)

— deterministic automaton: every state has at most
one out-going transition with any given label.

- Re-weighting (Weight pushing): E = push(D)

- Minimization: F = min(E)

WFST Operations: Examples

a/'l
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Multiple Outputs

How to generate a short list of multiple outputs instead of a single
best?

— To apply more knowledge to pick up one.

N-Best List:
— Alist of top N best candidates

Word graph:
— A compact representation of a large number of candidates.

How to generate N-best list or word graph from search process?
— Standard Viterbi search can find the best one.
— Modify the Viterbi somewhat for this feature.

- - I
N-Best List: example
/Rank Hypotheses Likelihooh
1 SILENCE HARD ROCK SILENCE -5880.11
2 SILENCE HARD WRONG SILENCE -5905.17
3 SILENCE HARD RAW SILENCE -5906.32
4 SILENCE A HARD ROCK SILENCE -5920 68
5 SILENCE HARD ROT SILENCE -5922.05
6 SILENCE HARD RON SILENCE -5923 69
7 SILENCE CARD WRONG SILENCE -5924 51
8 SILENCE CARD RAW SILENCE -5925 66
9 SILENCE YOU HARD ROCK SILENCE -5928.95
10 SILENCE HART WRONG SILENCE -5929 97
1 SILENCE HEART WRONG SILENCE -5930. 42
12 SILENCE ARE HARD ROCK SILENCE -5936.11
13 SILENCE CARD ROCK SILENCE -5936.86
14 SILENCE OF HARD ROCK SILENCE -5937.56
15 SILENCE CARD ROT SILENCE -5941.39
16 SILENCE CARD RON SILENCE -5943.03
17 SILENCE A HARD WRONG SILENCE -5945.74
18 SILENCE PART WRONG SILENCE -5946.36
19 SILENCE HART ROT SILENCE -5946 85
\20 SILENCE A HARD RAW SILENCE -5946.89/
True Transcription: hard rock

Dept. of CSE, York Univ.
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Word Graph (Lattice): example (1)

/ ! | GILENCE : HARD : N

. i SILENGE; ARE PART"
0 2 1516 18 43 £S5, 86
\ Frames j

Word Graph: example (2)

Silence PERCENTAGE CHANGES
/ . CHANGE
Silence
PERCENTAGE
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Other search strategies:

- Viterbi algorithm: time-synchronous breadth-first search

- Depth-first: A* search (or stack decoding)

— Time-asynchronous search
Expend and evaluate partial hypothesis from a stack.
Widely used in Al search.

Admissible: the best path is guaranteed as long as the
heuristics are not over-estimated.

Not popular anymore in speech recognition.
NO TIME to cover.
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