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Markov Chain Model: review

- Containing a set of states
- Probability of observing a state depends on its immediate history
1st-order Markov chain: history = previous state
— Characterized by a transition matrix {aj} and an initial prob vector
- Directly observing a sequence of states:
X = {w1, w4, w2, W2, w1, W4}
- Pr(X) = P(w1) a4 as2a22az1as
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Hidden Markov Model (HMM)

Vs
! < ) . ags .
! Vi - HMM is also called a probabilistic
function of a Markov chain

— State transition follows a
Markov chain.

— In each state, it generates
observation symbols based on

a a
” ‘ > a probability function. Each

— HMM is a doubly embedded
stochastic process.

In HMM,
— State is not directly observable

S = w1, w3, W2, w2, w1, ws (hidden) (hidden states)
l l l l l l — Can only observe observation

bol ted fi tat
O =v4,v1, v1,v4, v2, v3 (observed) Symbo's generated from states

state has its own prob function.

HMM example: Urn & Ball

Urn 1 Urn 2 Urn N-1 Urn N
PHRED) =bi(1)  PH(RED) = bz(1) Pr(RED) =bna(1)  Pr(RED) = bn(1)
PrBLE) =b1(2)  Pr(BLE) = b2(2) Pr(BLE) =bn1(2)  Pr(BLE) =bn(2)
PrGRN) =b1(3)  Pr(GRN) = b2(3) Pr(GRN) =bn-1(3)  Pr(GRN) = bn(3)

Observation: O = { GRN, GRN, BLE, RED, RED, ... BLE}
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Elements of an HMM

- An HMM is characterized by the following:

N: the number of states in the model
M: the number of distinct observation symbols

A = {aij} (1<=i,j<=N): the state transition probability
distribution, called transition matrix.

aij:Pr(Qt:Sjlqt—lei) (I<i,j<N)

B={bj(k)} (1<=j<=N, 1<=k<=M): observation symbol
probability distribution in all states.

b,(k)=Pr(v,|q,=S,) (<j<NI<k<M)

i (1<=i<=N): initial state distribution

- The complete parameter set of an HMM is denoted as

A= {AaBa ﬂ'}, where A is transition matrix, B is observation
functions, m is initial probability vector.

2.
3.

An HMM process

Given an HMM, denoted as A =1{4,B,7} and an observation
sequence 0={01,02, ..., O1}.

The HMM can be viewed as a generator to produce O as:
1.

Choose an initial state g7=Siaccording to the initial probability
distribution m.

Set t=1.

Choose an observation Ot according to the symbol
observation probability distribution in state S, i.e., bi(k).

Transit to a new state qt+71 =Sj according to the state transition
probability distribution, i.e., aj.

Set t=t+1, return to step 3 if t<T.
Terminate the procedure.
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Basic Assumptions in HMM

Markov Assumption:
— State transition follows a 1st-order Markov chain.

— This assumption implies the duration in each state, j, is a
eometric distribution: _
9 p,(d)=(a;)""(1-a,)

- Output Independence Assumption: the probability that a particular
observation symbol is emitted from HMM at time t depends only
on the current state st and is conditionally independent of the past
and future observations.

- The two assumptions limit the memory of an HMM and may lead to
model deficiency. But they significantly simplify HMM
computation, also greatly reduce the number of free parameters to
be estimated in practice.

— Some research works to relax these assumptions has been

done in the literature to enhance HMM in modeling speech
signals.

Types of HMMs (I)

Different transition matrices:
— Ergodic HMM Topology:
(with full transition matrix)
a; a4 4y

A=|a, a, ay

a;; Q3 Ay
— Left-to-right HMM Topology:
states proceed from left to right

a, a, 0 0

an a2 as3 au
A= 0 a, ay O Q Q
0 0 ay; Ay, U an \W"J ax O a0 \_ 7

0 0 0 a,
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Types of HMMs (1I)

Different observation symbols: discrete vs. continuous

— Discrete density HMM (DDHMM): observation is discrete, one of a
finite set. In discrete density HMM, observation function is a
discrete probability density, i.e., a table. In state j,

Vv, vV, Vs Vy

0,(k)=[0.1 04 03 02]

— Continuous density HMM (CDHMM): observation x is continuous
in an observation space. In CDHMM, observation function is a
probability density function (p.d.f.). The common function forms:

¢ Multivariate Gaussian distribution

1 o) T (e, )2

p,(X)=Nxp,Y)=F————
@n)" %, |

« Gaussian mixture model
K k
(=Y, oNxpn,X) Y, o=1 0<o, <l K>I

—oco X<

HMM for data modeling(I)

- HMM is used as a powerful statistical model for sequential and
temporary data observation.

- HMM is theoretically (mathematically) sound; relatively simple
learning and decoding algorithms exists.

- HMM is widely used in pattern recognition, machine learning, etc.
Speech recognition: model speech signals.

Statistical language processing: model language (word/semantics
sequence).

OCR (optimal character recognition): model 2-d character image.
Gene finding: model DNA sequence (profile HMM),

Dept. of CSE, York Univ. 5
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HMM for data modeling(II)

How to use HMM to model sequential data ?
— The entire data sequence is viewed as one data sample O.
— The HMM is characterized by its parameters A ={A4, B, 7} .

- Learning Problem: HMM parameters A must be estimated from a data
sample set {01,02, ..., OT}.

— The HMM parameters are set so as to best explain known data.
— “best” in different senses:

* Maximum likelihood estimation.

* Maximum a posteriori (MAP) estimation.

» Discriminative training: minimum classification error (MCE) in
training data, Maximum mutual information (MMI) estimation.
- Evaluation Problem: for an unknown data sample Ox, calculate the
probability of the data sample given the model, p(Ox|A).

- Decoding Problem: uncover the hidden information; for an

observation sequence 0={01,02,...,0t}, decode the best state sequence
Q={s1,s2,...,st} which is optimal in explaining O.

HMM Computation(1): Evaluation(I)

- Given a known HMM A ={4, B, 7}, how to compute the probability of

an observation data O={01,02,...,07} generated by the HMM, i.e., p(O|
A).

- Direct computation: In HMM, the observation data O can be
generated by any a valid state sequence (with length T) with
different probability. The probability of O generated by the whole
model is the summation of all these probabilities. Assume S={s1,s2,
...,ST} is a valid state sequence in HMM,

p(OI1N) =) p(O0,S|A)= p(S|A)-p(O|S,A)

=2 {P(Sl IA)-Hp(st Ist_l,A)-Hp(o, |st,A)}

Sy

= z {7’5, -HaSHst 'Hbs, (ot)}

Sy

Dept. of CSE, York Univ. 6
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HMM Computation(1): Evaluation(II)

- For Gaussian mixture CDHMM,

p(O|A)= 2{ T1 sls,‘l'[bs,(o,)}

508y 1=2

2 |: o) Has, 18; HZN(Ot |ﬂs,k’zs,k):|

t=1 k=1

-3 35, o TIN5,

SyeeSp by t=1

~

where I={l,...,I7} is the mixture component label sequence. It (1<=lt
<=K) is Irth Gaussian mixand in s+-th HMM state.

- However, the above direct calculation is computationally prohibitive.
Even for DDHMM, it is on the order of O(27-N").

— For N=5, T=100, computation on the order of 2x100x5'" =107,
- Obviously, we need an efficient way to calculate p(O|A).

HMM Computation(1):
Forward-Backward algorithm(I)
- Solution: calculate p(O|A) recursively.
- Define forward probability: & () =Pr(0,,0,,---0,,¢,=s,|A) the
probability of the partial observation sequence (until ) generated

b@he mod and dbresides@state siat time t.

b, =1
ONNOS ORINO a@{ b |
g S a(t-Dayb,(0,) t>1

ZEONNO/IONN®

Obviously

L poimn=Yem
O OO -

Computational complexity is on
t= 1 o tocc T the order of O(NZT).

forward probabilities

Dept. of CSE, York Univ.
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HMM Computation(1):
Forward-Backward algorithm(II)
- Similarly define backward probability: /3 (i) =Pr(o,,,,0,,,,--0;,| g, =5;,A)

the probability of generating the partial observation sequence from t+1
to the end by the model, and it resides in state si at time t.

© OO O (s
@ @ £ = Zﬂj(tﬂ)aijbj(o,ﬂ) otherwise
&)

@ Obviously

p(O[A) =Z,7f,~ B1(J)-b;(0)

©

@ @ @ Computational complexity is on
1ot 1ot T the order of O(N°T) .

backward probabilities

t=

HMM Computation(1):
Forward-Backward algorithm(III)

- If we calculate all forward and backward probabilities:
at(l) = PI'(OI,Oz,' 0,4, =S; | A)
ﬁ[(l) = Pr(01+130t+23 o 'OTi ‘ QI = Si’A)

Forany time ¢, we have

p(0|A)=Za,.(r)-ﬂ,-(t) (for anyt)

Dept. of CSE, York Univ.
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HMM Computation(2): HMM Decoding

- Given a known HMM A = {4, B, 7} and an observation data
sequence 0={01,02,...,07}, how to find the optimal state sequence
associated with the given observation sequence O?

- Optimal in what sense??

— Could be locally optimal. For any time instant t, find a single
best state st =& generate a path from s1 to sr.

— Prefer a global optimization = find a single best state
sequence (also called a path in HMM), which is optimal as a
whole.

S" =argmax p(S|O,A)=argmax p(S,0|A)
N S

S"={s/,8,,"++,8,} =argmax p(s,, :+,5;,0,, 0y | A)

S5 ST

— Viterbi algorithm: find the above optimal path efficiently.

Viterbi Decoding Algorithm (I)
Define Optimal Partial Path Score
5,(1)=max P(s",s, =i,0, | A)
1. Initialization & (0)=7
2. DP-Recursion and Bookkeeping
0,(0) =gg’v<[d(f—1)%]bj(0t) 1<t<T 1<j<N

w () =argmax[d,(t—Da,;] 1<t<T 1<j<N
3. Termination s=Y

P = max p(S,01A)= ¥n_a?v(5i(T) and §, =argmaxy (T)

I<jSN

4. Path backtracking
§.=y, () t=T,T-1,...2

5. “Optimal” State Sequence:

§=(5,,....5,)

Dept. of CSE, York Univ.
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Viterbi Decoding Algorithm: trellis(l)

Example 1: 3-state ergodic HMM

For an observation O={01,02,03,04,05,06,07}

State number

w1 w1 w1 w2 w2 w3 w2
1] 1 2 3 4 5 6 7
time t

Viterbi Decoding Algorithm: trellis(ll)

an
Example 2: 3-state left-right HMM . . .
For an observation 0={01,02,03,04,05,06,07} Q an 9 az @

%
SN
9

0

w1 w1 w1 w2 w2 w3 w3
1] 1 2 3 4 5 6 7
time t

Dept. of CSE, York Univ.
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HMM Computation(3): Estimation

In practice, usually manually select the topology of HMM, including
number of states, number of mixture per state, etc.

However, other HMM parameters must be estimated from training
data. (called HMM training)

HMM training (estimation) criteria:

— Maximum Likelihood estimation (MLE): maximize the
likelihood function of the given training data; HMM parameters
are chosen to best reflect the observed data.

— Maximum a posteriori (MAP) estimation: tune HMM to reflect
data as well as some prior knowledge; optimally combine
some prior knowledge with data.

— Discriminative training: increase the discriminative power of
all different HMMs (e.g., each HMM for one class); not only
adjust HMMs to reflect data, but also try to make all different
HMMs as dissimilar as possible.

* MMIE (maximum mutual information estimation)
* MCE (minimum classification error) estimation

- Given a set of observation data from this HMM, e.g.

- Similar to GMM, no simple solution exists.

ML estimation of HMM:
Baum-Welch method

HMM parameters include: A ={4,B,x}

D = {01, Oz, ..., O}, each data Oris a sequence presumably generated
by the HMM

Maximum Likelihood estimation: adjust HMM parameters
to maximize the probability of observation set D: A ={4,B,r}

A,,; =argmax p(D|A)=argmax p(0,,0,,---,0, | A)
A A

Baum-Welch method: iterative estimation based on EM algorithm

— For DDHMM: for each data sequence Oi={0o11,01,...,0i7}, treat its state
sequence Si={sn,...,SiT} as missing data.

— For Gaussian mixture CDHMM: treat both state sequence S/ and
mixture component label sequence Ii={In,...,IiT} as missing data.

Dept. of CSE, York Univ.
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Baum-Welch algorithm: DDHMM(I)

E-step:
QM A =E | In p(0,,+-0,,8,,-+,5, |A) 0,0, ,A” |

> {Zlnp(ol,s |A)} [T7(510:4) = 3 3 Inp(0,5,1A)- (S, 10, A”)

S8, Li=1 =1 5

i D {mnm +:Inb, (o,l)+21nast4s,+21nbst (ot)] (S, 10, A™)

1 sppeesiy t=2

~
Il

I

L N N
Inz, -Pr(s, =s, IOI,A("))+ZZZ Ina, -Pr(s,, =s,,5, =s,10,A")

=] =1 i=l j=1 =2

Il
M-
i M=

\
T
~ ...

N

+22iilnbi(vM)'Pr(slt =98,0, =V, |01’A(n))

I=1 i=1 m=1 t=1

=0(m; ") +0(4;4") + O(B; B™)

Baum-Welch algorithm: DDHMM(II)

- M-step: constrained maximization.

L
. Pr(s, =s,0,A")
3Q(ﬂ';ﬂ'( ))=0 - ; ! :

L N
or, ZZ Pr(s, =s,|0,A")
I=1 i=1
LD LT
) ZZ Pr(s; =558, =S; |01aA(n)) ZZ Pr(s, =5,,8, =5, ‘ 01’A(n))
00(4; 4 )_ (n+) _ =1 1= _ ==
oa. _O:aif T L LN L T-1
! ZZZ Pr(s, =58, =5, 10,A") Zz Pr(s, =5,10,,A")
=l =2 j=l ==l
LT LT
() 2 Pr(s, =s,,0,=v, |01’A(n)) 22 Pr(s, =s,,0,=v, \OI,A("))
aQ(B;B ) = b == _ 1=l =l
ob,(v,) K T e
Ao YYY Pr(s,=s,.0,=v,[0,A") Y Pr(s,=5,0,A")

=1 t=1 m=1 =1 =1
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Baum-Welch algorithm: DDHMM(III)

- How to calculate the posteriori probabilities?
1] j (0t+1 )

o (l) ﬂH—l (])

t t+1

~\ \_O

Zprob of all paths passing s, at fand s ; at 7 +1

PI'(St =858 = Sj | OI’A(n)) = ZpI'Ob of all paths
a (l) al]bj (0t+1) ’ ﬂt+1 (]) _ a, (l) ) aijbj (Ot+l) ’ :Bz+1 (]) _ Q, (l) ’ aijbj (0t+l) ) ﬁt+1 (])
Pr(O, | A" - - - P
(O, | ) 2 a, 0) !

i=1
_ i(i) ii’ ii

Baum-Welch algorithm: DDHMM(1IV)

- Final results: one iteration, from A" = {A(n),B(n),ﬂ'(")}

L
2 Pr(Sll :Si |017A(n)) L N
7[’_(”+1) = Ll 1N 2251(1) (l J)
2.2 Pr(s, =s,]0,A") A

L L7
22 Pr(s,_, =55, =9, |O/aA(n)) 22 (l)(l J)
=1 1=2

4y =7 7, N - T N
ZZZ Pr(s,_, =s;,5, = |OI,A(")) 222 (l)(l J)
=1 =2 j=1 =1 1
L Tj, L T 1{/
3> Pr(s, =s;,0,=v, |0, A") D& ) 60, -v,)
bi(vm)_ l=1Tt= _ 1=l =1 =l -

Y &P, )

1 t=1 j=1

Mb-

1
M
3 Pr(s, =5,,0, = v, |0,,A‘">>

~
Il
LN
~
Il
—_
Il
~
1]
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Baum-Welch algorithm:
Gaussian mixture CDHMM(I)

- Treat both state sequence S/ and mixture component label sequence
I as missing data.

- Only B estimation is different.
E-step:

O(B;B") = 22
>

1 k=1 t=1

T,

Ngle

lnbik(Xlt) ) PI'(S” = si’llt = k ‘ OI’A(n))

=~
]

1 1=l
7

n 1 (v - "
[lnwik _Eln|2ik ‘_5'()(1;_#%) I I(Xlt_:uik):|'Pr(Slt =550, =k| O, A )

Il
M=
.[\42

- M-step: unconstrained maximization

Ll
n Xt'Pr(Stzsi’lt=k|O’A(n))
aQ(B;B( )) 0= lu(n+1) I=1 ; l l : :
- ik L L
aﬂik ZZPI'(SH :Si7llt :k | OI,A(”))

Baum-Welch algorithm:
Gaussanmlxture CDHMM(II)

\ (X, — ) (X, ~ ) Pr(s, = 5,1, = k| 0 A
8Q(B;B( )) C0m 21(1:”1) 21, & It It ik It It 1
92X,

L,

M=

Pr(s, =s,,0, =k| OI’A(H))

1 1=l
Lt

L
Pr(s, =s.,0, =k|0,,A")
90(B;B™) oy 2P =8 =k IO
:O:G)i(k H_ /1 1

Iy & & "
zz;ﬁ(% _Sl’llt _k|01aA )

I=1 t=1
where the posteriori probabilities are calculated as:

D7y, B (Y. D
Pr(s, =s,,1, =k| OZ,A(n)) = é’t(l)(i, k)= a,” (i) ﬂzP(l) 71'(k (?)
I

wﬁ:” N 1 250
Zw,‘:) N(X, |1l 25)

k=1

where 7{ (¢) =
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HMM Training: summary

For HMM model A ={4 B, z} and a training data set D = {01, O,
ey OL},

1. Initialization A" ={4” B” 7'V}, setn=0;

2. For each parameter to be estimated, declare and initialize two
accumulator variables (one for numerator, another for
denominator in updating formula).

3. For each observation sequence O: (1=1,2,...,L):
a) Calculate (i) and 5,(i) based on A"
b) Calculate all other posteriori probabilities

c) Accumulate the numerator and denominator accumulators
for each HMM parameter.

4. HMM parameters update: A"*" =the numerators divided by
the denominators.

5. n=n+1; Go to step 2 until convergence.

HMM implementation Issues

Logarithm representation for all HMM parameters
— To avoid underflow in computer multiplication.
— Re-write all computation formula based on:
¢ =ab = logc=log(ab)=loga+logh
e=a/b=loge=log(a/b)=loga—logh
d=atb=logd =log(axb)=1loga+log[lxexp(logh—loga)]
HMM topology: case-dependent; In speech recognition, always left-
right Gaussian mixture COHMM.
— For a phoneme model: 3-state left-right HMM.
— For a whole word (English digit): 10-state left-right HMM.
— Gaussian mixture number per state: depends on amount of data.
HMM initialization:
— A bad initial values = bad local maximum
— For CDHMM: in HTK toolkit

* Uniform segmentation >VQ (LBG/K-means) - Gaussian
+ Flat start
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