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       Hidden Markov Model  
                 (HMM) 

Markov Chain Model: review 

·  Containing a set of states  
·  Probability of observing a state depends on its immediate history  
·  1st-order Markov chain: history  previous state 

–  Characterized by a transition matrix {aij} and an initial prob vector  
·  Directly observing a sequence of states: 
        X = {ω1, ω4, ω2, ω2, ω1, ω4}  
·  Pr(X) = P(ω1) a14 a42 a22 a21 a14  



Prepared by Prof. Hui Jiang 
(CSE6328) 

12-02-08 

Dept. of CSE, York Univ. 2 

Hidden Markov Model (HMM) 
·  HMM is also called a probabilistic 

function of a Markov chain 
–  State transition follows a 

Markov chain. 
–  In each state, it generates 

observation symbols based on 
a probability function. Each 
state has its own prob function. 

–  HMM is a doubly embedded 
stochastic process. 

·  In HMM, 
–  State is not directly observable 

(hidden states) 
–  Can only observe observation 

symbols generated from states 

S = ω1, ω3, ω2, ω2, ω1, ω3  (hidden) 
 
 
O = v4, v1,  v1, v4,  v2, v3 (observed) 

HMM example: Urn & Ball 

… 
Urn 1 Urn N Urn N-1 Urn 2 

Pr(RED)  = b1(1) 

Pr(BLE)  = b1(2) 

Pr(GRN) = b1(3) 

…  

Pr(RED)  = b2(1) 

Pr(BLE)  = b2(2) 

Pr(GRN) = b2(3) 

…  

Pr(RED)  = bN-1(1) 

Pr(BLE)  = bN-1(2) 

Pr(GRN) = bN-1(3) 

…  

Pr(RED)  = bN(1) 

Pr(BLE)  = bN(2) 

Pr(GRN) = bN(3) 

…  

Observation:  O = { GRN, GRN, BLE, RED, RED, … BLE} 
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Elements of an HMM 
·  An HMM is characterized by the following: 

–  N: the number of states in the model 
–  M: the number of distinct observation symbols 
–  A = {aij} (1<=i,j<=N): the state transition probability 

distribution, called transition matrix. 

–  B={bj(k)} (1<=j<=N, 1<=k<=M): observation symbol 
probability distribution in all states. 

–  πi (1<=i<=N): initial state distribution 
·  The complete parameter set of an HMM is denoted as                     
                            , where A is transition matrix, B is observation 

functions, π is initial probability vector. 

),1()|Pr( 1 NjiSqSqa itjtij ≤≤=== −

)1,1()|Pr()( MkNjSqvkb jtkj ≤≤≤≤==

},,{ πBA=Λ

An HMM process 

·  Given an HMM, denoted as                          and an observation 
sequence O={O1,O2, …, OT}. 

·  The HMM can be viewed as a generator to produce O as: 
1.  Choose an initial state q1=Si according to the initial probability 

distribution π. 
2.  Set t=1. 
3.  Choose an observation Ot according to the symbol 

observation probability distribution in state Si, i.e., bi(k). 
4.  Transit to a new state qt+1 =Sj according to the state transition 

probability distribution, i.e., aij. 
5.  Set t=t+1, return to step 3 if t<T. 
6.  Terminate the procedure. 

},,{ πBA=Λ



Prepared by Prof. Hui Jiang 
(CSE6328) 

12-02-08 

Dept. of CSE, York Univ. 4 

Basic Assumptions in HMM 

·  Markov Assumption: 
–  State transition follows a 1st-order Markov chain. 
–  This assumption implies the duration in each state, j, is a 

geometric distribution:  

·  Output Independence Assumption: the probability that a particular 
observation symbol is emitted from HMM at time t depends only 
on the current state st and is conditionally independent of the past 
and future observations.  

·  The two assumptions limit the memory of an HMM and may lead to 
model deficiency. But they significantly simplify HMM 
computation, also greatly reduce the number of free parameters to 
be estimated in practice. 

–  Some research works to relax these assumptions has been 
done in the literature to enhance HMM in modeling speech 
signals. 
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Types of HMMs (I) 
·  Different transition matrices: 

–  Ergodic HMM Topology: 
    (with full transition matrix) 

 

–  Left-to-right HMM Topology: 
    states proceed from left to right 
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Types of HMMs (II) 
·  Different observation symbols: discrete vs. continuous 

–  Discrete density HMM (DDHMM): observation is discrete, one of a 
finite set. In discrete density HMM, observation function is a 
discrete probability density, i.e., a table.  In state j, 

–  Continuous density HMM (CDHMM): observation x is continuous 
in an observation space. In CDHMM, observation function is a 
probability density function (p.d.f.). The common function forms: 

•  Multivariate Gaussian distribution 

•  Gaussian mixture model 
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HMM for data modeling(I) 

·  HMM is used as a powerful statistical model for sequential and 
temporary data observation. 

·  HMM is theoretically (mathematically) sound; relatively simple 
learning and decoding algorithms exists. 

·  HMM is widely used in pattern recognition, machine learning, etc. 
–  Speech recognition: model speech signals. 
–  Statistical language processing: model language (word/semantics 

sequence). 
–  OCR (optimal character recognition): model 2-d character image.  
–  Gene finding: model DNA sequence (profile HMM), 
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HMM for data modeling(II) 
·  How to use HMM to model sequential data ? 

–  The entire data sequence is viewed as one data sample O. 
–  The HMM is characterized by its parameters                       . 

·  Learning Problem: HMM parameters Λ must be estimated from a data 
sample set {O1,O2, …, OT}. 

–  The HMM parameters are set so as to best explain known data. 
–  “best” in different senses: 

•  Maximum likelihood estimation. 
•  Maximum a posteriori (MAP) estimation. 
•  Discriminative training: minimum classification error (MCE) in 

training data, Maximum mutual information (MMI) estimation.  
·  Evaluation Problem: for an unknown data sample Ox, calculate the 

probability of the data sample given the model, p(Ox|Λ). 
·  Decoding Problem: uncover the hidden information; for an 

observation sequence O={o1,o2,…,ot}, decode the best state sequence 
Q={s1,s2,…,st} which is optimal in explaining O. 

},,{ πBA=Λ

HMM Computation(1): Evaluation(I) 
·  Given a known HMM                     , how to compute the probability of 

an observation data O={o1,o2,…,oT} generated by the HMM, i.e., p(O|
Λ). 

·  Direct computation: In HMM, the observation data O can be 
generated by any a valid state sequence (with length T) with 
different probability. The probability of O generated by the whole 
model is the summation of all these probabilities. Assume S={s1,s2,
…,sT} is a valid state sequence in HMM, 

},,{ πBA=Λ
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HMM Computation(1): Evaluation(II) 
·  For Gaussian mixture CDHMM, 

 where l={l1,…,lT} is the mixture component label sequence. lt (1<=lt 
<=K) is It-th Gaussian mixand in st-th HMM state.  

·  However, the above direct calculation is computationally prohibitive. 
Even for DDHMM, it is on the order of                  .  

–  For N=5, T=100, computation on the order of                                 . 
·  Obviously, we need an efficient way to calculate p(O|Λ). 
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HMM Computation(1):  
Forward-Backward algorithm(I) 

·  Solution: calculate p(O|Λ) recursively. 
·  Define forward probability:                                                   , the 

probability of the partial observation sequence (until t) generated 
by the model and it resides in state si at time t.           
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HMM Computation(1):  
Forward-Backward algorithm(II) 
·  Similarly define backward probability:                                                      

the probability of generating the partial observation sequence from t+1 
to the end by the model, and it resides in state si at time t.           
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HMM Computation(1):  
Forward-Backward algorithm(III) 

·  If we calculate all forward and backward probabilities: 
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HMM Computation(2): HMM Decoding 

·  Given a known HMM                      and an observation data 
sequence O={o1,o2,…,oT}, how to find the optimal state sequence 
associated with the given observation sequence O? 

·  Optimal in what sense?? 
–  Could be locally optimal.  For any time instant t, find a single 

best state st  generate a path from s1 to sT. 
–  Prefer a global optimization  find a single best state 

sequence (also called a path in HMM), which is optimal as a 
whole.  

–  Viterbi algorithm: find the above optimal path efficiently. 
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Viterbi Decoding Algorithm (I) 
·  Define Optimal Partial Path Score 

1.  Initialization 
2.  DP-Recursion and Bookkeeping 

3.  Termination 

4.  Path backtracking 

5.  “Optimal” State Sequence: 
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Viterbi Decoding Algorithm: trellis(I) 
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Example 1: 3-state ergodic HMM  
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ω3 ω2 ω2 ω2 ω1 ω1 ω1 

For an observation O={o1,o2,o3,o4,o5,o6,o7} 

Viterbi Decoding Algorithm: trellis(II) 
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Example 2: 3-state left-right HMM  
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For an observation O={o1,o2,o3,o4,o5,o6,o7} 

a11 a22 a33 a44 

a12 a23 a34 

max 

 0.0 

 0.0  0.0 



Prepared by Prof. Hui Jiang 
(CSE6328) 

12-02-08 

Dept. of CSE, York Univ. 11 

HMM Computation(3): Estimation 
·  In practice, usually manually select the topology of HMM, including 

number of states, number of mixture per state, etc. 
·  However, other HMM parameters must be estimated from training 

data. (called HMM training) 
·  HMM training (estimation) criteria: 

–  Maximum Likelihood estimation (MLE): maximize the 
likelihood function of the given training data; HMM parameters 
are chosen to best reflect the observed data. 

–  Maximum a posteriori (MAP) estimation: tune HMM to reflect 
data as well as some prior knowledge; optimally combine 
some prior knowledge with data. 

–  Discriminative training: increase the discriminative power of 
all different HMMs (e.g., each HMM for one class); not only 
adjust HMMs to reflect data, but also try to make all different 
HMMs as dissimilar as possible. 

•  MMIE (maximum mutual information estimation) 
•  MCE (minimum classification error) estimation 

ML estimation of HMM:  
Baum-Welch method 

·  HMM parameters include:  
·  Given a set of observation data from this HMM, e.g.  

   D = {O1, O2, …, OL}, each data Ol is a sequence presumably generated 
by the HMM 

·  Maximum Likelihood estimation: adjust HMM parameters                
     to maximize the probability of observation set D: 
 

·  Similar to GMM, no simple solution exists. 
·  Baum-Welch method: iterative estimation based on EM algorithm 

–  For DDHMM: for each data sequence Ol={ol1,ol2,…,olT}, treat its state 
sequence Sl={sl1,…,slT} as missing data. 

–  For Gaussian mixture CDHMM: treat both state sequence Sl and 
mixture component label sequence ll={ll1,…,llT} as missing data. 
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Baum-Welch algorithm: DDHMM(I) 
·  E-step: 

 

[ ]

);();();(

),|,Pr()(ln

),|,Pr(ln),|Pr(ln

),|()(lnln)(lnln

),|()|,(ln),|()|,(ln

,,|)|,,,,(ln);(

)()()(

)(

1 1 1 1

1 1 1

)(

2
1

1

)(

1
1

)(

1 22
1

1

)(

1

)(

1

)(
111}{

)(

1

111

1

nnn

n
l

L

l

N

i

M

m

T

t
mtiltMi

L

l

N

i

N

j

n
l

T

t
jltiltij

L

l

n
l

N

i
ili

n
ll

L

l ss

T

t
ts

T

t
sslss

L

l S

n
llll

L

l

n
ll

SS

L

l
ll

n
LLLS

n

BBQAAQQ

Ovossvb

OssssaOss

OSpobaob

OSpSOpOSpSOp

OOSSOOpEQ

l

l

llTl

l

t

l

ttll

lL

l

++=

Λ==⋅+

Λ==⋅+Λ=⋅=

Λ⋅⎥
⎦

⎤
⎢
⎣

⎡
++⋅+=

Λ⋅Λ=Λ⋅⎥⎦
⎤

⎢⎣
⎡ Λ=

ΛΛ=ΛΛ

∑∑∑∑

∑∑∑∑∑∑

∑ ∑ ∑∑

∑∑∏∑ ∑

= = = =

= = = =
−

= =

= ==

===

−

ππ

π

π






Baum-Welch algorithm: DDHMM(II) 
·  M-step: constrained maximization. 
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Baum-Welch algorithm: DDHMM(III) 
·  How to calculate the posteriori probabilities? 
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Baum-Welch algorithm: DDHMM(IV) 
·  Final results: one iteration, from                
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Baum-Welch algorithm:  
Gaussian mixture CDHMM(I) 

·  Treat both state sequence Sl and mixture component label sequence 
ll as missing data. 

·  Only B estimation is different. 
·  E-step: 

·  M-step: unconstrained maximization 
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Baum-Welch algorithm:  
Gaussian mixture CDHMM(II) 
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where the posteriori probabilities are calculated as: 
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HMM Training: summary 
·  For HMM model                           and a training data set D = {O1, O2, 

…, OL},  
1.  Initialization                                        , set n=0 ; 
2.  For each parameter to be estimated, declare and initialize two 

accumulator variables (one for numerator, another for 
denominator in updating formula). 

3.  For each observation sequence Ol  (l=1,2,…,L): 
a)  Calculate            and            based on       .  
b)   Calculate all other posteriori probabilities 
c)  Accumulate the numerator and denominator accumulators 

for each HMM parameter. 
4.  HMM parameters update:               the numerators divided by 

the denominators. 
5.  n=n+1; Go to step 2 until convergence.  

},,{ πBA=Λ

},,{ )0()0()0()0( πBA=Λ

)(itα )(itβ )(nΛ
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HMM implementation Issues 
·  Logarithm representation for all HMM parameters 

–  To avoid underflow in computer multiplication. 
–  Re-write all computation formula based on: 

·  HMM topology: case-dependent; In speech recognition, always left-
right Gaussian mixture CDHMM. 

–  For a phoneme model: 3-state left-right HMM. 
–  For a whole word (English digit): 10-state left-right HMM. 
–  Gaussian mixture number per state: depends on amount of data. 

·  HMM initialization: 
–  A bad initial values  bad local maximum 
–  For CDHMM: in HTK toolkit 

•  Uniform segmentation VQ (LBG/K-means)  Gaussian  
•  Flat start 
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