
5
Neural

Networks

In Chapters 3 and 4 we considered models for regression and classification that com-
prised linear combinations of fixed basis functions. We saw that such models have
useful analytical and computational properties but that their practical applicability
was limited by the curse of dimensionality. In order to apply such models to large-
scale problems, it is necessary to adapt the basis functions to the data.

Support vector machines (SVMs), discussed in Chapter 7, address this by first
defining basis functions that are centred on the training data points and then selecting
a subset of these during training. One advantage of SVMs is that, although the
training involves nonlinear optimization, the objective function is convex, and so the
solution of the optimization problem is relatively straightforward. The number of
basis functions in the resulting models is generally much smaller than the number of
training points, although it is often still relatively large and typically increases with
the size of the training set. The relevance vector machine, discussed in Section 7.2,
also chooses a subset from a fixed set of basis functions and typically results in much

225

226 5. NEURAL NETWORKS

sparser models. Unlike the SVM it also produces probabilistic outputs, although this
is at the expense of a nonconvex optimization during training.

An alternative approach is to fix the number of basis functions in advance but
allow them to be adaptive, in other words to use parametric forms for the basis func-
tions in which the parameter values are adapted during training. The most successful
model of this type in the context of pattern recognition is the feed-forward neural
network, also known as the multilayer perceptron, discussed in this chapter. In fact,
‘multilayer perceptron’ is really a misnomer, because the model comprises multi-
ple layers of logistic regression models (with continuous nonlinearities) rather than
multiple perceptrons (with discontinuous nonlinearities). For many applications, the
resulting model can be significantly more compact, and hence faster to evaluate, than
a support vector machine having the same generalization performance. The price to
be paid for this compactness, as with the relevance vector machine, is that the like-
lihood function, which forms the basis for network training, is no longer a convex
function of the model parameters. In practice, however, it is often worth investing
substantial computational resources during the training phase in order to obtain a
compact model that is fast at processing new data.

The term ‘neural network’ has its origins in attempts to find mathematical rep-
resentations of information processing in biological systems (McCulloch and Pitts,
1943; Widrow and Hoff, 1960; Rosenblatt, 1962; Rumelhart et al., 1986). Indeed,
it has been used very broadly to cover a wide range of different models, many of
which have been the subject of exaggerated claims regarding their biological plau-
sibility. From the perspective of practical applications of pattern recognition, how-
ever, biological realism would impose entirely unnecessary constraints. Our focus in
this chapter is therefore on neural networks as efficient models for statistical pattern
recognition. In particular, we shall restrict our attention to the specific class of neu-
ral networks that have proven to be of greatest practical value, namely the multilayer
perceptron.

We begin by considering the functional form of the network model, including
the specific parameterization of the basis functions, and we then discuss the prob-
lem of determining the network parameters within a maximum likelihood frame-
work, which involves the solution of a nonlinear optimization problem. This requires
the evaluation of derivatives of the log likelihood function with respect to the net-
work parameters, and we shall see how these can be obtained efficiently using the
technique of error backpropagation. We shall also show how the backpropagation
framework can be extended to allow other derivatives to be evaluated, such as the
Jacobian and Hessian matrices. Next we discuss various approaches to regulariza-
tion of neural network training and the relationships between them. We also consider
some extensions to the neural network model, and in particular we describe a gen-
eral framework for modelling conditional probability distributions known as mixture
density networks. Finally, we discuss the use of Bayesian treatments of neural net-
works. Additional background on neural network models can be found in Bishop
(1995a).

5.1. Feed-forward Network Functions 227

5.1. Feed-forward Network Functions

The linear models for regression and classification discussed in Chapters 3 and 4, re-
spectively, are based on linear combinations of fixed nonlinear basis functions φj(x)
and take the form

y(x,w) = f

(
M∑

j=1

wjφj(x)

)
(5.1)

where f(·) is a nonlinear activation function in the case of classification and is the
identity in the case of regression. Our goal is to extend this model by making the
basis functions φj(x) depend on parameters and then to allow these parameters to
be adjusted, along with the coefficients {wj}, during training. There are, of course,
many ways to construct parametric nonlinear basis functions. Neural networks use
basis functions that follow the same form as (5.1), so that each basis function is itself
a nonlinear function of a linear combination of the inputs, where the coefficients in
the linear combination are adaptive parameters.

This leads to the basic neural network model, which can be described a series
of functional transformations. First we construct M linear combinations of the input
variables x1, . . . , xD in the form

aj =
D∑

i=1

w
(1)
ji xi + w

(1)
j0 (5.2)

where j = 1, . . . , M , and the superscript (1) indicates that the corresponding param-
eters are in the first ‘layer’ of the network. We shall refer to the parameters w

(1)
ji as

weights and the parameters w
(1)
j0 as biases, following the nomenclature of Chapter 3.

The quantities aj are known as activations. Each of them is then transformed using
a differentiable, nonlinear activation function h(·) to give

zj = h(aj). (5.3)

These quantities correspond to the outputs of the basis functions in (5.1) that, in the
context of neural networks, are called hidden units. The nonlinear functions h(·) are
generally chosen to be sigmoidal functions such as the logistic sigmoid or the ‘tanh’
function. Following (5.1), these values are again linearly combined to give outputExercise 5.1
unit activations

ak =
M∑

j=1

w
(2)
kj zj + w

(2)
k0 (5.4)

where k = 1, . . . , K, and K is the total number of outputs. This transformation cor-
responds to the second layer of the network, and again the w

(2)
k0 are bias parameters.

Finally, the output unit activations are transformed using an appropriate activation
function to give a set of network outputs yk. The choice of activation function is
determined by the nature of the data and the assumed distribution of target variables

228 5. NEURAL NETWORKS

Figure 5.1 Network diagram for the two-
layer neural network corre-
sponding to (5.7). The input,
hidden, and output variables
are represented by nodes, and
the weight parameters are rep-
resented by links between the
nodes, in which the bias pa-
rameters are denoted by links
coming from additional input
and hidden variables x0 and
z0. Arrows denote the direc-
tion of information flow through
the network during forward
propagation.

x0

x1

xD

z0

z1

zM

y1

yK

w
(1)
MD w

(2)
KM

w
(2)
10

hidden units

inputs outputs

and follows the same considerations as for linear models discussed in Chapters 3 and
4. Thus for standard regression problems, the activation function is the identity so
that yk = ak. Similarly, for multiple binary classification problems, each output unit
activation is transformed using a logistic sigmoid function so that

yk = σ(ak) (5.5)

where

σ(a) =
1

1 + exp(−a)
. (5.6)

Finally, for multiclass problems, a softmax activation function of the form (4.62)
is used. The choice of output unit activation function is discussed in detail in Sec-
tion 5.2.

We can combine these various stages to give the overall network function that,
for sigmoidal output unit activation functions, takes the form

yk(x,w) = σ

(
M∑

j=1

w
(2)
kj h

(
D∑

i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0

)
(5.7)

where the set of all weight and bias parameters have been grouped together into a
vector w. Thus the neural network model is simply a nonlinear function from a set
of input variables {xi} to a set of output variables {yk} controlled by a vector w of
adjustable parameters.

This function can be represented in the form of a network diagram as shown
in Figure 5.1. The process of evaluating (5.7) can then be interpreted as a forward
propagation of information through the network. It should be emphasized that these
diagrams do not represent probabilistic graphical models of the kind to be consid-
ered in Chapter 8 because the internal nodes represent deterministic variables rather
than stochastic ones. For this reason, we have adopted a slightly different graphical

5.1. Feed-forward Network Functions 229

notation for the two kinds of model. We shall see later how to give a probabilistic
interpretation to a neural network.

As discussed in Section 3.1, the bias parameters in (5.2) can be absorbed into
the set of weight parameters by defining an additional input variable x0 whose value
is clamped at x0 = 1, so that (5.2) takes the form

aj =
D∑

i=0

w
(1)
ji xi. (5.8)

We can similarly absorb the second-layer biases into the second-layer weights, so
that the overall network function becomes

yk(x,w) = σ

(
M∑

j=0

w
(2)
kj h

(
D∑

i=0

w
(1)
ji xi

))
. (5.9)

As can be seen from Figure 5.1, the neural network model comprises two stages
of processing, each of which resembles the perceptron model of Section 4.1.7, and
for this reason the neural network is also known as the multilayer perceptron, or
MLP. A key difference compared to the perceptron, however, is that the neural net-
work uses continuous sigmoidal nonlinearities in the hidden units, whereas the per-
ceptron uses step-function nonlinearities. This means that the neural network func-
tion is differentiable with respect to the network parameters, and this property will
play a central role in network training.

If the activation functions of all the hidden units in a network are taken to be
linear, then for any such network we can always find an equivalent network without
hidden units. This follows from the fact that the composition of successive linear
transformations is itself a linear transformation. However, if the number of hidden
units is smaller than either the number of input or output units, then the transforma-
tions that the network can generate are not the most general possible linear trans-
formations from inputs to outputs because information is lost in the dimensionality
reduction at the hidden units. In Section 12.4.2, we show that networks of linear
units give rise to principal component analysis. In general, however, there is little
interest in multilayer networks of linear units.

The network architecture shown in Figure 5.1 is the most commonly used one
in practice. However, it is easily generalized, for instance by considering additional
layers of processing each consisting of a weighted linear combination of the form
(5.4) followed by an element-wise transformation using a nonlinear activation func-
tion. Note that there is some confusion in the literature regarding the terminology
for counting the number of layers in such networks. Thus the network in Figure 5.1
may be described as a 3-layer network (which counts the number of layers of units,
and treats the inputs as units) or sometimes as a single-hidden-layer network (which
counts the number of layers of hidden units). We recommend a terminology in which
Figure 5.1 is called a two-layer network, because it is the number of layers of adap-
tive weights that is important for determining the network properties.

Another generalization of the network architecture is to include skip-layer con-
nections, each of which is associated with a corresponding adaptive parameter. For

230 5. NEURAL NETWORKS

Figure 5.2 Example of a neural network having a
general feed-forward topology. Note that
each hidden and output unit has an
associated bias parameter (omitted for
clarity).

x1

x2

z1

z3

z2

y1

y2

inputs outputs

instance, in a two-layer network these would go directly from inputs to outputs. In
principle, a network with sigmoidal hidden units can always mimic skip layer con-
nections (for bounded input values) by using a sufficiently small first-layer weight
that, over its operating range, the hidden unit is effectively linear, and then com-
pensating with a large weight value from the hidden unit to the output. In practice,
however, it may be advantageous to include skip-layer connections explicitly.

Furthermore, the network can be sparse, with not all possible connections within
a layer being present. We shall see an example of a sparse network architecture when
we consider convolutional neural networks in Section 5.5.6.

Because there is a direct correspondence between a network diagram and its
mathematical function, we can develop more general network mappings by con-
sidering more complex network diagrams. However, these must be restricted to a
feed-forward architecture, in other words to one having no closed directed cycles, to
ensure that the outputs are deterministic functions of the inputs. This is illustrated
with a simple example in Figure 5.2. Each (hidden or output) unit in such a network
computes a function given by

zk = h

(∑
j

wkjzj

)
(5.10)

where the sum runs over all units that send connections to unit k (and a bias param-
eter is included in the summation). For a given set of values applied to the inputs of
the network, successive application of (5.10) allows the activations of all units in the
network to be evaluated including those of the output units.

The approximation properties of feed-forward networks have been widely stud-
ied (Funahashi, 1989; Cybenko, 1989; Hornik et al., 1989; Stinchecombe and White,
1989; Cotter, 1990; Ito, 1991; Hornik, 1991; Kreinovich, 1991; Ripley, 1996) and
found to be very general. Neural networks are therefore said to be universal ap-
proximators. For example, a two-layer network with linear outputs can uniformly
approximate any continuous function on a compact input domain to arbitrary accu-
racy provided the network has a sufficiently large number of hidden units. This result
holds for a wide range of hidden unit activation functions, but excluding polynomi-
als. Although such theorems are reassuring, the key problem is how to find suitable
parameter values given a set of training data, and in later sections of this chapter we

5.1. Feed-forward Network Functions 231

Figure 5.3 Illustration of the ca-
pability of a multilayer perceptron
to approximate four different func-
tions comprising (a) f(x) = x2, (b)
f(x) = sin(x), (c), f(x) = |x|,
and (d) f(x) = H(x) where H(x)
is the Heaviside step function. In
each case, N = 50 data points,
shown as blue dots, have been sam-
pled uniformly in x over the interval
(−1, 1) and the corresponding val-
ues of f(x) evaluated. These data
points are then used to train a two-
layer network having 3 hidden units
with ‘tanh’ activation functions and
linear output units. The resulting
network functions are shown by the
red curves, and the outputs of the
three hidden units are shown by the
three dashed curves.

(a) (b)

(c) (d)

will show that there exist effective solutions to this problem based on both maximum
likelihood and Bayesian approaches.

The capability of a two-layer network to model a broad range of functions is
illustrated in Figure 5.3. This figure also shows how individual hidden units work
collaboratively to approximate the final function. The role of hidden units in a simple
classification problem is illustrated in Figure 5.4 using the synthetic classification
data set described in Appendix A.

5.1.1 Weight-space symmetries
One property of feed-forward networks, which will play a role when we consider

Bayesian model comparison, is that multiple distinct choices for the weight vector
w can all give rise to the same mapping function from inputs to outputs (Chen et al.,
1993). Consider a two-layer network of the form shown in Figure 5.1 with M hidden
units having ‘tanh’ activation functions and full connectivity in both layers. If we
change the sign of all of the weights and the bias feeding into a particular hidden
unit, then, for a given input pattern, the sign of the activation of the hidden unit will
be reversed, because ‘tanh’ is an odd function, so that tanh(−a) = − tanh(a). This
transformation can be exactly compensated by changing the sign of all of the weights
leading out of that hidden unit. Thus, by changing the signs of a particular group of
weights (and a bias), the input–output mapping function represented by the network
is unchanged, and so we have found two different weight vectors that give rise to
the same mapping function. For M hidden units, there will be M such ‘sign-flip’

232 5. NEURAL NETWORKS

Figure 5.4 Example of the solution of a simple two-
class classification problem involving
synthetic data using a neural network
having two inputs, two hidden units with
‘tanh’ activation functions, and a single
output having a logistic sigmoid activa-
tion function. The dashed blue lines
show the z = 0.5 contours for each of
the hidden units, and the red line shows
the y = 0.5 decision surface for the net-
work. For comparison, the green line
denotes the optimal decision boundary
computed from the distributions used to
generate the data.

−2 −1 0 1 2

−2

−1

0

1

2

3

symmetries, and thus any given weight vector will be one of a set 2M equivalent
weight vectors .

Similarly, imagine that we interchange the values of all of the weights (and the
bias) leading both into and out of a particular hidden unit with the corresponding
values of the weights (and bias) associated with a different hidden unit. Again, this
clearly leaves the network input–output mapping function unchanged, but it corre-
sponds to a different choice of weight vector. For M hidden units, any given weight
vector will belong to a set of M ! equivalent weight vectors associated with this inter-
change symmetry, corresponding to the M ! different orderings of the hidden units.
The network will therefore have an overall weight-space symmetry factor of M !2M .
For networks with more than two layers of weights, the total level of symmetry will
be given by the product of such factors, one for each layer of hidden units.

It turns out that these factors account for all of the symmetries in weight space
(except for possible accidental symmetries due to specific choices for the weight val-
ues). Furthermore, the existence of these symmetries is not a particular property of
the ‘tanh’ function but applies to a wide range of activation functions (Ku̇rková and
Kainen, 1994). In many cases, these symmetries in weight space are of little practi-
cal consequence, although in Section 5.7 we shall encounter a situation in which we
need to take them into account.

5.2. Network Training

So far, we have viewed neural networks as a general class of parametric nonlinear
functions from a vector x of input variables to a vector y of output variables. A
simple approach to the problem of determining the network parameters is to make an
analogy with the discussion of polynomial curve fitting in Section 1.1, and therefore
to minimize a sum-of-squares error function. Given a training set comprising a set
of input vectors {xn}, where n = 1, . . . , N , together with a corresponding set of

5.2. Network Training 233

target vectors {tn}, we minimize the error function

E(w) =
1
2

N∑
n=1

‖y(xn,w) − tn‖2. (5.11)

However, we can provide a much more general view of network training by first
giving a probabilistic interpretation to the network outputs. We have already seen
many advantages of using probabilistic predictions in Section 1.5.4. Here it will also
provide us with a clearer motivation both for the choice of output unit nonlinearity
and the choice of error function.

We start by discussing regression problems, and for the moment we consider
a single target variable t that can take any real value. Following the discussions
in Section 1.2.5 and 3.1, we assume that t has a Gaussian distribution with an x-
dependent mean, which is given by the output of the neural network, so that

p(t|x,w) = N (
t|y(x,w), β−1

)
(5.12)

where β is the precision (inverse variance) of the Gaussian noise. Of course this
is a somewhat restrictive assumption, and in Section 5.6 we shall see how to extend
this approach to allow for more general conditional distributions. For the conditional
distribution given by (5.12), it is sufficient to take the output unit activation function
to be the identity, because such a network can approximate any continuous function
from x to y. Given a data set of N independent, identically distributed observations
X = {x1, . . . ,xN}, along with corresponding target values t = {t1, . . . , tN}, we
can construct the corresponding likelihood function

p(t|X,w, β) =
N∏

n=1

p(tn|xn,w, β).

Taking the negative logarithm, we obtain the error function

β

2

N∑
n=1

{y(xn,w) − tn}2 − N

2
lnβ +

N

2
ln(2π) (5.13)

which can be used to learn the parameters w and β. In Section 5.7, we shall dis-
cuss the Bayesian treatment of neural networks, while here we consider a maximum
likelihood approach. Note that in the neural networks literature, it is usual to con-
sider the minimization of an error function rather than the maximization of the (log)
likelihood, and so here we shall follow this convention. Consider first the determi-
nation of w. Maximizing the likelihood function is equivalent to minimizing the
sum-of-squares error function given by

E(w) =
1
2

N∑
n=1

{y(xn,w) − tn}2 (5.14)

234 5. NEURAL NETWORKS

where we have discarded additive and multiplicative constants. The value of w found
by minimizing E(w) will be denoted wML because it corresponds to the maximum
likelihood solution. In practice, the nonlinearity of the network function y(xn,w)
causes the error E(w) to be nonconvex, and so in practice local maxima of the
likelihood may be found, corresponding to local minima of the error function, as
discussed in Section 5.2.1.

Having found wML, the value of β can be found by minimizing the negative log
likelihood to give

1
βML

=
1
N

N∑
n=1

{y(xn,wML) − tn}2. (5.15)

Note that this can be evaluated once the iterative optimization required to find wML

is completed. If we have multiple target variables, and we assume that they are inde-
pendent conditional on x and w with shared noise precision β, then the conditional
distribution of the target values is given by

p(t|x,w) = N (
t|y(x,w), β−1I

)
. (5.16)

Following the same argument as for a single target variable, we see that the maximum
likelihood weights are determined by minimizing the sum-of-squares error function
(5.11). The noise precision is then given byExercise 5.2

1
βML

=
1

NK

N∑
n=1

‖y(xn,wML) − tn‖2 (5.17)

where K is the number of target variables. The assumption of independence can be
dropped at the expense of a slightly more complex optimization problem.Exercise 5.3

Recall from Section 4.3.6 that there is a natural pairing of the error function
(given by the negative log likelihood) and the output unit activation function. In the
regression case, we can view the network as having an output activation function that
is the identity, so that yk = ak. The corresponding sum-of-squares error function
has the property

∂E

∂ak
= yk − tk (5.18)

which we shall make use of when discussing error backpropagation in Section 5.3.
Now consider the case of binary classification in which we have a single target

variable t such that t = 1 denotes class C1 and t = 0 denotes class C2. Following
the discussion of canonical link functions in Section 4.3.6, we consider a network
having a single output whose activation function is a logistic sigmoid

y = σ(a) ≡ 1
1 + exp(−a)

(5.19)

so that 0 � y(x,w) � 1. We can interpret y(x,w) as the conditional probability
p(C1|x), with p(C2|x) given by 1 − y(x,w). The conditional distribution of targets
given inputs is then a Bernoulli distribution of the form

p(t|x,w) = y(x,w)t {1 − y(x,w)}1−t
. (5.20)

5.2. Network Training 235

If we consider a training set of independent observations, then the error function,
which is given by the negative log likelihood, is then a cross-entropy error function
of the form

E(w) = −
N∑

n=1

{tn ln yn + (1 − tn) ln(1 − yn)} (5.21)

where yn denotes y(xn,w). Note that there is no analogue of the noise precision β
because the target values are assumed to be correctly labelled. However, the model
is easily extended to allow for labelling errors. Simard et al. (2003) found that usingExercise 5.4
the cross-entropy error function instead of the sum-of-squares for a classification
problem leads to faster training as well as improved generalization.

If we have K separate binary classifications to perform, then we can use a net-
work having K outputs each of which has a logistic sigmoid activation function.
Associated with each output is a binary class label tk ∈ {0, 1}, where k = 1, . . . , K.
If we assume that the class labels are independent, given the input vector, then the
conditional distribution of the targets is

p(t|x,w) =
K∏

k=1

yk(x,w)tk [1 − yk(x,w)]1−tk . (5.22)

Taking the negative logarithm of the corresponding likelihood function then gives
the following error functionExercise 5.5

E(w) = −
N∑

n=1

K∑
k=1

{tnk ln ynk + (1 − tnk) ln(1 − ynk)} (5.23)

where ynk denotes yk(xn,w). Again, the derivative of the error function with re-
spect to the activation for a particular output unit takes the form (5.18) just as in theExercise 5.6
regression case.

It is interesting to contrast the neural network solution to this problem with the
corresponding approach based on a linear classification model of the kind discussed
in Chapter 4. Suppose that we are using a standard two-layer network of the kind
shown in Figure 5.1. We see that the weight parameters in the first layer of the
network are shared between the various outputs, whereas in the linear model each
classification problem is solved independently. The first layer of the network can
be viewed as performing a nonlinear feature extraction, and the sharing of features
between the different outputs can save on computation and can also lead to improved
generalization.

Finally, we consider the standard multiclass classification problem in which each
input is assigned to one of K mutually exclusive classes. The binary target variables
tk ∈ {0, 1} have a 1-of-K coding scheme indicating the class, and the network
outputs are interpreted as yk(x,w) = p(tk = 1|x), leading to the following error
function

E(w) = −
N∑

n=1

K∑
k=1

tkn ln yk(xn,w). (5.24)

236 5. NEURAL NETWORKS

Figure 5.5 Geometrical view of the error function E(w) as
a surface sitting over weight space. Point wA is
a local minimum and wB is the global minimum.
At any point wC , the local gradient of the error
surface is given by the vector ∇E.

w1

w2

E(w)

wA wB wC

∇E

Following the discussion of Section 4.3.4, we see that the output unit activation
function, which corresponds to the canonical link, is given by the softmax function

yk(x,w) =
exp(ak(x,w))∑

j

exp(aj(x,w))
(5.25)

which satisfies 0 � yk � 1 and
∑

k yk = 1. Note that the yk(x,w) are unchanged
if a constant is added to all of the ak(x,w), causing the error function to be constant
for some directions in weight space. This degeneracy is removed if an appropriate
regularization term (Section 5.5) is added to the error function.

Once again, the derivative of the error function with respect to the activation for
a particular output unit takes the familiar form (5.18).Exercise 5.7

In summary, there is a natural choice of both output unit activation function
and matching error function, according to the type of problem being solved. For re-
gression we use linear outputs and a sum-of-squares error, for (multiple independent)
binary classifications we use logistic sigmoid outputs and a cross-entropy error func-
tion, and for multiclass classification we use softmax outputs with the corresponding
multiclass cross-entropy error function. For classification problems involving two
classes, we can use a single logistic sigmoid output, or alternatively we can use a
network with two outputs having a softmax output activation function.

5.2.1 Parameter optimization
We turn next to the task of finding a weight vector w which minimizes the

chosen function E(w). At this point, it is useful to have a geometrical picture of the
error function, which we can view as a surface sitting over weight space as shown in
Figure 5.5. First note that if we make a small step in weight space from w to w+δw
then the change in the error function is δE � δwT∇E(w), where the vector ∇E(w)
points in the direction of greatest rate of increase of the error function. Because the
error E(w) is a smooth continuous function of w, its smallest value will occur at a

5.2. Network Training 237

point in weight space such that the gradient of the error function vanishes, so that

∇E(w) = 0 (5.26)

as otherwise we could make a small step in the direction of −∇E(w) and thereby
further reduce the error. Points at which the gradient vanishes are called stationary
points, and may be further classified into minima, maxima, and saddle points.

Our goal is to find a vector w such that E(w) takes its smallest value. How-
ever, the error function typically has a highly nonlinear dependence on the weights
and bias parameters, and so there will be many points in weight space at which the
gradient vanishes (or is numerically very small). Indeed, from the discussion in Sec-
tion 5.1.1 we see that for any point w that is a local minimum, there will be other
points in weight space that are equivalent minima. For instance, in a two-layer net-
work of the kind shown in Figure 5.1, with M hidden units, each point in weight
space is a member of a family of M !2M equivalent points.Section 5.1.1

Furthermore, there will typically be multiple inequivalent stationary points and
in particular multiple inequivalent minima. A minimum that corresponds to the
smallest value of the error function for any weight vector is said to be a global
minimum. Any other minima corresponding to higher values of the error function
are said to be local minima. For a successful application of neural networks, it may
not be necessary to find the global minimum (and in general it will not be known
whether the global minimum has been found) but it may be necessary to compare
several local minima in order to find a sufficiently good solution.

Because there is clearly no hope of finding an analytical solution to the equa-
tion ∇E(w) = 0 we resort to iterative numerical procedures. The optimization of
continuous nonlinear functions is a widely studied problem and there exists an ex-
tensive literature on how to solve it efficiently. Most techniques involve choosing
some initial value w(0) for the weight vector and then moving through weight space
in a succession of steps of the form

w(τ+1) = w(τ) + ∆w(τ) (5.27)

where τ labels the iteration step. Different algorithms involve different choices for
the weight vector update ∆w(τ). Many algorithms make use of gradient information
and therefore require that, after each update, the value of ∇E(w) is evaluated at
the new weight vector w(τ+1). In order to understand the importance of gradient
information, it is useful to consider a local approximation to the error function based
on a Taylor expansion.

5.2.2 Local quadratic approximation
Insight into the optimization problem, and into the various techniques for solv-

ing it, can be obtained by considering a local quadratic approximation to the error
function.

Consider the Taylor expansion of E(w) around some point ŵ in weight space

E(w) � E(ŵ) + (w − ŵ)Tb +
1
2
(w − ŵ)TH(w − ŵ) (5.28)

238 5. NEURAL NETWORKS

where cubic and higher terms have been omitted. Here b is defined to be the gradient
of E evaluated at ŵ

b ≡ ∇E|w=bw (5.29)

and the Hessian matrix H = ∇∇E has elements

(H)ij ≡ ∂E

∂wi∂wj

∣∣∣∣
w=bw

. (5.30)

From (5.28), the corresponding local approximation to the gradient is given by

∇E � b + H(w − ŵ). (5.31)

For points w that are sufficiently close to ŵ, these expressions will give reasonable
approximations for the error and its gradient.

Consider the particular case of a local quadratic approximation around a point
w� that is a minimum of the error function. In this case there is no linear term,
because ∇E = 0 at w�, and (5.28) becomes

E(w) = E(w�) +
1
2
(w − w�)TH(w − w�) (5.32)

where the Hessian H is evaluated at w�. In order to interpret this geometrically,
consider the eigenvalue equation for the Hessian matrix

Hui = λiui (5.33)

where the eigenvectors ui form a complete orthonormal set (Appendix C) so that

uT
i uj = δij . (5.34)

We now expand (w − w�) as a linear combination of the eigenvectors in the form

w − w� =
∑

i

αiui. (5.35)

This can be regarded as a transformation of the coordinate system in which the origin
is translated to the point w�, and the axes are rotated to align with the eigenvectors
(through the orthogonal matrix whose columns are the ui), and is discussed in more
detail in Appendix C. Substituting (5.35) into (5.32), and using (5.33) and (5.34),
allows the error function to be written in the form

E(w) = E(w�) +
1
2

∑
i

λiα
2
i . (5.36)

A matrix H is said to be positive definite if, and only if,

vTHv > 0 for all v. (5.37)

5.2. Network Training 239

Figure 5.6 In the neighbourhood of a min-
imum w�, the error function
can be approximated by a
quadratic. Contours of con-
stant error are then ellipses
whose axes are aligned with
the eigenvectors ui of the Hes-
sian matrix, with lengths that
are inversely proportional to the
square roots of the correspond-
ing eigenvectors λi.

w1

w2

λ
−1/2
1

λ
−1/2
2

u1

w�

u2

Because the eigenvectors {ui} form a complete set, an arbitrary vector v can be
written in the form

v =
∑

i

ciui. (5.38)

From (5.33) and (5.34), we then have

vTHv =
∑

i

c2
i λi (5.39)

and so H will be positive definite if, and only if, all of its eigenvalues are positive.Exercise 5.10
In the new coordinate system, whose basis vectors are given by the eigenvectors
{ui}, the contours of constant E are ellipses centred on the origin, as illustratedExercise 5.11
in Figure 5.6. For a one-dimensional weight space, a stationary point w� will be a
minimum if

∂2E

∂w2

∣∣∣∣
w�

> 0. (5.40)

The corresponding result in D-dimensions is that the Hessian matrix, evaluated at
w�, should be positive definite.Exercise 5.12

5.2.3 Use of gradient information
As we shall see in Section 5.3, it is possible to evaluate the gradient of an error

function efficiently by means of the backpropagation procedure. The use of this
gradient information can lead to significant improvements in the speed with which
the minima of the error function can be located. We can see why this is so, as follows.

In the quadratic approximation to the error function, given in (5.28), the error
surface is specified by the quantities b and H, which contain a total of W (W +
3)/2 independent elements (because the matrix H is symmetric), where W is theExercise 5.13
dimensionality of w (i.e., the total number of adaptive parameters in the network).
The location of the minimum of this quadratic approximation therefore depends on
O(W 2) parameters, and we should not expect to be able to locate the minimum until
we have gathered O(W 2) independent pieces of information. If we do not make
use of gradient information, we would expect to have to perform O(W 2) function

240 5. NEURAL NETWORKS

evaluations, each of which would require O(W) steps. Thus, the computational
effort needed to find the minimum using such an approach would be O(W 3).

Now compare this with an algorithm that makes use of the gradient information.
Because each evaluation of ∇E brings W items of information, we might hope to
find the minimum of the function in O(W) gradient evaluations. As we shall see,
by using error backpropagation, each such evaluation takes only O(W) steps and so
the minimum can now be found in O(W 2) steps. For this reason, the use of gradient
information forms the basis of practical algorithms for training neural networks.

5.2.4 Gradient descent optimization
The simplest approach to using gradient information is to choose the weight

update in (5.27) to comprise a small step in the direction of the negative gradient, so
that

w(τ+1) = w(τ) − η∇E(w(τ)) (5.41)

where the parameter η > 0 is known as the learning rate. After each such update, the
gradient is re-evaluated for the new weight vector and the process repeated. Note that
the error function is defined with respect to a training set, and so each step requires
that the entire training set be processed in order to evaluate ∇E. Techniques that
use the whole data set at once are called batch methods. At each step the weight
vector is moved in the direction of the greatest rate of decrease of the error function,
and so this approach is known as gradient descent or steepest descent. Although
such an approach might intuitively seem reasonable, in fact it turns out to be a poor
algorithm, for reasons discussed in Bishop and Nabney (2008).

For batch optimization, there are more efficient methods, such as conjugate gra-
dients and quasi-Newton methods, which are much more robust and much faster
than simple gradient descent (Gill et al., 1981; Fletcher, 1987; Nocedal and Wright,
1999). Unlike gradient descent, these algorithms have the property that the error
function always decreases at each iteration unless the weight vector has arrived at a
local or global minimum.

In order to find a sufficiently good minimum, it may be necessary to run a
gradient-based algorithm multiple times, each time using a different randomly cho-
sen starting point, and comparing the resulting performance on an independent vali-
dation set.

There is, however, an on-line version of gradient descent that has proved useful
in practice for training neural networks on large data sets (Le Cun et al., 1989).
Error functions based on maximum likelihood for a set of independent observations
comprise a sum of terms, one for each data point

E(w) =
N∑

n=1

En(w). (5.42)

On-line gradient descent, also known as sequential gradient descent or stochastic
gradient descent, makes an update to the weight vector based on one data point at a
time, so that

w(τ+1) = w(τ) − η∇En(w(τ)). (5.43)

5.3. Error Backpropagation 241

This update is repeated by cycling through the data either in sequence or by selecting
points at random with replacement. There are of course intermediate scenarios in
which the updates are based on batches of data points.

One advantage of on-line methods compared to batch methods is that the former
handle redundancy in the data much more efficiently. To see, this consider an ex-
treme example in which we take a data set and double its size by duplicating every
data point. Note that this simply multiplies the error function by a factor of 2 and so
is equivalent to using the original error function. Batch methods will require double
the computational effort to evaluate the batch error function gradient, whereas on-
line methods will be unaffected. Another property of on-line gradient descent is the
possibility of escaping from local minima, since a stationary point with respect to
the error function for the whole data set will generally not be a stationary point for
each data point individually.

Nonlinear optimization algorithms, and their practical application to neural net-
work training, are discussed in detail in Bishop and Nabney (2008).

5.3. Error Backpropagation

Our goal in this section is to find an efficient technique for evaluating the gradient
of an error function E(w) for a feed-forward neural network. We shall see that
this can be achieved using a local message passing scheme in which information is
sent alternately forwards and backwards through the network and is known as error
backpropagation, or sometimes simply as backprop.

It should be noted that the term backpropagation is used in the neural com-
puting literature to mean a variety of different things. For instance, the multilayer
perceptron architecture is sometimes called a backpropagation network. The term
backpropagation is also used to describe the training of a multilayer perceptron us-
ing gradient descent applied to a sum-of-squares error function. In order to clarify
the terminology, it is useful to consider the nature of the training process more care-
fully. Most training algorithms involve an iterative procedure for minimization of an
error function, with adjustments to the weights being made in a sequence of steps. At
each such step, we can distinguish between two distinct stages. In the first stage, the
derivatives of the error function with respect to the weights must be evaluated. As
we shall see, the important contribution of the backpropagation technique is in pro-
viding a computationally efficient method for evaluating such derivatives. Because
it is at this stage that errors are propagated backwards through the network, we shall
use the term backpropagation specifically to describe the evaluation of derivatives.
In the second stage, the derivatives are then used to compute the adjustments to be
made to the weights. The simplest such technique, and the one originally considered
by Rumelhart et al. (1986), involves gradient descent. It is important to recognize
that the two stages are distinct. Thus, the first stage, namely the propagation of er-
rors backwards through the network in order to evaluate derivatives, can be applied
to many other kinds of network and not just the multilayer perceptron. It can also be
applied to error functions other that just the simple sum-of-squares, and to the eval-

242 5. NEURAL NETWORKS

uation of other derivatives such as the Jacobian and Hessian matrices, as we shall
see later in this chapter. Similarly, the second stage of weight adjustment using the
calculated derivatives can be tackled using a variety of optimization schemes, many
of which are substantially more powerful than simple gradient descent.

5.3.1 Evaluation of error-function derivatives
We now derive the backpropagation algorithm for a general network having ar-

bitrary feed-forward topology, arbitrary differentiable nonlinear activation functions,
and a broad class of error function. The resulting formulae will then be illustrated
using a simple layered network structure having a single layer of sigmoidal hidden
units together with a sum-of-squares error.

Many error functions of practical interest, for instance those defined by maxi-
mum likelihood for a set of i.i.d. data, comprise a sum of terms, one for each data
point in the training set, so that

E(w) =
N∑

n=1

En(w). (5.44)

Here we shall consider the problem of evaluating ∇En(w) for one such term in the
error function. This may be used directly for sequential optimization, or the results
can be accumulated over the training set in the case of batch methods.

Consider first a simple linear model in which the outputs yk are linear combina-
tions of the input variables xi so that

yk =
∑

i

wkixi (5.45)

together with an error function that, for a particular input pattern n, takes the form

En =
1
2

∑
k

(ynk − tnk)2 (5.46)

where ynk = yk(xn,w). The gradient of this error function with respect to a weight
wji is given by

∂En

∂wji
= (ynj − tnj)xni (5.47)

which can be interpreted as a ‘local’ computation involving the product of an ‘error
signal’ ynj − tnj associated with the output end of the link wji and the variable xni

associated with the input end of the link. In Section 4.3.2, we saw how a similar
formula arises with the logistic sigmoid activation function together with the cross
entropy error function, and similarly for the softmax activation function together
with its matching cross-entropy error function. We shall now see how this simple
result extends to the more complex setting of multilayer feed-forward networks.

In a general feed-forward network, each unit computes a weighted sum of its
inputs of the form

aj =
∑

i

wjizi (5.48)

5.3. Error Backpropagation 243

where zi is the activation of a unit, or input, that sends a connection to unit j, and wji

is the weight associated with that connection. In Section 5.1, we saw that biases can
be included in this sum by introducing an extra unit, or input, with activation fixed
at +1. We therefore do not need to deal with biases explicitly. The sum in (5.48) is
transformed by a nonlinear activation function h(·) to give the activation zj of unit j
in the form

zj = h(aj). (5.49)

Note that one or more of the variables zi in the sum in (5.48) could be an input, and
similarly, the unit j in (5.49) could be an output.

For each pattern in the training set, we shall suppose that we have supplied the
corresponding input vector to the network and calculated the activations of all of
the hidden and output units in the network by successive application of (5.48) and
(5.49). This process is often called forward propagation because it can be regarded
as a forward flow of information through the network.

Now consider the evaluation of the derivative of En with respect to a weight
wji. The outputs of the various units will depend on the particular input pattern n.
However, in order to keep the notation uncluttered, we shall omit the subscript n
from the network variables. First we note that En depends on the weight wji only
via the summed input aj to unit j. We can therefore apply the chain rule for partial
derivatives to give

∂En

∂wji
=

∂En

∂aj

∂aj

∂wji
. (5.50)

We now introduce a useful notation

δj ≡ ∂En

∂aj
(5.51)

where the δ’s are often referred to as errors for reasons we shall see shortly. Using
(5.48), we can write

∂aj

∂wji
= zi. (5.52)

Substituting (5.51) and (5.52) into (5.50), we then obtain

∂En

∂wji
= δjzi. (5.53)

Equation (5.53) tells us that the required derivative is obtained simply by multiplying
the value of δ for the unit at the output end of the weight by the value of z for the unit
at the input end of the weight (where z = 1 in the case of a bias). Note that this takes
the same form as for the simple linear model considered at the start of this section.
Thus, in order to evaluate the derivatives, we need only to calculate the value of δj

for each hidden and output unit in the network, and then apply (5.53).
As we have seen already, for the output units, we have

δk = yk − tk (5.54)

244 5. NEURAL NETWORKS

Figure 5.7 Illustration of the calculation of δj for hidden unit j by
backpropagation of the δ’s from those units k to which
unit j sends connections. The blue arrow denotes the
direction of information flow during forward propagation,
and the red arrows indicate the backward propagation
of error information.

zi

zj

δj
δk

δ1

wji wkj

provided we are using the canonical link as the output-unit activation function. To
evaluate the δ’s for hidden units, we again make use of the chain rule for partial
derivatives,

δj ≡ ∂En

∂aj
=
∑

k

∂En

∂ak

∂ak

∂aj
(5.55)

where the sum runs over all units k to which unit j sends connections. The arrange-
ment of units and weights is illustrated in Figure 5.7. Note that the units labelled k
could include other hidden units and/or output units. In writing down (5.55), we are
making use of the fact that variations in aj give rise to variations in the error func-
tion only through variations in the variables ak. If we now substitute the definition
of δ given by (5.51) into (5.55), and make use of (5.48) and (5.49), we obtain the
following backpropagation formula

δj = h′(aj)
∑

k

wkjδk (5.56)

which tells us that the value of δ for a particular hidden unit can be obtained by
propagating the δ’s backwards from units higher up in the network, as illustrated
in Figure 5.7. Note that the summation in (5.56) is taken over the first index on
wkj (corresponding to backward propagation of information through the network),
whereas in the forward propagation equation (5.10) it is taken over the second index.
Because we already know the values of the δ’s for the output units, it follows that
by recursively applying (5.56) we can evaluate the δ’s for all of the hidden units in a
feed-forward network, regardless of its topology.

The backpropagation procedure can therefore be summarized as follows.

Error Backpropagation

1. Apply an input vector xn to the network and forward propagate through
the network using (5.48) and (5.49) to find the activations of all the hidden
and output units.

2. Evaluate the δk for all the output units using (5.54).

3. Backpropagate the δ’s using (5.56) to obtain δj for each hidden unit in the
network.

4. Use (5.53) to evaluate the required derivatives.

5.3. Error Backpropagation 245

For batch methods, the derivative of the total error E can then be obtained by
repeating the above steps for each pattern in the training set and then summing over
all patterns:

∂E

∂wji
=
∑

n

∂En

∂wji
. (5.57)

In the above derivation we have implicitly assumed that each hidden or output unit in
the network has the same activation function h(·). The derivation is easily general-
ized, however, to allow different units to have individual activation functions, simply
by keeping track of which form of h(·) goes with which unit.

5.3.2 A simple example
The above derivation of the backpropagation procedure allowed for general

forms for the error function, the activation functions, and the network topology. In
order to illustrate the application of this algorithm, we shall consider a particular
example. This is chosen both for its simplicity and for its practical importance, be-
cause many applications of neural networks reported in the literature make use of
this type of network. Specifically, we shall consider a two-layer network of the form
illustrated in Figure 5.1, together with a sum-of-squares error, in which the output
units have linear activation functions, so that yk = ak, while the hidden units have
logistic sigmoid activation functions given by

h(a) ≡ tanh(a) (5.58)

where

tanh(a) =
ea − e−a

ea + e−a
. (5.59)

A useful feature of this function is that its derivative can be expressed in a par-
ticularly simple form:

h′(a) = 1 − h(a)2. (5.60)

We also consider a standard sum-of-squares error function, so that for pattern n the
error is given by

En =
1
2

K∑
k=1

(yk − tk)2 (5.61)

where yk is the activation of output unit k, and tk is the corresponding target, for a
particular input pattern xn.

For each pattern in the training set in turn, we first perform a forward propagation
using

aj =
D∑

i=0

w
(1)
ji xi (5.62)

zj = tanh(aj) (5.63)

yk =
M∑

j=0

w
(2)
kj zj . (5.64)

246 5. NEURAL NETWORKS

Next we compute the δ’s for each output unit using

δk = yk − tk. (5.65)

Then we backpropagate these to obtain δs for the hidden units using

δj = (1 − z2
j)

K∑
k=1

wkjδk. (5.66)

Finally, the derivatives with respect to the first-layer and second-layer weights are
given by

∂En

∂w
(1)
ji

= δjxi,
∂En

∂w
(2)
kj

= δkzj . (5.67)

5.3.3 Efficiency of backpropagation
One of the most important aspects of backpropagation is its computational effi-

ciency. To understand this, let us examine how the number of computer operations
required to evaluate the derivatives of the error function scales with the total number
W of weights and biases in the network. A single evaluation of the error function
(for a given input pattern) would require O(W) operations, for sufficiently large W .
This follows from the fact that, except for a network with very sparse connections,
the number of weights is typically much greater than the number of units, and so the
bulk of the computational effort in forward propagation is concerned with evaluat-
ing the sums in (5.48), with the evaluation of the activation functions representing a
small overhead. Each term in the sum in (5.48) requires one multiplication and one
addition, leading to an overall computational cost that is O(W).

An alternative approach to backpropagation for computing the derivatives of the
error function is to use finite differences. This can be done by perturbing each weight
in turn, and approximating the derivatives by the expression

∂En

∂wji
=

En(wji + ε) − En(wji)
ε

+ O(ε) (5.68)

where ε 1. In a software simulation, the accuracy of the approximation to the
derivatives can be improved by making ε smaller, until numerical roundoff problems
arise. The accuracy of the finite differences method can be improved significantly
by using symmetrical central differences of the form

∂En

∂wji
=

En(wji + ε) − En(wji − ε)
2ε

+ O(ε2). (5.69)

In this case, the O(ε) corrections cancel, as can be verified by Taylor expansion onExercise 5.14
the right-hand side of (5.69), and so the residual corrections are O(ε2). The number
of computational steps is, however, roughly doubled compared with (5.68).

The main problem with numerical differentiation is that the highly desirable
O(W) scaling has been lost. Each forward propagation requires O(W) steps, and

5.3. Error Backpropagation 247

Figure 5.8 Illustration of a modular pattern
recognition system in which the
Jacobian matrix can be used
to backpropagate error signals
from the outputs through to ear-
lier modules in the system.

x

u

w

y

z

v

there are W weights in the network each of which must be perturbed individually, so
that the overall scaling is O(W 2).

However, numerical differentiation plays an important role in practice, because a
comparison of the derivatives calculated by backpropagation with those obtained us-
ing central differences provides a powerful check on the correctness of any software
implementation of the backpropagation algorithm. When training networks in prac-
tice, derivatives should be evaluated using backpropagation, because this gives the
greatest accuracy and numerical efficiency. However, the results should be compared
with numerical differentiation using (5.69) for some test cases in order to check the
correctness of the implementation.

5.3.4 The Jacobian matrix
We have seen how the derivatives of an error function with respect to the weights

can be obtained by the propagation of errors backwards through the network. The
technique of backpropagation can also be applied to the calculation of other deriva-
tives. Here we consider the evaluation of the Jacobian matrix, whose elements are
given by the derivatives of the network outputs with respect to the inputs

Jki ≡ ∂yk

∂xi
(5.70)

where each such derivative is evaluated with all other inputs held fixed. Jacobian
matrices play a useful role in systems built from a number of distinct modules, as
illustrated in Figure 5.8. Each module can comprise a fixed or adaptive function,
which can be linear or nonlinear, so long as it is differentiable. Suppose we wish
to minimize an error function E with respect to the parameter w in Figure 5.8. The
derivative of the error function is given by

∂E

∂w
=
∑
k,j

∂E

∂yk

∂yk

∂zj

∂zj

∂w
(5.71)

in which the Jacobian matrix for the red module in Figure 5.8 appears in the middle
term.

Because the Jacobian matrix provides a measure of the local sensitivity of the
outputs to changes in each of the input variables, it also allows any known errors ∆xi

248 5. NEURAL NETWORKS

associated with the inputs to be propagated through the trained network in order to
estimate their contribution ∆yk to the errors at the outputs, through the relation

∆yk �
∑

i

∂yk

∂xi
∆xi (5.72)

which is valid provided the |∆xi| are small. In general, the network mapping rep-
resented by a trained neural network will be nonlinear, and so the elements of the
Jacobian matrix will not be constants but will depend on the particular input vector
used. Thus (5.72) is valid only for small perturbations of the inputs, and the Jacobian
itself must be re-evaluated for each new input vector.

The Jacobian matrix can be evaluated using a backpropagation procedure that is
similar to the one derived earlier for evaluating the derivatives of an error function
with respect to the weights. We start by writing the element Jki in the form

Jki =
∂yk

∂xi
=

∑
j

∂yk

∂aj

∂aj

∂xi

=
∑

j

wji
∂yk

∂aj
(5.73)

where we have made use of (5.48). The sum in (5.73) runs over all units j to which
the input unit i sends connections (for example, over all units in the first hidden
layer in the layered topology considered earlier). We now write down a recursive
backpropagation formula to determine the derivatives ∂yk/∂aj

∂yk

∂aj
=

∑
l

∂yk

∂al

∂al

∂aj

= h′(aj)
∑

l

wlj
∂yk

∂al
(5.74)

where the sum runs over all units l to which unit j sends connections (corresponding
to the first index of wlj). Again, we have made use of (5.48) and (5.49). This
backpropagation starts at the output units for which the required derivatives can be
found directly from the functional form of the output-unit activation function. For
instance, if we have individual sigmoidal activation functions at each output unit,
then

∂yk

∂aj
= δkjσ

′(aj) (5.75)

whereas for softmax outputs we have

∂yk

∂aj
= δkjyk − ykyj . (5.76)

We can summarize the procedure for evaluating the Jacobian matrix as follows.
Apply the input vector corresponding to the point in input space at which the Ja-
cobian matrix is to be found, and forward propagate in the usual way to obtain the

5.4. The Hessian Matrix 249

activations of all of the hidden and output units in the network. Next, for each row
k of the Jacobian matrix, corresponding to the output unit k, backpropagate using
the recursive relation (5.74), starting with (5.75) or (5.76), for all of the hidden units
in the network. Finally, use (5.73) to do the backpropagation to the inputs. The
Jacobian can also be evaluated using an alternative forward propagation formalism,
which can be derived in an analogous way to the backpropagation approach given
here.Exercise 5.15

Again, the implementation of such algorithms can be checked by using numeri-
cal differentiation in the form

∂yk

∂xi
=

yk(xi + ε) − yk(xi − ε)
2ε

+ O(ε2) (5.77)

which involves 2D forward propagations for a network having D inputs.

5.4. The Hessian Matrix

We have shown how the technique of backpropagation can be used to obtain the first
derivatives of an error function with respect to the weights in the network. Back-
propagation can also be used to evaluate the second derivatives of the error, given
by

∂2E

∂wji∂wlk
. (5.78)

Note that it is sometimes convenient to consider all of the weight and bias parameters
as elements wi of a single vector, denoted w, in which case the second derivatives
form the elements Hij of the Hessian matrix H, where i, j ∈ {1, . . . , W} and W is
the total number of weights and biases. The Hessian plays an important role in many
aspects of neural computing, including the following:

1. Several nonlinear optimization algorithms used for training neural networks
are based on considerations of the second-order properties of the error surface,
which are controlled by the Hessian matrix (Bishop and Nabney, 2008).

2. The Hessian forms the basis of a fast procedure for re-training a feed-forward
network following a small change in the training data (Bishop, 1991).

3. The inverse of the Hessian has been used to identify the least significant weights
in a network as part of network ‘pruning’ algorithms (Le Cun et al., 1990).

4. The Hessian plays a central role in the Laplace approximation for a Bayesian
neural network (see Section 5.7). Its inverse is used to determine the predic-
tive distribution for a trained network, its eigenvalues determine the values of
hyperparameters, and its determinant is used to evaluate the model evidence.

Various approximation schemes have been used to evaluate the Hessian matrix
for a neural network. However, the Hessian can also be calculated exactly using an
extension of the backpropagation technique.

250 5. NEURAL NETWORKS

An important consideration for many applications of the Hessian is the efficiency
with which it can be evaluated. If there are W parameters (weights and biases) in the
network, then the Hessian matrix has dimensions W × W and so the computational
effort needed to evaluate the Hessian will scale like O(W 2) for each pattern in the
data set. As we shall see, there are efficient methods for evaluating the Hessian
whose scaling is indeed O(W 2).

5.4.1 Diagonal approximation
Some of the applications for the Hessian matrix discussed above require the

inverse of the Hessian, rather than the Hessian itself. For this reason, there has
been some interest in using a diagonal approximation to the Hessian, in other words
one that simply replaces the off-diagonal elements with zeros, because its inverse is
trivial to evaluate. Again, we shall consider an error function that consists of a sum
of terms, one for each pattern in the data set, so that E =

∑
n En. The Hessian can

then be obtained by considering one pattern at a time, and then summing the results
over all patterns. From (5.48), the diagonal elements of the Hessian, for pattern n,
can be written

∂2En

∂w2
ji

=
∂2En

∂a2
j

z2
i . (5.79)

Using (5.48) and (5.49), the second derivatives on the right-hand side of (5.79) can
be found recursively using the chain rule of differential calculus to give a backprop-
agation equation of the form

∂2En

∂a2
j

= h′(aj)2
∑

k

∑
k′

wkjwk′j
∂2En

∂ak∂ak′
+ h′′(aj)

∑
k

wkj
∂En

∂ak
. (5.80)

If we now neglect off-diagonal elements in the second-derivative terms, we obtain
(Becker and Le Cun, 1989; Le Cun et al., 1990)

∂2En

∂a2
j

= h′(aj)2
∑

k

w2
kj

∂2En

∂a2
k

+ h′′(aj)
∑

k

wkj
∂En

∂ak
. (5.81)

Note that the number of computational steps required to evaluate this approximation
is O(W), where W is the total number of weight and bias parameters in the network,
compared with O(W 2) for the full Hessian.

Ricotti et al. (1988) also used the diagonal approximation to the Hessian, but
they retained all terms in the evaluation of ∂2En/∂a2

j and so obtained exact expres-
sions for the diagonal terms. Note that this no longer has O(W) scaling. The major
problem with diagonal approximations, however, is that in practice the Hessian is
typically found to be strongly nondiagonal, and so these approximations, which are
driven mainly be computational convenience, must be treated with care.

5.4. The Hessian Matrix 251

5.4.2 Outer product approximation
When neural networks are applied to regression problems, it is common to use

a sum-of-squares error function of the form

E =
1
2

N∑
n=1

(yn − tn)2 (5.82)

where we have considered the case of a single output in order to keep the notation
simple (the extension to several outputs is straightforward). We can then write theExercise 5.16
Hessian matrix in the form

H = ∇∇E =
N∑

n=1

∇yn∇yn +
N∑

n=1

(yn − tn)∇∇yn. (5.83)

If the network has been trained on the data set, and its outputs yn happen to be very
close to the target values tn, then the second term in (5.83) will be small and can
be neglected. More generally, however, it may be appropriate to neglect this term
by the following argument. Recall from Section 1.5.5 that the optimal function that
minimizes a sum-of-squares loss is the conditional average of the target data. The
quantity (yn − tn) is then a random variable with zero mean. If we assume that its
value is uncorrelated with the value of the second derivative term on the right-hand
side of (5.83), then the whole term will average to zero in the summation over n.Exercise 5.17

By neglecting the second term in (5.83), we arrive at the Levenberg–Marquardt
approximation or outer product approximation (because the Hessian matrix is built
up from a sum of outer products of vectors), given by

H �
N∑

n=1

bnbT
n (5.84)

where bn = ∇yn = ∇an because the activation function for the output units is
simply the identity. Evaluation of the outer product approximation for the Hessian
is straightforward as it only involves first derivatives of the error function, which
can be evaluated efficiently in O(W) steps using standard backpropagation. The
elements of the matrix can then be found in O(W 2) steps by simple multiplication.
It is important to emphasize that this approximation is only likely to be valid for a
network that has been trained appropriately, and that for a general network mapping
the second derivative terms on the right-hand side of (5.83) will typically not be
negligible.

In the case of the cross-entropy error function for a network with logistic sigmoid
output-unit activation functions, the corresponding approximation is given byExercise 5.19

H �
N∑

n=1

yn(1 − yn)bnbT
n . (5.85)

An analogous result can be obtained for multiclass networks having softmax output-
unit activation functions.Exercise 5.20

252 5. NEURAL NETWORKS

5.4.3 Inverse Hessian
We can use the outer-product approximation to develop a computationally ef-

ficient procedure for approximating the inverse of the Hessian (Hassibi and Stork,
1993). First we write the outer-product approximation in matrix notation as

HN =
N∑

n=1

bnbT
n (5.86)

where bn ≡ ∇wan is the contribution to the gradient of the output unit activation
arising from data point n. We now derive a sequential procedure for building up the
Hessian by including data points one at a time. Suppose we have already obtained
the inverse Hessian using the first L data points. By separating off the contribution
from data point L + 1, we obtain

HL+1 = HL + bL+1bT
L+1. (5.87)

In order to evaluate the inverse of the Hessian, we now consider the matrix identity(
M + vvT

)−1
= M−1 − (M−1v)

(
vTM−1

)
1 + vTM−1v

(5.88)

where I is the unit matrix, which is simply a special case of the Woodbury identity
(C.7). If we now identify HL with M and bL+1 with v, we obtain

H−1
L+1 = H−1

L − H−1
L bL+1bT

L+1H
−1
L

1 + bT
L+1H

−1
L bL+1

. (5.89)

In this way, data points are sequentially absorbed until L+1 = N and the whole data
set has been processed. This result therefore represents a procedure for evaluating
the inverse of the Hessian using a single pass through the data set. The initial matrix
H0 is chosen to be αI, where α is a small quantity, so that the algorithm actually
finds the inverse of H + αI. The results are not particularly sensitive to the precise
value of α. Extension of this algorithm to networks having more than one output is
straightforward.Exercise 5.21

We note here that the Hessian matrix can sometimes be calculated indirectly as
part of the network training algorithm. In particular, quasi-Newton nonlinear opti-
mization algorithms gradually build up an approximation to the inverse of the Hes-
sian during training. Such algorithms are discussed in detail in Bishop and Nabney
(2008).

5.4.4 Finite differences
As in the case of the first derivatives of the error function, we can find the second

derivatives by using finite differences, with accuracy limited by numerical precision.
If we perturb each possible pair of weights in turn, we obtain

∂2E

∂wji∂wlk
=

1
4ε2

{E(wji + ε, wlk + ε) − E(wji + ε, wlk − ε)

−E(wji − ε, wlk + ε) + E(wji − ε, wlk − ε)} + O(ε2). (5.90)

5.4. The Hessian Matrix 253

Again, by using a symmetrical central differences formulation, we ensure that the
residual errors are O(ε2) rather than O(ε). Because there are W 2 elements in the
Hessian matrix, and because the evaluation of each element requires four forward
propagations each needing O(W) operations (per pattern), we see that this approach
will require O(W 3) operations to evaluate the complete Hessian. It therefore has
poor scaling properties, although in practice it is very useful as a check on the soft-
ware implementation of backpropagation methods.

A more efficient version of numerical differentiation can be found by applying
central differences to the first derivatives of the error function, which are themselves
calculated using backpropagation. This gives

∂2E

∂wji∂wlk
=

1
2ε

{
∂E

∂wji
(wlk + ε) − ∂E

∂wji
(wlk − ε)

}
+ O(ε2). (5.91)

Because there are now only W weights to be perturbed, and because the gradients
can be evaluated in O(W) steps, we see that this method gives the Hessian in O(W 2)
operations.

5.4.5 Exact evaluation of the Hessian
So far, we have considered various approximation schemes for evaluating the

Hessian matrix or its inverse. The Hessian can also be evaluated exactly, for a net-
work of arbitrary feed-forward topology, using extension of the technique of back-
propagation used to evaluate first derivatives, which shares many of its desirable
features including computational efficiency (Bishop, 1991; Bishop, 1992). It can be
applied to any differentiable error function that can be expressed as a function of
the network outputs and to networks having arbitrary differentiable activation func-
tions. The number of computational steps needed to evaluate the Hessian scales
like O(W 2). Similar algorithms have also been considered by Buntine and Weigend
(1993).

Here we consider the specific case of a network having two layers of weights,
for which the required equations are easily derived. We shall use indices i and i′Exercise 5.22
to denote inputs, indices j and j′ to denoted hidden units, and indices k and k′ to
denote outputs. We first define

δk =
∂En

∂ak
, Mkk′ ≡ ∂2En

∂ak∂ak′
(5.92)

where En is the contribution to the error from data point n. The Hessian matrix for
this network can then be considered in three separate blocks as follows.

1. Both weights in the second layer:

∂2En

∂w
(2)
kj ∂w

(2)
k′j′

= zjzj′Mkk′ . (5.93)

254 5. NEURAL NETWORKS

2. Both weights in the first layer:

∂2En

∂w
(1)
ji ∂w

(1)
j′i′

= xixi′h
′′(aj′)Ijj′

∑
k

w
(2)
kj′δk

+xixi′h
′(aj′)h′(aj)

∑
k

∑
k′

w
(2)
k′j′w

(2)
kj Mkk′ . (5.94)

3. One weight in each layer:

∂2En

∂w
(1)
ji ∂w

(2)
kj′

= xih
′(aj′)

{
δkIjj′ + zj

∑
k′

w
(2)
k′j′Hkk′

}
. (5.95)

Here Ijj′ is the j, j′ element of the identity matrix. If one or both of the weights is
a bias term, then the corresponding expressions are obtained simply by setting the
appropriate activation(s) to 1. Inclusion of skip-layer connections is straightforward.Exercise 5.23

5.4.6 Fast multiplication by the Hessian
For many applications of the Hessian, the quantity of interest is not the Hessian

matrix H itself but the product of H with some vector v. We have seen that the
evaluation of the Hessian takes O(W 2) operations, and it also requires storage that is
O(W 2). The vector vTH that we wish to calculate, however, has only W elements,
so instead of computing the Hessian as an intermediate step, we can instead try to
find an efficient approach to evaluating vTH directly in a way that requires only
O(W) operations.

To do this, we first note that

vTH = vT∇(∇E) (5.96)

where ∇ denotes the gradient operator in weight space. We can then write down
the standard forward-propagation and backpropagation equations for the evaluation
of ∇E and apply (5.96) to these equations to give a set of forward-propagation and
backpropagation equations for the evaluation of vTH (Møller, 1993; Pearlmutter,
1994). This corresponds to acting on the original forward-propagation and back-
propagation equations with a differential operator vT∇. Pearlmutter (1994) used the
notation R{·} to denote the operator vT∇, and we shall follow this convention. The
analysis is straightforward and makes use of the usual rules of differential calculus,
together with the result

R{w} = v. (5.97)

The technique is best illustrated with a simple example, and again we choose a
two-layer network of the form shown in Figure 5.1, with linear output units and a
sum-of-squares error function. As before, we consider the contribution to the error
function from one pattern in the data set. The required vector is then obtained as

5.4. The Hessian Matrix 255

usual by summing over the contributions from each of the patterns separately. For
the two-layer network, the forward-propagation equations are given by

aj =
∑

i

wjixi (5.98)

zj = h(aj) (5.99)

yk =
∑

j

wkjzj . (5.100)

We now act on these equations using the R{·} operator to obtain a set of forward
propagation equations in the form

R{aj} =
∑

i

vjixi (5.101)

R{zj} = h′(aj)R{aj} (5.102)

R{yk} =
∑

j

wkjR{zj} +
∑

j

vkjzj (5.103)

where vji is the element of the vector v that corresponds to the weight wji. Quan-
tities of the form R{zj}, R{aj} and R{yk} are to be regarded as new variables
whose values are found using the above equations.

Because we are considering a sum-of-squares error function, we have the fol-
lowing standard backpropagation expressions:

δk = yk − tk (5.104)

δj = h′(aj)
∑

k

wkjδk. (5.105)

Again, we act on these equations with the R{·} operator to obtain a set of backprop-
agation equations in the form

R{δk} = R{yk} (5.106)

R{δj} = h′′(aj)R{aj}
∑

k

wkjδk

+ h′(aj)
∑

k

vkjδk + h′(aj)
∑

k

wkjR{δk}. (5.107)

Finally, we have the usual equations for the first derivatives of the error

∂E

∂wkj
= δkzj (5.108)

∂E

∂wji
= δjxi (5.109)

256 5. NEURAL NETWORKS

and acting on these with the R{·} operator, we obtain expressions for the elements
of the vector vTH

R
{

∂E

∂wkj

}
= R{δk}zj + δkR{zj} (5.110)

R
{

∂E

∂wji

}
= xiR{δj}. (5.111)

The implementation of this algorithm involves the introduction of additional
variables R{aj}, R{zj} and R{δj} for the hidden units and R{δk} and R{yk}
for the output units. For each input pattern, the values of these quantities can be
found using the above results, and the elements of vTH are then given by (5.110)
and (5.111). An elegant aspect of this technique is that the equations for evaluating
vTH mirror closely those for standard forward and backward propagation, and so the
extension of existing software to compute this product is typically straightforward.

If desired, the technique can be used to evaluate the full Hessian matrix by
choosing the vector v to be given successively by a series of unit vectors of the
form (0, 0, . . . , 1, . . . , 0) each of which picks out one column of the Hessian. This
leads to a formalism that is analytically equivalent to the backpropagation procedure
of Bishop (1992), as described in Section 5.4.5, though with some loss of efficiency
due to redundant calculations.

5.5. Regularization in Neural Networks

The number of input and outputs units in a neural network is generally determined
by the dimensionality of the data set, whereas the number M of hidden units is a free
parameter that can be adjusted to give the best predictive performance. Note that M
controls the number of parameters (weights and biases) in the network, and so we
might expect that in a maximum likelihood setting there will be an optimum value
of M that gives the best generalization performance, corresponding to the optimum
balance between under-fitting and over-fitting. Figure 5.9 shows an example of the
effect of different values of M for the sinusoidal regression problem.

The generalization error, however, is not a simple function of M due to the
presence of local minima in the error function, as illustrated in Figure 5.10. Here
we see the effect of choosing multiple random initializations for the weight vector
for a range of values of M . The overall best validation set performance in this
case occurred for a particular solution having M = 8. In practice, one approach to
choosing M is in fact to plot a graph of the kind shown in Figure 5.10 and then to
choose the specific solution having the smallest validation set error.

There are, however, other ways to control the complexity of a neural network
model in order to avoid over-fitting. From our discussion of polynomial curve fitting
in Chapter 1, we see that an alternative approach is to choose a relatively large value
for M and then to control complexity by the addition of a regularization term to the
error function. The simplest regularizer is the quadratic, giving a regularized error

