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ABSTRACT state transducersEven when richer models are used,

for instance context-free grammars for spoken-dialog

T|h|s _(inaptefr descnbeks% a generﬁl represi_ntatgon aiﬁalica’tions, they are often restricted, for efficiency
aigoritnmic framework for Speech recognition basef 5545 1o regular subsets, either by design or by

on Weighted_ finite-state transducers. These tra Sproximation [Pereira and Wright, 1997, Nederhof
ducers provide a common and natural representsog monri and Nederhof 2001] ' ' '

tion for major components of speech recognition sys- . . .
) b P 9 4 A finite-state transducer is a finite automaton

tems, including hidden Markov models (HMMs), h . labeled with both i
context-dependency models, pronunciation dictidi"0S€ State transitions are labeled with both input

naries, statistical grammars, and word or phone N %utput symt()jols. Thereforef, a path through tgel
tices. General algorithms for building and optimizin fansaucer encodes a mapping from anAIArllputhsyg\ 0
transducer models are presented, including compogfdUence, ostring, to an output string. Aveighte

tion for combining models, weighted determinizati0|r1ramscll.JCer puts weights on transitions In addition
to the input and output symbols. Weights may en-

and minimization for optimizing time and space rex S ; ;

quirements, and a weight pushing algorithm for re;:_ode _probab|l|t|es, durations, penalties, or any other

distributing transition weights optimally for speectfiuantity that accumulates along paths to compute the
verall weight of mapping an input string to an out-

recognition. The application of these methods i) . Weighted d h I
large-vocabulary recognition tasks is explained in @Yt String. Weighted transducers are thus a natura

tail, and experimental results are given, in particd:—ho'ce to represent the probabilistic finite-state mod-

lar for the North American Business News (NAB)elS prevalentin speech processing.

task, in which these methods were used to combine We present a detailed view of the use of weighted
HMMs, full cross-word triphones, a lexicon of fortyfinite-state transducers in speech recognition [Mohri
thousand words, and a large trigram grammar in® al., 2000, Pereira and Riley, 1997, Mohri, 1997,
a single weighted transducer that is only somewhbfohri et al., 1996, Mohri and Riley, 1998, Mohri
larger than the trigram word grammar and that rurf$ al., 1998, Mohri and Riley, 1999]. We show
NAB in real-time on a very simple decoder. Anothefhat common methods for combining and optimiz-
example demonstrates that the same methods cari™i pProbabilistic models in speech processing can

used to optimize lattices for second-pass recognitid?e generalized and efficiently implemented by trans-
lation to mathematically well-defined operations on

weighted transducers. Furthermore, new optimiza-
1. INTRODUCTION tion opportunities arise from viewing all symbolic
levels of speech recognition modeling as weighted
Much of current large-vocabulary speech recognitiafansducers. Thus, weighted finite-state transducers
is based on models such as hidden Markov mogefine a common framework with shared algorithms
els (HMMs), lexicons, on-gram statistical languagefor the representation and use of the models in speech
models that can be represented Wgighted finite-
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recognition that has important algorithmic and soft- These automata consist of a set of states, an ini-
ware engineering benefits. tial state, a set of final states (with final weights), and
We begin with an overview in Section 2, which set of transitions between states. Each transition

informally introduces weighted finite-state transdudas a source state, a destination state, a label and a
ers and algorithms, and motivates the methods M{gight. Such automata are calleeighted finite-
showing how they are applied to speech recogrfitate acceptor§WVFSA), since theyacceptor recog-
tion. This section may suffice for those only interhize each string that can be read along a path from
ested in a brief tour of these methods. In the sule start state to a final state. Each accepted string is
sequent two sections, we give a more detailed aggsigned a weight, namely the accumulated weights
precise account. Section 3 gives formal definitior®ong accepting paths for that string, including final
of weighted finite-state transducer concepts and ca¥eights. An acceptor as a whole represents a set of
responding algorithm descriptions. Section 4 givesrings, namely those that it accepts. As a weighted
detailed description of how to apply these methods $ceptor, it also associates to each accepted string the
large-vocabulary speech recognition and shows p&ccumulated weights of their accepting paths.
formance results. These sections are appropriate for Speech recognition architectures commonly give
those who wish to understand the algorithms motke run-time decoder the task of combining and opti-
fully or wish to replicate the results. mizing automata such as those in Figure 1. The de-
coder finds word pronunciations in its lexicon and
substitutes them into the grammar. Phonetic tree
2. OVERVIEW representations may be used at this point to re-
duce path redundancy and thus improve search ef-

We start with an informal overview of weighted auficiency, especially for large vocabulary recognition
tomata and transducers, outlines of some of the kEyrtmanns et al., 1996]. The decoder then identi-
algorithms that support the ASR applications ddles the correct context-dependent models to use for

scribed in this chapter eomposition determiniza- €ach phone in context, and finally substitutes them

speech recognition. that performs these operations is usually tied to par-
ticular model topologies. For example, the context-
dependent models might have to be triphonic, the

2.1. Weighted Acceptors grammar might be restricted to trigrams, and the al-
ternative pronunciations might have to be enumer-

Weighted finite automata (or weighted acceptors) agded in the lexicon. In addition, these automata

used widely in automatic speech recognition (ASR¥ombinations and optimizations are applied in a pre-

Figure 1 gives simple, familiar examples of weightegirogrammed order to a pre-specified number of lev-

automata as used in ASR. The automaton in Figis.

ure 1(a) is a toy finite-statanguage model The

legal word strings are specified by the words along

each complete path, and their probabilities by th&2. Weighted Transducers

product of the corresponding transition probabilities.

The automaton in Figure 1(b) gives the possible pr&ur approach uses finite-state transducers, rather

nunciations of one wordiat a, used in the languagethan acceptors, to represent thegram grammars,

model. Each legal pronunciation is the phone stringgonunciation  dictionaries,  context-dependency

along a complete path, and its probability is given b§Pecifications, HMM topology, word, phone or

the product of the corresponding transition probabidiMM segmentations, lattices andbest output lists

ities. Finally, the automaton in Figure 1(c) encode@ncountered in ASR. The transducer representation

a typical left-to-right, three-distribution-HMM struc- Provides general methods for combining models and

ture for one phone, with the labels along a comple@Ptimizing them, leading to both simple and flexible

path specifying legal strings of acoustic distribution&SR decoder designs.

for that phone. A weighted finite-state transducer (WFST) is
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Figure 1. Weighted finite-state acceptor examples. By cotime, the states are represented by circles and
marked with their uniqgue number. The initisfateis represented by a bold circle, final states by double
circles. The label and weightw of a transition are marked on the corresponding directethat¢w. When
explicitly shown, the final weight of a final statef is marked byf /w.

quite similar to a weighted acceptor except that it hdke output label, it is possible to combine the pronun-
an input label, an output label and a weight on eadiation transducers for more than one word without
of its transitions. The examples in Figure 2 encodesing word identity. Similarly, HMM structures of

(a superset of) the information in the WFSAs of Figthe form given in Figure 1(c) can be combined into
ure 1(a)-(b) as WFSTs. Figure 2(a) represents thesingle transducer that preserves phone model iden-
same language model as Figure 1(a) by giving eatity. This illustrates the key advantage of a transducer
transition identical input and output labels. This addsver an acceptor: the transducer can represent a rela-
no new information, but is a convenient way we ustonship between two levels of representation, for in-
often to treat acceptors and transducers uniformly. stance between phones and words or between HMMs

Figure 2(b) represents a toy pronunciation lexgnd context-independent phones. More precisely, a
con as a mapping from phone strings to words iiansducer specifies a binary relation between strings:
the lexicon, in this exampleat a and dew, with two strings are in the relation when there is a path
probabilities representing the likelihoods of alterndfom an initial to a final state in the transducer that
tive pronunciations. ltransduces phone string that has the first string as the sequence of input labels
can be read along a path from the start state to a&long the path, and the second string as the sequence
nal state to a word string with a particular weightof output labels along the patl gymbols are left
The word corresponding to a pronunciation is ou@ut in both input and output). In general, this is a
put by the transition that consumes the first phorfglation rather than a function since the same input
for that pronunciation. The transitions that consunféring might be transduced to different strings along
the remaining phones output no further Symbo|s, ifwo distinct paths. For a Weighted transducer, each
dicated by the null symbelas the transition’s output String pair is also associated with a weight.
label. In general, aa input label marks a transition ~ We rely on a common set of weighted trans-
that consumes no input, and aoutput label marks ducer operations to combine, optimize, search and
a transition that produces no output. prune them [Mohri et al., 2000]. Each operation

This transducer has more information than thigplements a single, well-defined function that has
WFSA in Figure 1(b). Since words are encoded bys foundations in the mathematical theory of ratio-
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Figure 2: Weighted finite-state transducer examples. Taesesimilar to the weighted acceptors in Figure 1
except output labels are introduced on each transition.iffhg labeli, the output labeb, and weightw of
a transition are marked on the corresponding directed aic byw.

nal power series [Salomaa and Soittola, 1978, Beten. However, the interface can also be given lazy
tel and Reutenauer, 1988, Kuich and Salomaa, 198&hplementations. For example, the lazy union of two
Many of those operations are the weighted tranautomata returns a new lazys mobject. When the
ducer generalizations of classical algorithms for urebject is first constructed, the lazy implementation
weighted acceptors. We have brought together thgsist initializes internal book-keeping data. It is only
and a variety of auxiliary operations in a comprehenvhen the interface methods request the start state, the
sive weighted finite-state machine software librarfinal weights, or the transitions (and their destination
(FsmLib) available for non-commercial use from thetates) leaving a state, that this information is actually
AT&T Labs — Research Web site [Mohri et al., 2000]Jcomputed, and optionally cached inside the object for

Basic union Concatenationand Kleene closure later reuse. This approach has the advantage that if
operations combine transducers in parallel, in serig¥)ly a part of the result of an operation is needed (for
and with arbitrary repetition, respectively. Other opexample in a pruned search), then the unused part is
erations convert transducers to acceptors by projeBgver computed, saving time and space. We refer the
ing onto the input or output label set, find the bedaterested reader to the library documentation and an
or then best paths in a weighted transducer, remo@verview of the library [Mohri et al., 2000] for fur-
unreachable states and transitions, and sort acydfi€r details on lazy finite-state objects.
automata topologically. We now discuss the key transducer operations

Where possible, we providéatzy(also callecbn- that are used in our speech applications for model
demangl implementations of algorithms. Any finite-cOmbination, redundant path removal, and size re-
state object smcan be accessed with the three maifiuction, respectively.
methodsf sm start (), fsmfinal (state),
andfsm transitions(state) thatreturnthe 23 Composition
start state, the final weight of a state, and the transi-
tions leaving a state, respectively. This interface c&omposition is the transducer operation for com-
be implemented for concrete automata in an obviobiing different levels of representation. For in-
way: the methods simply return the requested infostance, a pronunciation lexicon can be composed
mation from a stored representation of the automesth a word-level grammar to produce a phone-to-
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Figure 3: Example of transducer composition.
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word transducer whose word strings are restricted The weighted composition algorithm generalizes
to the grammar. A variety of ASR transducer conmthe classical state-pair construction for finite au-
bination techniques, both context-independent amoimata intersection [Hopcroft and Ullman, 1979] to
context-dependent, are conveniently and efficientlyeighted acceptors and transducers. The states of the
implemented with composition. compositiori” are pairs of & state and &5 state.T’

As previous|y noted’ atransducer represents a ﬁatleleS the fOIIOWing conditions: (1) its initial state
nary relation between Strings_ The Composition d$ the pair of the initial state (ﬁ’l and the initial state
two transducers represents their relational compo8it 72; (2) its final states are pairs of a final state of
tion. In particular, the compositiohl = 73 o T, of 11 and a final state df,, and (3) there is a transition
two transducerg} andT: has exactly one path map-t from (g1, ¢2) to (r1,2) for each pair of transitions
ping stringu to stringw for each pair of paths, thet1 from ¢i to r1 andt, from g» to r» such that the
first in 73 mappingu to some string and the sec- output label oft; matches the input label @¢. The
ond in7, mappingv to w. The weight of a path in transitiont takes its input label fromy, its output la-

T is Computed from the Weights of the two CO”‘ebE' fromts, and its WEight is the combination of the
sponding paths iffi;, andZ} with the same operation Weights oft; and, done with the same operation
that computes the weight of a path from the weight§at combines weights along a path. Since this com-
of its transitions. If the transition weights represerutation islocal — it involves only the transitions
probabilities, that operation is the product. If insteaaving two states being paired — it can be given
the weights represent log probabilities or negative Iy 1azy implementation in which the composition is
probabilities as is common in ASR for numerical stadenerated only as needed by other operations on the
bility, the operation is the sum. More generally, th6é0mposed automaton. Transitions wittabels inT}
weight operations for a weighted transducer can [§& 7> must be treated specially as discussed in Sec-
specified by aemiring[Salomaa and Soittola, 1978 tion 3. Figure 3 shows two simple transducers, Fig-
Berstel and Reutenauer, 1988, Kuich and Saloma#€ 3(a) and Figure 3(b), and the result of their com-
1986], as discussed in more detail in Section 3. position, Figure 3(c). The weight of a path in the
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resulting transducer is the sum of the weights of the Weighted determinization generalizes the classi-
matching paths irf; and7; (as when the weights cal subset method for determinizing unweighted fi-
represent negative log probabilities). nite automata [Aho et al., 1986], Unlike in the un-

Since we represent Weighted acceptors blyelghted case, not all Weighted automata can be de-
weighted transducers in which the input and outptgrminized. Conditions for determinizability are dis-
labels of each transition are identical, the intersectiéissed in Section 3.3. Fortunately, most weighted au-

of two weighted acceptors is just the composition dpMmata used in speech processing can be either deter-
the corresponding transducers. minized directly or easily made determinizable with

simple transformations, as we discuss in sections 3.3
o and 4.1. In particular, any acyclic weighted automa-
2.4. Determinization ton can always be determinized.

S To eliminate redundant paths, weighted deter-

In a deterministic automatqreach state has at most_. .~ . i .
I, X . . minization needs to calculate the combined weight of
one transition with any given input label and there . ;
: . : all paths with the same labeling. When each path rep-
are no input-labels. Figure 4(a) gives an example

i 7 . ) resents a disjoint event with probability given by its
of a non-deterministic weighted acceptor: at state weight, the combined weight, representing the prob-

for instance, there are two transitions with the same . : :
labela. The automaton in Figure 4(b), on the othef lity of the common Iabeh_ng for that set of paths,
gure 4(b),
hand. is deterministic. WOL_JId be the sum of the weights of the paths. Alter-

' L natively, we may just want to keep the most proba-

The key advantage of a deterministic automayie path, as is done in shortest path algorithms, lead-
ton over equivalent nondeterministic ones is its Ithg to the so-calledviterbi approximation When
redundancy: it contains at most one path matchifghights are negative log probabilities, these two al-
any given input string, thereby reducing the time an@ynatives correspond respectively to log summation
space needed to process the string. This is particyq taking the minimum. In the general case, we
larly important in ASR due to pronunciation lexicon,se one operation, denoted for combining weights
redundancy in large vocabulary tasks. The familigjiong paths and for composition, and a second opera-
tree lexicon in ASR is a deterministic pronunciatiofon ‘denoteds, to combine identically labeled paths.
representation [Ortmanns et al., 1996]. Some common choices 68, ®) include (max, +),

To benefit from determinism, we use a def+ x), (min,+), and (—log(e™* + e~ ¥),+). In
terminization algorithm that transforms a nonspeech applications, the first two are appropriate for
deterministic weighted automaton into an equivaleptobabilities, the last two for the corresponding neg-
deterministic automaton. Two weighted acceptogive log probabilities. More generally, as we will
are equivalentif they associate the same weight t@&ee in Section 3, many of the weighted automata al-
each input string; weights may be distributed difgorithms apply when the two operations define an
ferently along the paths of two equivalent acceptorappropriate semiring. The choicésin, +), and
Two weighted transducers are equivalent if they ag--log(e=* +¢~), +) are called théropical andlog
sociate the same output string and weights to eagbmirings, respectively.
input string; the distribution of the weight or output o giscussion and examples of determiniza-
labels along paths need not be the same in the tygn and, later, minimization will be illustrated with
transducers. weighted acceptors. Thetring semiring, whose two

If we apply the weighted determinization algooperations are longest common prefix and concatena-
rithm to the union of a set of chain automata, eaafbn, can be used to treat the output strings as weights.
representing a single word pronunciation, we obtaBy this method, the transducer case can be handled as
a tree-shaped automaton. However, the result of thigll; see Mohri [1997] for details.
algorithm on more general automata may not be & e will now work through an example of de-

tree, and in fact may be much more compact thangminization with weights in the tropical semiring.

tree. The algorithm_ can produce_ results for a broqqgure 4(b) shows the weighted determinization of
class of automata with cycles, which have no tree réRutomatond; from Figure 4(a). In general, the de-
resentation. '
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Figure 4: Determinization of weighted automata. (a) Wetghdutomaton over the tropical semiridg (b)
Equivalent weighted automatds obtained by determinization of.

terminization of a weighted automaton is equivalerttescribed in more in detail in Section 3.3.

to the original, that is, it associates the same weight |t js clear that the transitions leaving a given state

to each input string. For example, there are tw the determinization of an automaton can be com-

paths corresponding to the input strimigin A;, with  puted from the subset for the state and the transi-

weights{1 + 3 = 4,2+ 3 = 5}. The minimumd is  tjons leaving the states in the subset, as is the case

also the weight associated by to the stringab. for the classical non-deterministic finite automata
In the classical subset construction for dete(NFA) determinization algorithm. In other words,

minizing unweighted automata, all the states reactie weighted determinization algorithm is local like

able by a given input from the initial state are placethe composition algorithm, and can thus be given a

in the same subset. In the weighted case, transitidagy implementation that creates states and transi-

with the same input label can have different weights§pns only as needed.

but only the minimum of those weights is needed and

the leftover weights must be kept track of. Thus, o

the subsets in weighted determinization contain paifs>.- Minimization

(¢, w) of a stateg of the original automaton and a

leftover weightw.

The initial subset i§ (i, 0)}, wherei is the initial

Given a deterministic automaton, we can reduce its
size by minimization, which can save both space

and time. Any deterministic unweighted automaton

state of the original automaton. For example, in I:'Q:'an be minimized using classical algorithms [Aho
ure 4, the initial subset for automatéhis {(0,0)}. et al., 1974, Revuz, 1992]. In the same way, any

Each new subsef is processed in turn. For each

) , deterministic weighted automata# can be mini-
elementa of the input alphabel labeling at least ; LT . .
o ; o mized using our minimization algorithm, which ex-
one transition leaving a state 8f a new transitior

leavingS is constructed in the result automaton. Thteends the classical algorithm [Mohri, 1997]. The re-

) . ; oo - Sulting weighted automataB is equivalent to the au-
input label oft is a and its weight is the minimum of

o : tomatonA, and has the least number of states and the
the sumsaw + [ wherew is s's leftover weight and

is the weight of anu-transition leaving a statein S. least number of transitions among all deterministic

The destination state afis the subsef’ containing weighted aut.omata _equwal_entxb . .
those pair€q’, w') in which ¢’ is a state reached by a , AS We will see in Section 3.5, weighted mini-
transition labeled with: from a state ofs andw’ is Mization is quite efficient, indeed as efficient as clas-
the appropriate leftover weight. sical deterministic finite automata (DFA) minimiza-

For example, in Figure 4, the transition Ieaviné'on' , L .
(0,0) in B labeled witha is obtained from the two We can view the deterministic weighted automa-

transitions labeled with: leaving stated in A: its onAin Figure 5(a) as an unweighted automaton by
weight is the minimum of the weight of those twdNterpreting each pai, w) of a labels and a weight

transitions, and its destination state is the subéet @ @S @ single label. We can then apply the stan-
{(1,1=1=0),(2,2—1 = 1)}. The algorithm is dard DFA minimization algorithm to this automaton.

However, since the pairs for different transitions are
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Figure 5: Weight pushing and minimization. (a) Deterministeighted automatomd. (b) Equivalent
weighted automatof® obtained by weight pushing in the tropical semiring. (c) Mial weighted automaton
equivalent toA.

all distinct, classical minimization would have no efand the final weighp(f) as follows:
fect on A.

The size ofA can still be reduced by using true p(f) = p(f) + (V@) = V(f))- )
weighted minimization. This algorithm works in
two steps: the first stepusheswveight among tran-
sitions, and the second applies the classical mi
mization algorithm to the result with each distinc
label-weight pair viewed as a distinct symbol, as gd"
scribed above. Weight pushing is useful not only as Ty N _

a first step of minimization but also to redistribute V() =V@) + V) - V() =0. 3)
weight among transitions to improve search, espgpys, reweighting does not affect the total weight of a

cially pruned search. The algorithm is described ig,ccessful path and the resulting automaton is equiv-
more detail in Section 3.4, and analyzed in [Mohriyant to the original.

2002]. Its applications to speech recognition are dis- To push the weight it towards the initial state

cussed |r_1 [M_Ohn and _R|Iey, 2001]'_ ) as much as possible, a specific potential function is
Pushing is a special caserefveighting. We de-  hosen, the one that assigns to each state the low-

scribe reweighting in the case of the tropical semigg; path weight from that state to the final state. Af-

ing; similar definitions can be given for other semirgg, pushing, the lowest cost path (excluding the final

ings. A (non-trivial) weighted automaton can bgyeight) from every state to the final state will thus be
reweighted in an infinite number of ways that prop

duce equivalent automata. To see how,ilee A’s
initial state and assume for convenientéas a sin-
gle final statef.! LetV : Q@ — R be an arbitrary
potentialfunction on states. Update each weigljt|
of the transitiort from statept] to n[t] as follows:

It is easy to see that with this reweighting, each po-
rJﬁe_ntial internal to any successful path from the initial
ptate to the final state is added and then subtracted,
aking the overall change in path weight:

Figure 5(b) shows the result of pushing for the
input A. Thanks to pushing, the size of the automa-
ton can then be reduced using classical minimization.
Figure 5(c) illustrates the result of the final step of the
algorithm. No approximation or heuristic is used: the
resulting automatoty is equivalent teA.

wlt] — wt] + (V(n[t]) = V(p[t]), 1)
2.6. Speech Recognition Transducers

1Any automaton can be transformed into an equivalent automas an illustration of these methods applied to speech

ton with a single final state by adding a super-final state,inggl recognition we describe how to construct a single
previously final states non-final, and adding from each presly ’ !

final statef with weightp( f) ane-transition with the weighp( f) statically-compiled and optimized recognition trans-
to the super-final state. ducer that maps from context-dependent phones to
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ae:aelk_t, ‘ @ t:aelk t @

@ (b)
Figure 6: Context-dependent triphone transducer tramsifa) non-deterministic, (b) deterministic.

words. This is an attractive choice for tasks that haweith left contextk and right context,? then there
fixed acoustic, lexical, and grammatical models sinds a transition in the context-dependency transducer
the static transducer can be searched simply and effem state(k, ae) to state(ae, t) with output label
ciently with no recognition-time overhead for modeae/k_t. For the input label on this transition, we
combination and optimization. could choose the center phoneas depicted in Fig-
Consider the pronunciation lexicon in Fig-ure 6(a). This will correctly implement the transduc-
ure Z(b) Suppose we form the union of this tranéi.on; but the transducer will be non-deterministic. Al-
ducer with the pronunciation transducers for the réernately, we can choose the right pherzs depicted
maining words in the grammag of Figure 2(a) by in Figure 6(b). This will also correctly implement the
Creating a new Super-initiai state and Connecting é‘ﬁnSdUCtion, but the result will be deterministic. To
e-transition from that state to the former start stated¢€ why these are correct, realize that when we en-
of each pronunciation transducer. We then take itgr & state, we have read (in the deterministic case)
Kleene closure by Connecting anrtransition from Or must read (ln the non-deterministic Case) the two
each final state to the initial state. The resultinghonesthatlabel the state. Therefore, the source state
pronunciation lexicor, would pair any word String and destination state of a transition determine the tri-
from that vocabulary to their corresponding pronurihone context. In Section 4, we give the full details

ciations. Thus, of the triphonic context-dependency transducer con-
struction and further demonstrate its correctness.
LoG 4) The above context-dependency transducer

maps from context-independent phones to context-

gives a transducer that maps from phones to wogg¢pendent triphones. We can invert the relation
strings restricted t6;. by interchanging the transducer’s input and output

We used composition here to implement labels to create a new transducer that maps from
context-independent substitution. However, a m&g@ntext-dependent triphones to context-independent
jor advantage of transducers in speech recogmiones. We do this inversion so we can left com-
tion is that they generalize naturally the notion of©Se it with our context-independent recognition
context-independent substitution of a label to thgansducet o G. If we let C' represent a context-
context-dependent case. In particular, the applicdéPendency transducer from context-dependent
tion of the familiar triphone models in ASR to thePhones to context-independent phones, then:

context-independenttransducer, producing a context- (LoG) (5)
dependent transducer, can be performed simply with
composition. gives a transducer that maps from context-dependent

To do so, we first construct a context—.dependency 2This use of/ to indicate “in the context of” in a triphone sym-
transducer that maps from context-independet offers a potential ambiguity with our use pfo separate a tran-
phones to context-dependent triphones. This trarsdfion’s weight from its input and output symbols. Howewince

; ntext-dependency transducers are never weighted irchiajs-
ducer has a state for every pair of phones and a tréi:(l:i' the confusion is not a problem in what follows, so we ehtos

sition for every context-dependent model. In parti%Tay with the notation of previous work rather than chandgirg

ular, if ae/k_t represents the triphonic model fe¢  avoid the potential ambiguity.
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phones to word strings restricted to the grami@ar 3.1. Preliminaries

To complete our example, we optimize this trans- _ ) )
ducer. Given our discussion of the benefits of detefis noted earlier, all of our algorithms work with
minization and minimization, we might try to applyWeights that are combined with operations satisfying

those operations directly to the composed transducte semiringconditions. A semiringK, &, ®,0,1)
is specified by a set of valuds, two binary oper-

N = min(det(C o (L o G))). (6) ations® and®, and two designated valu@sand
1. The operationp is associative, commutative, and

This assumes the recognition transducer can be &S0 as identity. The operatios is associative, has
terminized, which will be true if each of the compoldentity 1, distributes with respect t0, and has) as
nent transducers can be determinized. If the conte@nihilator: for alla € K,a® 0 =0®a = 0. If
dependency is constructed as we have describet 'S also commutative, we say that the semiring is
and if the gramma€ is ann-gram language model, com_mutatlveAII the semirings we discuss in the rest
then they will be determinizable. However,may ©f this chapter are commutative.
not be determinizable. In particular, f has am- Real numbers with addition and multiplication
biguities, namely homophones (two distinct wordsatisfy the semiring conditions, but of course they
that have the same pronunciation), then it can natso satisfy several other important conditions (for
be determinized as is. However, we can introdu&xample, having additive inverses), which are not re-
auxiliary phone symbols at word ends to disanfjuired for our transducer algorithms. Table 3.1 lists
biguate homophones to create a transformed legome familiar (commutative) semirings. In addition
con L. We also need to create a modified contexto the Boolean semiring, and the probability semir-
dependency transducét that additionally pairs the ing used to combine probabilities, two semirings of-
context-independent auxiliary symbols found in théen used in text and speech processing applications
lexicon with new context-dependent auxiliary symare thdog semiringwhich is isomorphic to the prob-
bols (which are later rewritten to epsilons after all opability semiring via the negativisg mapping, and
timizations). We leave the details to Section 4. Thige tropical semiringwhich is derived from the log
following expression specifies the optimized transemiring using th&iterbi approximation
ducer: A semiring(K, @, ®, 0, 1) is weakly left-divisible
L if for any z andy in K such thatr ¢ y # 0, there
N = min(det(C o (L o G))). (7) exists at least one such thatr = (z ® y) ® 2. The
®-operation icancellativef z is unique and we can
In Section 4, we give illustrative experimental rewrite: z = (z®y)~'®x. A semiring iszero-sum-free
sults with a fully-composed, optimized (arfdc- if foranyx andyin K, 2®y = 0 impliesz = y = 0.
tored) recognition transducer that maps from context- - For example, the tropical semiring is weakly left-
dependent units to words for the North Americagivisible with z = = — min(z, y), which also shows
Business News (NAB) DARPA task. This transducehat  for this semiring is cancellative. The proba-
runs aboutl8x faster than its unoptimized versionpjlity semiring is also weakly left-divisible with =
and has only about.4x times as many transitions _z_ - Finally, the tropical semiring, the probability

as its word-level grammar. We have found similar res‘er%iring, and the log semiring are zero-sum-free.
sults with DARPA Broadcast News and Switchboard. anyz € K, letz" denote

"=r®R--Q. (8)
—_————

n

3. ALGORITHMS

We now describe in detail the weighted automata anilhen the infinite sun@j{i‘g ™ is well defined and
transducer algorithms introduced informally in Sedn K, the closure of an element € K is defined
tion 2 that are relevant to the design of speech recagsxz* = ::fo ™. A semiring isclosedwhen infi-

nition systems. We start with definitions and notationite sums such as the one above, are well defined and
used in specifying and describing the algorithms. if associativity, commutativity, and distributivity ap-
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Table 1:Semiring examplespi,, is defined by ®1o, vy = —log(e™ +e7Y).

SEMIRING | SET | © |®]| 0 |1
Boolean {0,1} v [ A] 0 |1
Probability Ry + X 0 1
Log RU{—00,4+00} | ®log | + | +o0 | O
Tropical RU{—00,400} | min | + | +00 | O

ply to countable sums (Lehmann [1977] and Mohklosed, this is defined even for infinite. We de-
[2002] give precise definitions). The Boolean andote byP(q, ¢’) the set of paths from to ¢’ and by
tropical semirings are closed, while the probability’(q, z,y, ¢') the set of paths from to ¢’ with input
and log semirings are not. labelz € A* and output labe) € B*. For an accep-
A weighted finite-state transducef” = tor, we denote by’(q, z, ¢') the set of paths with in-
(A,B,Q,I,F,E,\ p) over a semiring K is put labelz. These definitions can be extended to sub-
specified by a finite input alphabet, a finite output SetsRk, ' C Q by P(R, R') = User, ger P(q,q'),
alphabetB, a finite set of state§), a set of initial (2. 2,9, R') = Uger, ¢erP(q,2,y,q'), and, for
states] C Q, a set of final stateF C (, a finite set an acceptorP(R,z, R') = User, ger P(q,7,q").
of transitionsE C Q x (AU{e}) x (BU{e})xKxQ, A transducefl is regulatedif the weight associated
an initial state weight assignment: I — K, and by 7' to any pair of input-output strings, y), given
a final state weight assignmept: F — K. E[q] by
denotes the set of transitions leaving state Q.
|T| denotes the sum of the number of states and T'(z,y) = @ Ap[r]] ® w[r] & p[n[x]], (9)
transitions off". neP(I,x,y,F)

Weighted automatgor weighted acceptors) are, i )
defined in a similar way by simply omitting thelS Well defined and irk. If P(7,z,y, F) = 0, then
input or output labels. Therojection operations 1 (#;¥) = 0. Aweighted transducer withoetcycles
IT; (T') andIly (T) obtain a weighted automaton from'S regulateo_l,_ as is any weighted transducer over a
a weighted transducét by omitting respectively the closed semiring. Similarly, for a regulated acceptor,

input or the output labels dF. we define
Given a transitiore € F, ple| denotes its origin _
or previous statep[e] its destination or next state, T(x) @ Alplrl] @ wir] © pln[x]]. (10)

i[e] its input label,o[e] its output label, andvle] its weP(La,F)
weight. Apathm = e; -- ey, is @ sequence of CON-  Thg ransduce is trim if every state occurs in
secutive transitionsne;_1] = plei], i = 2,..., k. some pathr € P(I, F). In other words, a trim trans-

The pathr is acycleif plei] = nfey]. An ecycle g,cer has no useless states. The same definition ap-
is a cycle in which the input and output labels of alblies to acceptors.

transitions are.
The functionsn, p, and w on transitions can .
be extended to paths by settingr] = nle;] and -2 Composition

pln] = ple1], and by defining the weight of a path as\g \ye o tlined in Section 2.3, composition is the core

th? ®-product of the weights of its constituent tranbperation for relating multiple levels of representa-
sitions: wir] = wlei] ® --- ® wleg]. More gen-

I | tended t finit t of patti tion in ASR. More generally, composition is the fun-
erally, w Is extended o any Tinité Set of patis -y, antg) algorithm used to create complex weighted
by settingw[R] = @, pwn]; if the semiring is

transducers from simpler ones [Salomaa and Soittola,
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WEIGHTED-COMPOSITIONTY, T5)
1 Q — Il X IQ
2 S+~ Il X IQ
3 whileS # 0 do
4 (q1,92) — HEAD(S)
5 DEQUEUE(S)
6 if (q1,q2)€[1 x I then
7 I—1TU{(q1,92)}
8 a1, q2) < Mi(q1) ® A2(qz)
9 if (q1,q2)€F1 XFQ then
10 F—FU{(q,q)}
11 p(a1,q2) — p1(q1) ® p2(q2)
12 for each(ey, es) € E[q1] x E[g2] such thable;] = i[ez] do
13 if (nle1],nfez]) € Q then
14 Q «— QU {(nle1],nles])}
15 ENQUEUE(S, (nle1], nle2]))
16 E — EU{((q1,92),i[e1], ole2], we1] @ wlea], (nle1], nle2]))}
17 returnT

Figure 7: Pseudocode of the composition algorithm.

1978, Kuich and Salomaa, 1986], and generalizedransition ofl; o T, from appropriate transitions of
the composition algorithm for unweighted finite-statéd’; and7x:

transducers [Eilenberg, 1974-1976, Berstel, 1979].

Let K be a commutative semiring and [&t and T (q1,a,b,wy,r1) and(gz, b, ¢, wa, ) (12)

be two weighted transducers defined diéesuch that = ((q1,42), a, c, w1 ® Wy, (r1,72)).

the input alphabeB8 of Ty coincides with the out- _. ) . :

put alphabet of7;. Assume that the infinite sum Figure 7 gives the pseudocode of the algorithm in the
@B.c5- Ti(z,2) ® Ta(z,y) is well defined and in e-free case. . _ _

K for all (z,y) € A* x C*, whereA is the input al- The algorithm takes as input two weighted trans-
phabet ofl; andC is the output alphabet &f,. This ducers
will be the case iK is closed, or ifl; has noe-input

cycles orT, has noe-output cycles. Then, the result ;1 Eé’g’gl’ljl’lfl’gl’?l’pl)) and
of the composition of; and75 is a weighted trans- 2 'L R 12, 12, 52, A2, 02)

ducer denoted by o T5 and specified for allr,y g outputs a weighted finite-state transduEer
by: (A,C,Q,I,F,E,\ p) implementing the composi-
tion of 77 and75. E, I, andF' are all initialized

(T1 0 T2)(z,y) = @ Ti(z,z) ®Ta(z,y).  (11) t5the empty set and grown as needed.

el The algorithm uses a quewecontaining the set
There is a general and efficient composition algof pairs of states yet to be examined. The queue
rithm for weighted transducers [Salomaa and Soitliscipline of S is arbitrary, and does not affect the
tola, 1978, Kuich and Salomaa, 1986]. States in thermination of the algorithm. The state €gtis ini-
compositionT; o T» of two weighted transducef tially the set of pairs of initial states of the original
andT; are identified with pairs of a state @ and a transducers, as i§ (lines 1-2). Each time through
state ofl;. Leaving aside transitions withinputs or the loop in lines 3-16, a new pair of statég, ¢2)
outputs, the following rule specifies how to computes extracted fromS (lines 4-5). The initial weight

(13)
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of (q1,¢2) is computed byz-multiplying the initial
weights ofg; andgs when they are both initial states
(lines 6-8). Similar steps are followed for final states
(lines 9-11). Then, for each pair of matching transi-
tions(ey, e2), @ new transition is created according to
the rule specified earlier (line 16). If the destination
state(n[e;], n[e2]) has not been found previously, it
is added tap and inserted irt (lines 14-15).

In the worst case, all transitions @f leaving
a stateq; match all those off; leaving stateq],
thus the space and time complexity of composition is
quadratic:O(|T1||Tz|). However, a lazy implemen- Figure 9: Filter for compositioi'.
tation of composition can be used to construct just
the part of the composed transducer that is needed.

More care is needed whén has output labels 3.3. Determinization
andTy; input e labels. Indeed, as illustrated by Fig- ) ) S
ure 8, a straightforward generalization of théree V& now describe the generic determinization algo-
case would generate redundarpaths and, in the rithm forwqghted automata that we qsed mf_ormally
case of non-idempotent semirings, would lead to ashen working through the example in Section 2.4.
incorrect result. The weight of the matching pathhis algorithm is a generalization of the classical
of the original transducers would be counetimes, Subset construction for NFAs (unweighted nonde-

Wherep is the number of redundant paths in the Corﬁerministic finite automata). The determinization of
position. unweighted or weighted finite-state transducers can

To solve this problem, all but onepath must be bOth be viewed as special Instances of_the generic al-
orithm presented here but, for simplicity, we will

filtered out of the composition. Figure 8 indicate% th iahted :
in boldface one possible choice for that path, whic cus on the weighted acceptor case.

in this case is the shortest. Remarkably, that filter- A Weighted automaton isdeterministic (also

ing mechanism can be encoded as a finite-state trakBOWn assubsequentiaif it has a unique initial state
ducer. and if no two transitions leaving any state share the

same input label. Thdeterminizatioralgorithm we
now present applies to weighted automata over a can-

outpute labels ofT; with ¢, and the input labels of cellative weakly left-divisible semiring that satisfies

T, with ;. Consider the filter finite-state transducef mild technical Con.d't'Oﬁ' Figure 10 gives pseu-
F'represented in Figure 9. Th&ho FoTy = Ty oTs. docode forthe algorithm. _ )

Since the two compositions ifi; o F' o T, do not A weighted subsetof () is a set of pairgq, z) €
involve ¢ labels, thee-free composition already de-@ x K. Q[p] is the set of stategin p, E[Q[p]] is the

scribed can be used to compute the resulting trarf&t of transitions leaving those states, addQ[p]]]
ducer. the set of input labels of those transitions.

Intersection (oHadamard produgtof weighted The states of the result autqmaton are weighted
automata and composition of finite-state transduceydbsets of the states of the original automaton. A
are both special cases of composition of weightédater of the result automaton that can be reached
transducers. Intersection corresponds to the cd&m the start state by pathis the weighted set of
where input and output labels of transitions are ideRairs (¢, z) € @ x K such thatg can be reached
tical and composition of unweighted transducers f§om an initial state of the original automaton by
obtained simply by omitting the weights. a patho with io] = i[r] and A[p[o]] ® w[o] =

Let 71 andT» be the weighted transducers ob
tained fromT; andT> respectively by replacing the

8If x € P(I,Q), thenw[P(I, x, Q)] # 0, which is satisfied
by trim automata over the tropical semiring or any other zanm-
free semiring.
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Figure 8: Redundantpaths. A straightforward generalization of théree case could generate all the paths
from (1,1) to (3, 2) when composing the two simple transducers on the right-bated

Ap[r]]@w[r]®z. Thusx can be viewed as thesid- nal state and its final weight is obtained by summing
ual weight at state;. The algorithm takes as input athe final weights of all the final states i\, pre<®-
weighted automatod = (A, Q, I, F, E, ), p) and, multiplied by their residual weight (line 14-15).
when it terminates, yields an equivalent deterministic The worst case complexity of determinization is
weighted automator’ = (A, Q. I', F', E', X', p').  exponential even in the unweighted case. However,
The algorithm uses a quewecontaining the set in many practical cases such as for weighted au-
of states of the resulting automatdr, yet to be ex- tomata used in large-vocabulary speech recognition,
amined. The set§)’, I’, F’, and E’ are initially this blow-up does not occur. It is also important to
empty. The queue discipline fd&f can be arbitrar- notice that just like composition, determinization has
ily chosen and does not affect the termination of thenatural lazy implementation in which only the tran-
algorithm. The initial state set o’ is I’ = {i’} sitions required by an application are expanded in the
wherei’ is the weighted set of the initial states 4f result automaton.

with the respective initial weights. Its initial weight  yUnlike in the unweighted case, determinization
is 1 (lines 1-2)..5 originally contains only the subsetdoes not halt on all input weighted automata. We
I’ (line 3). Each time through the loop in lines 4-16say that a weighted automatohis determinizable

a new weighted subset is dequeued fron¥' (lines  if the determinization algorithm halts for the inpt
5-6). For eachr labeling at least one of the transi+jth a determinizable input, the algorithm outputs an
tions leaving a statg in the weighted subset, a equivalent deterministic weighted automaton.

new transition with input labet is constructed. The The twins propertyfor weighted automata char-

. ) : o
weightw'’ associated to that transition is the sUm of¢(erjze5  determinizable weighted automata under
the weights of all transitions i'[Q[p']] labeled with - g6 general conditions [Mohri, 1997]. Lt be
v pre@-mulnplled by the.re3|.dual weight at each .a weighted automaton over a weakly left-divisible
statep (line 8). The destination state of the trans'éemiringK. Two states; and¢’ of A are said to be
tion is th? supset containing all the stat;eeeac_hed siblingsif there are strings: andy in A* such that
by transitions inE[Q[p']] labeled withz. The weight 1, "andq’ can be reached fromby paths labeled
of each state of the subset is obtained by taking th, i+, .. and there is a cycle atand a cycle at’ both
@-sum of the residual weights of the states-times |50 16 withy. WhenK is a commutative and can-

the yvgight of the trzjmsition from Ieading tog and - cejlative semiring, two sibling states are said to be
by dividing that byw’. The new subset is inserted twinswhen for every string:

in the queues when itis a new state (line 16). If any

of the states in the subsgtis final, ¢’ is made a fi- . .
w[P(q,y,9)] = wlP(d,y,q)]- (14)
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WEIGHTED-DETERMINIZATION(A)
i — {(i,\(12)) ;i € I}
NG —1
S —{i'}
while S # () do
p’ «— HEAD(S)
DEQUEUE(S)
for eachz € i[E[Q[p]]] do
w — @P{vew: (p,v) €p,(p,z,w,q) € E}
¢ —{le@{w ' @ wew): (pv) €y, (pa,wq) € E}):
q = nlel,ile] =z, e € E[Q[p]]}
10 E' — E'U{(p),z,w',q)}
11 if ¢ ¢ Q' then
12 Q —QU{d}
13 if Q'] N F # 0 then
14 F'— F'u{d}
15 p'(q) = D{veple):(¢v) ed,qe F}
16 ENQUEUE(S, ¢)
17 returnT’

©CoOoO~NOOOUOTPR,WNPE

Figure 10: Pseudocode of the weighted determinizatiorritgo [Mohri, 1997].

A hasthe twins propertyf any two sibling states of
A are twins. Figure 11 shows a weighted automa- a1{1) c/5

ton over the tropical semiring that does not have the 0 > bl
= d/é

twins property: statesand2 can be reached by paths
labeled witha from the initial state and have cycles e
with the same labdl, but the weights of these cycles

(3 and4) are different.

The following theorems relate the twins propertyrigure 11: Non-determinizable weighted automaton
and weighted determinization [Mohri, 1997]. over the tropical semiring. States 1 and 2 are non-

) twin siblings.
Theorem 1 Let A be a weighted automaton over the

tropical semiring. IfA has the twins property, thes
is determinizable.

Theorem 2 Let A be a trim unambiguous weighted
automaton over the tropical semirifigThenA is de-
terminizable iff it has the twins property. The pre-determinizatioralgorithm can be used
) o ) ) to make determinizable an arbitrary weighted trans-
_There is an efficient algorithm for testing thejucer over the tropical semiring by inserting tran-
twins property for weighted automata [Allauzen andjtions labeled with special symbols [Allauzen and
Mohri, 2003]. Note that any acyclic weighted aunmohri, 2004]. The algorithm makes use of a general
tomaton over a zero-sum-free semiring has the twifgins property [Allauzen and Mohri, 2003] to insert
property and is determinizable. new transitions when needed to guarantee that the re-
4A weighted automaton is said to bmambiguousf for any  Sulting transducer has the twins property and thus is
x € ¥* it admits at most one accepting path labeled with determinizable.
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3.4. Weight Pushing

As discussed in Section 2.8jeight pushings nec-
essary in weighted minimization, and is also very
useful to improve search. Weight pushing can also
be used to test the equivalence of two weighted au-
tomata. Weight pushing is possible because the
choice of the distribution of the total weight along
each successful path of a weighted automaton da&igure 12: Weighted automatari obtained fromA
not affect the total weight of each successful patbf Figure 5(a) by weight pushing in the probability
and therefore preserves the definition of the automgemiring.
ton as a weighted set (weighted relation for a trans-
ducer).

Let A be a weighted automaton over a zero-suni~)) Where T denotes the worst cost of the clo-
free and weakly left-divisible semiring. For any SUré operation. 2The space complexity of these al-
stateg € Q, assume that the following sum is well90rithms isO(|Q[*). Therefore, the Floyd-Warshall

defined and ifk: algorithm is impractical for automata with several
hundred million states or transitions, which arise in
dlq) = @ (wlr] ® pln[r]]). (15) large-vocabulary ASR. An approximate version of a

generic single-source shortest-distance algorithm can
be used instead to compu#fy] efficiently [Mohri,

The valued[q] is the shortest-distancefrom ¢ to 2002].

F [Mohri, 2002]. This is well defined for aly € @ Speaking informally, the algorithm pushes the

whenK is a closed semiring. The weight-pushing alweight on each path as much as possible towards
gorithm consists of computing each shortest-distantee initial states. Figures 5(a)-(b) show weight push-
d[q] and ofreweightingthe transition weights, initial ing on the tropical semiring, while Figure 12 shows

neP(q,F)

weights and final weights in the following way: weight pushing for the same automaton but on the
probability semiring.
wle] «—d[ple]] ™t ® wle] ® d[n[e]]if d[p[e]] # 0, Note that ifd[q] = 0, then, sinceK is zero-sum-
Ali] — Ali] @ d[i], (16) free, the weight of all paths fromto F'is 0. Let A be
olf1—dlf]~t @ p[f] if d[f] #0, a weighted automaton over the semirikig Assume

thatK is closed and that the shortest-distandgs
where e is any transition,i any initial state, and are all well defined and il — {0}. In both cases, we
f any final state. Each of these operations can lban use the distributivity over the infinite sums defin-
done in constant time. Therefore, reweighting can lieg shortest distances. Let (7") denote the transi-
done in linear timeD (T | A|) whereT,, denotes the tion e (pathr) after application of the weight pushing
worst cost of arw-operation. The complexity of the algorithm.¢’ (=) differs frome (resp.) only by its
shortest-distances computation depends on the semigight. Let)\’ denote the new initial weight func-
ing [Mohri, 2002]. For the tropical semiring[q] can tion, andp’ the new final weight function. Then, the
be computed using a standard shortest-distance alf@lowing proposition holds [Mohri, 1997, 2005].
rithm. The complexity is linear for acyclic automata,
O(|Q|+ (Ty +Tg)|E|), whereTy, denotes the worst Proposition1 Let B = (A, Q,I,F,E',X,p') be
cost of and-operation. For general weighted authe result of the weight pushing algorithm applied to
tomata over the tropical semiring, the complexity ithe weighted automatas, then

O(|E| +|Qlog Q). 1. the weight of a successful pathis unchanged
For semirings like the probability semiring, a  after weight pushing:

generalization of the Floyd-Warshall algorithm for - , -

computing all-pairs shortest-distances can be used Np[r'l] @ w[r'] @ p'[n[r']] = (17)

[Mohri, 2002]. Its complexity i9(|Q|* (T + T + Alp[r]] ® w(m] ® pn[x]].
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2. the weighted automataB is stochasticthatis, Theorem 3 Let A be a deterministic weighted au-
_ tomaton over a semirinf{. Assume that the condi-
VeeQ, @ wle]=T (18) tions of application of the weight pushing algorithm

¢/€E'[q] hold. Then the execution of the following steps:

These two properties of weight pushing are illus-1- Weight pushing,

trated by figures 5(a)-(b) and 12: the total weight ofp - (unweighted) automata minimization,

a successful path is unchanged after pushing; at each

state of the weighted automaton of Figure 5(b), tHead to a minimal weighted automaton equivalent to
minimum weight of the outgoing transitions(isand

at each state of the weighted automaton of Figure 12,

the weights of outgoing transitions sumito The complexity of automata minimization is linear
in the case of acyclic automata(|Q| + |F|) and

is O(|E|log|Q|) in the general case. In view of
the complexity results of the previous section, for

Finally, we discuss in more detail the minimizatioth€ tropical semiring, the time complexity of the
algorithm introduced in Section 2.5. A determinisweighted minimization algorithm is linea(|Q| +

tic weighted automaton is said to benimalif there [ £|) inthe acyclic case and(|E|log |Q|) in the gen-

is no other deterministic weighted automaton witgral case.

a smaller number of states that represents the sameFigure 5 illustrates the algorithm in the tropical
mapping from strings to weights. It can be showaemiring. Automatom cannot be further minimized
that the minimal deterministic weighted automatonsing the classical unweighted automata minimiza-
has also the minimal number of transitions among dlbn since no two states are equivalent in that ma-
equivalent deterministic weighted automata [Mohrihine. After weight pushing, automatds has two
1997]. states, 1 and 2, that can be merged by unweighted

Two states of a deterministic weighted automautomaton minimization.

ton are said to bequivalentif exactly the same set  Figure 13 illustrates the minimization of an au-
of strings label the paths from these states to a fematon defined over the probability semiring. Un-
nal state, and the total weight of the paths for eadike the unweighted case, a minimal weighted au-
string, including the final weight of the final statefomaton is not unique, but all minimal weighted au-
is the same. Thus, two equivalent states of a detépmata have the same graph topology, and only dif-
ministic weighted automaton can be merged withoir in the weight distribution along each path. The
affecting the function realized by that automaton. Aveighted automat®’ andC”’ are both minimal and
weighted automaton is minimal when it is not possiquivalenttad’. B’ is obtained fromA’ using the al-
ble to create two distinct equivalent states after amgorithm described above in the probability semiring
pushing of the weights along its paths. and it is thus a stochastic weighted automaton in the

As outlined in Section 2.5, the general minimizaProbability semiring.
tion algorithm for weighted automata consists of first For a deterministic weighted automaton, tie
applying the weight pushing algorithm to normaloperation can be arbitrarily chosen without affect-
ize the distribution of the weights along the paths ofhg the mapping from strings to weights defined by
the input automaton, and then of treating each pdlre automaton, because a deterministic weighted au-
(label, weight) as a single label and applying clagomaton has at most one path labeled by any given
sical (unweighted) automata minimization [Mohristring. Thus, in the algorithm described in theorem 3,
1997]. The minimization of both unweighted andhe weight pushing step can be executed in any semir-
weighted finite-state transducers can also be view#) K’ whose multiplicative operation matches that
as instances of the algorithm presented here, but, ffrK. The minimal weighted automata obtained by
simplicity, we will not discuss that further here. Thepushing the weights ifK’ is also minimal ink, since
following theorem holds [Mohri, 1997]. it can be interpreted as a (deterministic) weighted au-
tomaton ovelk.

3.5. Minimization
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(@) (b) (c)

Figure 13: Minimization of weighted automata. (a) WeightedomatonA’ over the probability semiring.
(b) Minimal weighted automato®’ equivalent toA’. (c) Minimal weighted automatoi’ equivalent to4’.

In particular,A’ can be interpreted as a weightedtate transducers. Four principal models are the
automaton over the semiringR,, max, x,0,1). word-level grammaé, the pronunciation lexicoi,
The application of the weighted minimization algothe context-dependency transdu€grand the HMM
rithm to A’ in this semiring leads to the minimaltransducei. We will discuss now the construction
weighted automaton” of Figure 13(c).C’ is also of each these transducers. Since these will be com-
astochastiaveighted automaton in the sense that, &ined by composition and optimized by determiniza-
any state, the maximum weight of all outgoing trantion, we ensure they are efficient to compose and al-
sitions is one. low weighted determinization.

In the particular case of a weighted automaton The word-level grammarG, whether hand-
over the probability semiring, it may be preferable tarafted or learned from data, is typically a finite-state
use weight pushing in thex(ax, x)-semiring since model in speech recognition. Hand-crafted finite-
the complexity of the algorithm is then equivalenstate models can be specified by regular expressions,
to that of classical single-source shortest-paths aliles or directly as automata. Stochastiggram
gorithms® The corresponding algorithm is a spemodels, common in large vocabulary speech recog-
cial instance of a generic shortest-distance algorithnition, can be represented compactly by finite-state
[Mohri, 2002]. models. For example, a bigram grammar has a state
for every wordw; and a transition from state; to
statews for every bigramw;ws that is seen in the
training corpus. The transition is labeled with and
has weight- log(p(w2|w1)), the negative log of the

. . L stimated transition probability. The weight of a bi-
We now describe the details of the application %r muwsws that is not seen in the training data can
Welghted finite-state transduc_e_r representations estimated, for example, by backing-off to the un-
glgé)t:gzn;s to speech recognition as introduced 'i@ram.AThat. is, it has. Weigh%log_(ﬁ(wl)f)(wg))f
: wherep(ws) is the estimatedvs unigram probabil-
ity and 3(w- ) is thew, backoff weight [Katz, 1987].
4.1. Speech Recognition Transducers The unseen bigram could be represented as a tran-
sition from statew; to ws in the bigram automaton
As described in Section 2, we will represent variust as a seen bigram. However, this would result in
ous models in speech recognition as weighted-finigg(|1/|2) transitions in the automaton, whef€| is
5This preference assumes the resulting distribution of hteig the .Vocabwa_ry size. A simple approx_|mat|c_)n, with
along paths is not important. As discussed in the next secticth€ introduction of ebackoffstateb, avoids this. In
the weight distribution that results from pushing in the, ) this model, an unseew;ws bigram is represented

semiring has advantages when the resulting automatondsuse gg two transitions: ae-transition from statau; to
pruned search.

4. APPLICATIONSTO SPEECH
RECOGNITION
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non-determinizable.

To make it possible to determinize, we intro-
duce an auxiliary phone symbol, denotgd, mark-
ing the end of the phonetic transcription of each
word. Other auxiliary symbolg; ... #;_; are used
@ when necessary to distinguish homophones, as in the
following example:

Wwyw,/p(w, I w)) @ is scanned. Such unbounded output delays niake
2

Wit Walp(Ws)

r eh d #, read
Figure 14: Word bigram transducer model: Seen bi- r eh d #; red
gramw; we represented asw@,-transition from state
wy to statews; unseen bigranw, ws represented as At most P auxiliary phones are needed, wherds
ane-transition from statev; to backoff staté and as the maximum degree of homophony. The pronunci-
aws transition from staté to statews. ation dictionary transducer with these auxiliary sym-
bols added is denoted hy. Allauzen et al. [2004b]
describe more general alternatives to the direct con-
struction ofL. Inthat work, so long ag correctly de-
stateb with weight —log(3(w1)) and a transition fines the pronunciation transduction, it can be trans-
from stateb to statew; with label ws and weight formed algorithmically to something quite similar to
—log(p(ws)). This configuration is depicted in Fig- [, regardless of the initial disposition of the output
ure 14. This is an approximation since seen bigraminels or the presence of homophony.
may also be read as backed-off unigrams. However, aq introduced in Section 2, we can represent

since the seen bigram typically has higher probabc{ﬁe mapping from context-independent phones to
ity than its backed-off unigram, it is usually @ gooq,, eyt dependent units with a finite-state transducer,
approximation. A similar construction is used fofii Figure 6 giving a transition of that transducer.
higher-order-grams. Figure 15 gives complete context-dependency trans-
These grammars present no particular issues {@licers where just two hypothetical phoneandy
composition. However, the backafftransitions in- are shown for simplicity. The transducer in Fig-
troduce non-determinism in the-gram model. If yre 15(a) is non-deterministic, while the one in
fully determinized withoute-transitions, O(|V|*) Figure 15(b) is deterministic. For illustration pur-
transitions would result. However, we can treat thSOSES, we will describe the non-deterministic ver-
backoff ¢ labels as regular symbols during detersion since it is somewhat simpler. As in Sec-
minization, avoiding the explosion in the number ofion 2, we denote the context-dependent units as
transitions. phong/left context right context Each state in Fig-
As described in Section 2, we represent the prare 15(a) encodes the knowledge of the previous and
nunciation lexiconL as the Kleene closure of thenext phones. State labels in the figure are pairs)
union of individual word pronunciations as in Fig-of the pasta and the futureb, with ¢ representing
ure 2(b). In order for this transducer to efficientlythe start or end of a phone string arén unspec-
compose withG, the output (word) labels must beified future. For instance, it is easy to see that the
placed on the initial transitions of the words; othephone stringzyx is mapped by the transducer to
locations would lead to delays in the composition/ec _y y/x _x z/y _e via the unique state sequence
matching, which could consume significant time an¢k, ) (z, y)(y, z)(z, ¢). More generally, when there
space. aren context-independent phones, this triphonic con-
In general, transducek is not determinizable. Struction gives a transducer with(n?) states and
This is clear in the presence of homophones. Bu?(n?) transitions. A tetraphonic construction would
even without homophones, it may not be detegive a transducer witld(n?) states and(n*) tran-
minizable because the first word of the output stringtions.
might not be known before the entire phone string The following simple example shows the use
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Figure 15: Context-dependent triphone transducers: (@deberministic, (b) deterministic.
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(©
yy/ix_e

(d)

Figure 16: Context-dependent composition examples: (atest-independent ‘string’, (b) context-
dependency applied {@), (c) context-independent automaton, (d) context-depandapplied tqc).
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of this context-dependency transducer. A context- For correctness, the context-dependency trans-
independent string can be represented by the obudiicer C' must also accept all paths containing the
ous single-path acceptor as in Figure 16(a). Thauxiliary symbols added td. to make it deter-
can then be composed with the context-dependenuynizable. For determinizations at the context-
transducer in Figure 15The result is the transducerdependent phone level and distribution level, each
in Figure 16(b), which has a single path labeled withuxiliary phone must be mapped to a distinct context-
the context-independent labels on the input side adépendent-level symbol. Thus, self-loops are added
the corresponding context-dependent labels on theeach state of’ mapping each auxiliary phone to
output side. a new auxiliary context-dependent phone. The aug-

The context-dependency transducer can be cofiented context-dependency transducer is denoted by
posed with more complex transducers than the tri¢--
ial one in Figure 16(a). For example, composing the As we did for the pronunciation lexicon, we can
context-dependency transducer with the transducenrgpresent the HMM set d$, the closure of the union
Figure 16(c) results in the transducer in Figure 16(d)f the individual HMMs (see Figure 1(c)). Note that
By definition of relational composition, this mustwe do not explicitly represent the HMM-state self-
correctly replace the context-independent units wilbops in H. Instead, we simulate those in the run-
the appropriate context-dependent units on all of itsne decoder. Withd in hand,
paths. Therefore, composition provides a conve-
nient and general mechanism for applying context- HoCoLoG
dependency to ASR transducers.

The non-determinism of the transducer in Figdives a transducer that maps from distributions to
ure 15(a) introduces a single symbol matching delayord strings restricted t6.
in the composition with the lexicon. The determin- Each auxiliary context-dependent phone Gh
istic transducer in Figure 15(b) composes withoutmust be mapped to a new distinct distribution name.
matching delay, which makes it the better choice i8elf-loops are added at the initial state ®f with
applications. However, it introduces a single-phoreuxiliary distribution name input labels and auxiliary
shift between a context-independent phone and #entext-dependent phone output labels to allow for
corresponding context-dependent unit in the resuthis mapping. The modified HMM model is denoted
This shift requires the introduction of a finslibse- by H.
quentialsymbol$ to pad out the context. In prac-  we thus can use composition to combine all lev-
tice, this might be mapped to a silence phone or &fs of our ASR transducers into an integrated trans-
e-transition. ducer in a convenient, efficient and general manner.

If we let C represent a context-dependency tran¥¥hen these automata are statically provided, we can
ducer from context-dependent phones to contexipply the optimizations discussed in the next section

independent phones, then to reduce decoding time and space requirements. If
the transducer needs to be modified dynamically, for
CoLoG example by adding the results of a database lookup to

i the lexicon and grammar in an extended dialogue, we
gives a transducer that maps from context-depende,t a hybrid approach that optimizes the fixed parts

phones to word strings restricted to the gramma ihe transducer and uses lazy composition to com-

G. Note thatC' is the inverse of a transducer suchynq them with the dynamic portions during recogni-
as in Figure 15; that is the input and output labelg, [Riley et al., 1997, Mohri and Pereira, 1998].
have been exchanged on all transitions. For nota-

tional convenience, we adopt this form of the context-
dependency transducer when we use it in recognitiarp, Transducer Standardization
cascades.

6Before composition, we promote the acceptor in Figure 16(a0 optimize an integrated transducer, we use three

to the corresponding transducer with identical input antpaiia- _dditional steps; (a) determinization, (b) minimiza-
bels. tion, and (c) factoring.
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4.2.1. Determinization removed:

We use weighted transducer determinization at eadh= 7. (min(det(H o det(C o det(L o G))))). (20)
step of the composition of each pair of transducers.
The main purpose of determinization is to eliminat¥/eighted minimization can be used in different
redundant paths in the composed transducer, therd@gynirings. Both minimization in the tropical semir-
substantially reducing recognition time. In additioning and minimization in the log semiring can be used
its use in intermediate steps of the construction al$dthis context. Itis not hard to prove that the results
helps to improve the efficiency of composition and t6f these two minimizations have exactly the same
reduce transducer size. number of states and transitions and only differ in
First, L is composed with? and determinized, how v_veight i; distributec_zl along pat_hs. The d_iﬁe_rence
yieldingdet(L o G). The benefit of this determiniza-I" Weights arises from differences in the definition of
tion is the reduction of the number of alternative trarf® Weight pushing operation for different semirings.
sitions at each state to at most the number of distinct Weight pushing in the log semiring has a very
phones at that state, while the original transducer migfge beneficial impact on the pruning efficacy of a
have as many ds outgoing transitions at some state§tandard Viterbi beam search. In contrast, weight
whereV is the vocabulary size. For large tasks iushing in the tropical semiring, which is based on
which the vocabulary has)® to 10¢ words, the ad- lowest weights between paths described earlier, pro-
vantages of this optimization are clear. duces a transducer that may slow down beam-pruned

C'is then composed with the resulting transducéitérbi decoding many fold.
and determinized. SimilarlyJ is composed withthe ~ To push weights in the log semiring instead of the
context-dependenttransducer and determinized. THigpical semiring, the potential function is thelog
last determinization increases sharing among HMRI the total probability of paths from each state to the
models that start with the same distributions. At eagitper-final state rather than the lowest weight from
state of the resulting integrated transducer, there istB€¢ state to the super-final state. In other words, the
most one outgoing transition labeled with any givelfansducer is pushed in terms of probabilities along
distribution name, reducing recognition time evedll future paths from a given state rather than the
more. highest probability over the single best path. By us-
In a final step, we use the erasing operation ing — log probability pushing, we preserve a desir-
that replace the auxiliary distribution symbolsdy, able property of the language model, namely that the
The complete sequence of operations is summariZ¥gights of the transitions leaving each state are nor-

by the following construction formula: malized as in a probabilistic automaton [Carlyle and
' Paz, 1971]. We have observed that probability push-
N = r.(det(H o det(C o det(L o G)))). (19) ing makes pruning more effective [Mohri and Riley,

2001], and conjecture that this is because the acoustic

where parentheses indicate the order in which the olé'#-e“hOOds and the transducer probabilities are now

erations are performed. The resiltis an integrated ynchronizedo obtain the optimal likelihood ratio

recognition transducer that can be constructed ev}?ﬁ;t for deciding whether to prune. We further con-

in very large-vocabulary tasks and leads to a substziﬁ(—:mre that this reweighting is the best possible for

: A LA : gruning. A proof of these conjectures will require a
tial reduction in recognition time, as the experlmentCareful mathematical analvsis of brunin
results below show. y P 9.

We have thustandardizedhe integrated trans-

ducer in our construction — it is theniquedetermin-
4.2.2. Minimization istic, minimal transducer for which the weights for all

transitions leaving any state sumtan probability,
Once we have determinized the integrated transduagp, to state relabeling. If one accepts that these are
we can reduce it further by minimization. The auxildesirable properties of an integrated decoding trans-
iary symbols are left in place, the minimization algoelucer, then our methods obtain thptimal solution
rithm is applied, and then the auxiliary symbols aramong all integrated transducers.
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Figure 17: Recogpnition transducer construction: (a) gramt (b) lexiconL, (¢) L o G, (d)det(L o G), (e)
MiNtropical(det(L o G)), (f) minjog(det(L o G)).
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Figure 17 illustrates the steps in this construd-  transducer | states | transitions]
tion. For simplicity, we consider a small toy grammaf G 1,339,664 3,926,010
and show the construction only down to the contex{-7. o G 8,606,729| 11,406,721
independent phone level. Figure 17(a) shows the to¥det (L o G) 7,082,404] 9,836,629
grammarG and Figure 17(b) shows the lexicdn Codet(Lo@)) 7,273,035| 10,201,269
Note the word labels on the lexicon are on the initigt det(HoCoLoG) | 18,317,359 21,237,992
transitions and that disambiguating auxiliary symFz 3,188,274| 6,108,907
bols have been added at the word ends. Figure 17 %in(F) 2,616,948 5,497,952

shows their compositiof o G. Figure 17(d) shows

the resulting determinizationjet(L o G); observe Taple 2: Size of the first-pass recognition transducers
how phone redundancy is removed. Figures 17(&)rthe NAB 40, 000-word vocabulary task.

(f) show the minimization stepmin(det(L o G));

identical futures are combined. In Figure 17(e), the

minimization uses weight pushing over the tropical

semiring, while in Figure 17(f), the log semiring isleft-to-right HMM state distribution names to-state
used. HMMs. SinceH’ can be separately represented in
the decoder’s HMM specification, the actual recog-
nition transducer is jusk'.

Chain inputs are in fact replaced by a single label
For efficiency reasons, our decoder has a sepznly when this helps to reduce the size of the trans-
rate representation for variable-length left-to-righducer. This can be measured by definingglaén of
HMMs, which we will call theHMM specification the replacement of an input strimgof a chain by:
The integrated transducer of the previous section
does not take good advantage of this since, haviago) = Z
combined the HMMs into the recognition transducer rechain(N)i[x]=o
proper, the HMM specification consists of trivial one-
state HMMs. However, by suitablactoringthe in-  where|o| denotes the length of the strig i[7] the
tegrated transducer, we can again take good adv@iput label and|r] the output label of a path. The
tage of this feature. replacement of a string helps reduce the size of the

A path whose states other than the first and lasansducer it7(c) > 0.

have at most one outgoing and one incoming tran- Our implementation of the factoring algorithm al-
sition is called achain The integrated recognitionjows one to specify the maximum numbef re-
transducer just described may contain many chaipgcements done (thechains with the highest gain

after the composition witltl, and after determiniza- are replaced), as well as the maximum length of the
tion. As mentioned before, we do not explicitly repchains that are factored.

resent the HMM-state self-loops but simulate them  r4c¢6ring does not affect recognition time. It can

in the run-time decoder. The set of all chains\is  hq\yever significantly reduce the size of the recogni-

denoted byhain(IV). tion transducer. We believe that even better factoring
The input labels ofV name one-state HMMs. We methods may be found in the future.

can replace the input of each lengilthain inN by a
single label naming an-state HMM. The same label
is used for all chains with the same input string. Thé-2.4. Experimental Results — First-Pass Transduc-
result of that replacement is a more compact trangts

ducer denoted by". The factoring operation ofv
leads to the following decomposition:

4.2.3. Factoring

(22)

o] = folx]| — 1,

We used the techniques discussed in the previous sec-
tions to build many recognizers. To illustrate effec-
tiveness of the techniques and explain some practi-
cal details, we discuss here an integrated, optimized
where H' is a transducer mapping variable-lengthecognition transducer for40, 000-word vocabulary

N=HoF, (21)
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transducer x real-time transducer x real-time
CoLod 12.5 CoLoG .18
Codet(LoQG) 1.2 Codet(LoG) A3
det(HoCoLoG@G) 1.0 C omin(det(L o G)) .02
min(F) 0.7

() (b)

Table 3: (a) Recognition speed of the first-pass transdicéng NAB 40, 000-word vocabulary task at 83%
word accuracy. (b) Recognition speed of the second-passdugers in the NAB60, 000-word vocabulary
task at 88% word accuracy.

North American Business News (NAB) task. The We used these transducers in a simple, general-
following models are used: purpose, one-pass Viterbi decoder applied to the
DARPA NAB Eval '95 test set. Table 4.2.4(a) shows

e Acoustic model of 7,208 distinct HMM states,the recognition speed on a Compaq Alpha 21264

each with an emission mixture distribution of ugProcessor for the various_ optimizations, where the
to twelve Gaussians. word accuracy has been fixed at 83.0%. We see that

the fully-optimized recognition transducenin(F'),
e Triphonic context-dependency transducéwith  sybstantially speeds up recognition.

1,525 states and 80,225 transitions. To obtain improved accuracy, we might widen the
e 40,000-word pronunciation dictionary, with an decoder bearfi use a larger vocabulary, or use a less

out-of-vocabulary rate of 2.3% on the NAB Evafect of vocabulary size (with a bigram LM and opti-
'95 test set. mization only to thel, o G level). We see that beyond

40,000 words, there is little benefit to increasing the
e Trigram language modek with 3,926,010 tran- vocabulary either in real-time performance or asymp-
sitions built by Katz’s back-off method with fre- totically. Figure 18(b) shows the affect of the lan-
quency cutoffs of 2 for bigrams and 4 for trigramsguage model shrinking parameter. These curves were
shrunk with an epsilon ofl0 using the method produced by Stephan Kanthak of RWTH using our
of [Seymore and Rosenfeld, 1996], which retaineglansducer construction, but RWTH’s acoustic mod-
all the unigrams, 22.3% of the bigrams and 19.1%ls, as part of a comparison with lexical tree meth-
of the trigrams. Perplexity on the NAB Eval '950ds [Kanthak et al., 2002]. As we can see, decreasing
test setis 164.4 (142.1 before shrinking). the shrink parameter from 40 as used above to 10 has
a significant affect, while further reducing it to 5 has

We applied the transducer optimization steps ¥8"Y little affect. An alternative to using a larger LM
described in the previous section except that we al§-l0 USe & two-pass system to obtain improved accu-
plied the minimization and weight pushing after factacy, as described in the next section. This has the

toring the transducer. Table 2 gives the size of trgdvantage it allows quite compact shrunken bigram
intermediate and final transducers. LMs in the first-pass, while the second pass performs

Observe that the factored transduggn(F) has as well as the larger-model single pass systems.
only about40% more transitions that¥. The HMM While our examples here have been on NAB,

specificationf’ consists of 430,676 HMMs with anWe have also applied these methods to Broadcast

about10% of the memory ofnin(F) in the decoder 0US AT&T-specific Iarge—vqcabulary tasks_, [Allauzen
(due to the compact representation possible from £&al., 2004b]. In our experience, fully-optimized and

specialized topology). Thus, the overall memory re- 7these models have an asymptotic wide-beam accuracy of
duction from factoring is substantial. 85.3%.




Springer Handbook on Speech Processing and Speech Conatiomic 27

factored recognition transducers provide very fast de- 6-gram language modél with 40,383,635 tran-
coding while often having well less than twice the sitions built by Katz’s back-off method with fre-
number of transitions as their word-level grammars. quency cutoffs of 1 for bigrams and trigrams, 2
for 4-grams, and 3 for 5-grams and 6-grams. It
is shrunk with an epsilon of using the method
4.2.5. Experimental Results — Rescoring Transduc- of Seymore and Rosenfeld, which retained all the
ers unigrams, 34.6% of the bigrams, 13.6% of the
trigrams, 19.5% of the 4-grams, 23.1% of the 5-
The weighted transducer approach is also easily ap-grams, and 11.73% of the 6-grams. Perplexity on
plied to multipass recognition. To illustrate this, we the NAB Eval '95 test set is 156.83.
now show how to implement lattice rescoring for a ) o
160, 000-word vocabulary NAB task. The following ~ We applied the transducer optimization steps de-
models are used to build lattices in a first pass: scribed in the previous section but only to the level of
Lo G (whereG is each lattice). Table 4.2.4(b) shows
e Acoustic model of 5,520 distinct HMM statesthe speed of second-pass recognition on a Compagq
each with an emission mixture distribution of upAlpha 21264 processor for these optimizations when
to four Gaussians. the word accuracy is fixed at 88.0% on the DARPA
Eval ‘95 test sef. We see that the optimized recogni-
tion transducers again substantially speed up recog-
nition. The median number of lattice states and arcs
e 160, 000-word pronunciation dictionary with an  is reduced by~ 50% by the optimizations.
average of 1.056 pronunciations per word and an
out-of-vocabulary rate of 0.8% on the NAB Eval
‘95 test set.

e Triphonic context-dependency transducémvith
1,525 states and 80,225 transitions.

5. CONCLUSION

e Bigram language modeF with 1,238,010 tran- We presented an overview of weighted finite-state
sitions built by Katz's back-off method with fre-transducer methods and their application to speech
guency cutoffs of 2 for bigrams. It is shrunk withrecognition. The methods are quite general, and can
an epsilon ofl60 using the method of [Seymorealso be applied in other areas of speech and language
and Rosenfeld, 1996], which retained all the urprocessing, including information extraction, speech
igrams and 13.9% of the bigrams. Perplexity osynthesis [Sproat, 1997, Allauzen et al., 2004a],
the NAB Eval '95 test set is 309.9. phonological and morphological analysis [Kaplan

and Kay, 1994, Karttunen, 1995], in optical char-
We used an efficient approximate lattice generacter recognition, biological sequence analysis, and
tion method [Ljolje et al., 1999] to generate word latother pattern matching and string processing applica-
tices. These word lattices are then used as the ‘grafions [Crochemore and Rytter, 1994], and in image
mar’ in a second rescoring pass. The following mogrocessing [Culik Il and Kari, 1997], just to mention
els are used in the second pass: some of the most active application areas.

e Acoustic model of 7,208 distinct HMM states,
each with an emission mixture distribution of upAcknowledgments
to twelve Gaussians. The model is adapted to each
speaker using a single full-matrix MLLR trans-We thank Andrej Ljolje for providing the acoustic models

form [Leggetter and Woodland, 1995]. and Don Hindle and Richard Sproat for providing the lan-
' guage models used in our experiments.
e Triphonic context-dependency transducemith The first author's work was partially funded by the

1,525 states and 80,225 transitions. New York State Office of Science Technology and Aca-
e 160, 000-word stochastic, TIMIT-trained, demic Research (NYSTAR). The second author’s work was
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