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ABSTRACT in small vocabulary recognition tasks, where the relayivel

This paper describes, and evaluates on a large scale, theelat SMall number of competing hypotheses makes training vi-
based framework for discriminative training of large vogkny able e.g. [21, 14, 28]. For large vocabulary tasks, esggcial
speech recognition systems based on Gaussian mixturerhiddeon large datasets there are two main problems: generalisa-
Markov models (HMMs). The paper concentrates on the maximumtion to unseen data in order to increase test-set perforenanc
mutual information estimation (MMIE) criterion which hagdn over MLE; and providing a viable computation framework

used to train HMM systems for conversational telephone @pee to estimate confusable hypotheses and perform parameter
transcription using up to 265 hours of training data. These e ggtimation.

periments represent the largest-scale application ofitigtative . .
training techniques for speech recognition of which théarg are The computation problem can be ameliorated by the use

aware, and have led to significant reductions in word erra far of a lattice-based discrimiqative training framework [30]
both triphone and quinphone HMMs compared to our best modelscompactly encode competing hypotheses. This has allowed
trained using maximum likelihood estimation. The MMIE iegt investigation of the use of maximum mutual information es-
based implementation used; techniques for ensuring ineprgen-  timation (MMIE) techniques on large vocabulary tasks and
eralisation; and interactions with maximum likelihood édsdap-  large data sets and a variation of the method described in
tation are all discussed. Furthermore several variatianshée [30] is used in the work described in this paper.
MMIE tfa?ning scheme are introduced with the aim of reducing For large vocabulary tasks, it has often been held that
over-training. discriminative techniques can mainly be used to produce
HMMs with fewer parameters rather than increase absolute
1. INTRODUCTION performance over MLE-based systems. The key issue here
The model parameters in HMM based speech recognitionis one ofgeneralisation and this is affected by the amount
systems are normally estimated using Maximum Likelihood of training data available, the number of HMM parameters
Estimation (MLE). If speech really did have the statistiss a estimated, and the training scheme used.
sumed by an HMM (model correctness) and an infinite train-  Some discriminative training schemes, such as frame-
ing set was used, the global maximum likelihood estirate discrimination [14, 24], try to over-generate training seh-
is optimal in the sense that it is unbiased with minimum fysions to improve generalisation. Similarly in the case of
variance [19]. However, when estimating the parameters of\iMIE-based training, an increased set of training set con-
HMM-based speech recognisers, training data is not unlimfysjons can improve generalisation. The availability afyve
ited and the true data source is not an HMM. In this caselarge training sets for acoustic modelling and the computa-
examples can be constructed where alternatiserimina-  tional power to exploit these has also been a primary moti-

tive training schemes such as the Maximum Mutual Infor- vation for us to carry out the current investigation of large
mation Estimation (MMIE) can provide better performance scale discriminative training.

than MLE [20]. o ] The paper first introduces the MMIE training criterion
~ During MLE training, model parameters are adjusted {0 5nq jts optimisation using the Extended Baum-Welch al-
increase t_hg likelihood of thg word str_mgs Correspondmggorithm_ The use of lattices in MMIE training is then de-
to the training utterances without taking account of the g¢rihed, and the particular methods used in this paper are in
probability of other possible word strings. In contrast t0 yoquced. Sets of experiments for conversational telephon
MLE, discriminative training schemes take account of pos-yanscription are presented that show how MMIE training
sible competing word hypotheses and try and reduce thga pe successfully applied over a range of training sessize
probability of incorrect hypotheses (or recognition esor The effect of methods to improve generalisation, the inter-
directly). Discriminative schemes have been widely usedaction with maximum-likelihood adaptation and variations
11t should be noted that conventional HMM training schemey &ind on the basic training scheme to avoid over-training are then
a local maximum of the likelihood function. discussed.




2. MMIE CRITERION far from the decision boundary, in a similar way to Mini-

MLE increases the likelihood of the training data given Mum Classification Error (MCE) training [2], did not result
the correct transcription of the training data: models IN iMproved recognition performance.
from other classes do not participate in the parameter re-
estimation. MMIE training was proposed in [1] as an alter- 3. EXTENDED BAUM-WELCH ALGORITHM
native to MLE and maximises the mutual information be- The MMIE objective function can be optimised by any of
tween the training word sequences and the observation sdhe standard gradient-based methods although these are ei-
guences. When the language model (LM) parameters aréher slow to converge or, if using second order information,
fixed during training (as they are in this paper and in al- may be impractical for very large systems. Hence in this
most all MMIE work in the literature), the MMIE criterionis  work, we have used a version of the Extended Baum-Welch
equivalent to Conditional Maximum Likelihood Estimation (EBW) algorithm for optimisation.
(CMLE) proposed in [19]. CMLE increases thgosteriori The EBW algorithm uses re-estimation formulae reminis-
probability of the word sequence corresponding to the rain cent of those used by the standard Baum-Welch algorithm
ing data given the training data. However the technique isfor MLE training. It is shown in [9] that a re-estimation for-
still normally referred to as MMIE and we use this term in mula of the form

this paper. Xii (22 + D)
For R training observationd 01, 0s,...,0,,...Ogr} A = BTN 0N 3)
with corresponding transcriptiongs, }, the CMLE/MMIE Y k(P + D)

objective function is given by
will converge to give a local optimum aof () for a suffi-

pA(Or| My, ) P(w,) ciently large value of the constaft.

> PA(Or|[ M) P () @ Mean and variance Updates

For continuous density HMMs, such as used in this work,
where M,, is the composite model corresponding to the the formulain (3) does not lead to a closed form solution for
word sequencev and P(w) is the probability of this se- the re-estimation of means and variances. However, using
guence as determined by the language model. The summar discrete approximation to the Gaussian distribution,-Nor
tion in the denominator of (1) is taken over all possible word mandin [22] showed that the mean of a particular dimension
sequences allowed in the task and it can be replaced by  of the Gaussian for stage mixture componentr, u;,,, and
the corresponding varianaegm (assuming diagonal covari-

R
Fumr () = Z log
r=1

PA(Or | Mden) = Z PA(Or| M) P() (2)  ance matrices) can be re-estimated by
 {emm(0) 430 (0)} + Dpgj
where M. encodes the full acoustic and language model Hjm = { ! T ) . 4)
used in recogniti 1" =t + D
gnition.
It should be noted that optimisation of (1) requires the guum 92y _ pden (2 2 2
- . . im — Yim +D jm + jm ~

maximisation of the numerator term) (O, | M., ), which &7 105" (0%) njm'( je}n (9 Hym) — [
is identical to the MLE objective function, while simul- {2t + D
taneously minimising the denominator tepm(O|Maden ). (5)

In these equations, th ., (O) andé, ,,(0?) are sums of
data and squared data respectively, weighted by occupancy,
for mixture component: of statej, and the Gaussian occu-
pancies (summed over time) ayg,,. The superscriptsum
andden refer to the model corresponding to the correct word
sequence, and the recognition model for all word sequences,
respectively.

Since the denominator includes all possible word sequence
(including the correct one) the objective function has a-max
imum value of zero. The minimisation of the denominator
might ordinarily involve doing a recognition pass on all the
training data for each iteration of MMIE training. While #hi
is viable for small vocabulary tasks, it is too computation-
ally expensive for large vocabulary tasks when, for instanc
cross-word context dependent acoustic models are used ifetting D
conjunction with a long span language model. Therefore,an A key issue in using the update equations, (4) and (5),
approximation to the denominator is required for the com-is setting the constar®. If the value set is too large then
putational load to be feasible. training is very slow (but stable) and if it is too small the
Another notable feature of the MMIE objective function updates may not increase the objective function on each it-
is that it gives greater weight to training utterances whicheration. A useful lower bound oR is the value which en-
have a low posterior probability of the correct word se- sures that all variances remain positive. In [30] this lower
quence. This feature, further discussed in [12, 28], catdra bound constraint was shown to lead to a system of quadratic
with the situation in MLE where all training utterances are inequalities to find a suitable value 6f, and in factD was
equally weighted. While it has been argued that MMIE may set to twice that value. Furthermore, using a single global
give undue weight to outlier training utterances, attenipts value of D can lead to very slow convergence, and in [30] a
[28] to modify the criterion to deweight training utteraisce phone-specific value dd was used.



In preliminary experiments for the work reported here, it objective function is given in [25] and uses the assumption
was found that the convergence speed could be further imthat as each mixture weight s varied, the mixture component
proved if D was set on a per-Gaussian level, i.e. a Gaussiamccupancies that would be obtained from forward-backward
specificD ;,,, was used. Itwas set at the maximum of i) twice alignment will vary by a factor that is between 1 and the ra-
the value necessary to ensure positive variance updates fdio of the new to the old mixture weights. For the purposes
all dimensions of the Gaussian; or ii) a global constant of the proof, the mixture weight occupancies must also be
multiplied by the denominatoroccupan@%?. assumed to be independent of the other parameters in the

The bulk of the experiments in this paper use a valueHMM.
of E = 1. However, in Section 8, the use of other val-  The optimisation of (9) may be performed using a generic
ues forE are investigated: eithet = 2 or a value termed  function-optimisation routine. However, in the experirtgen
E = halfmax. The latter setting is found by first computing reported here an iterative scheme was used which involves
the value ofD;,,, as twice the minimum value for positive (repeatedly) taking each mixture weight in turn and find-
variances for each Gaussian and then setting half the  ing the optimal value of that weight assuming the others’
maximum value of22z for all Gaussians. The scheme re- relative values are fixed while maintaining the sum-to-one

den

sults in a way of settmgﬂ that is fairly task and HMM-set ~ constraint.

independent. Whef# = halfmax was used for the experi- The update equation for a single row of a transition matrix
ments in this papef; increased from about 2 to 6 as training IS performed in the same way as the mixture weight update.
progressed. Note that for both the mixture weights and transition proba-

bilities, if the denominator occupancies are zero the updat
is equivalent to the standard MLE update.

It should be noted that for the decision-tree tied-state mix
ture Gaussian HMMs used in the experiments reported here,
the effect of MMIE training on the mixture weights (and
hence the mixture weight update itself) is relatively unim-
portant. Of course, for an HMM system using tied mixture
models, the mixture weight update rule is of much greater
significance.

Mixture Weight & Transition Probability Updates
The originally proposed re-estimation formula for the
mixture weight parameters,,, follows directly from (3)

Cjm {aif + C}
2 Cirin {80 + C}

The constant is chosen such that all mixture weights are
positive. However, the derivative

(6)

ij =

4. LATTICE-BASED MMIE TRAINING:
0F _ 1 (jmum _ deny @ PREVIOUS WORK

= im — Yim
aij Cim J J

The parameter re-estimation formulae presented in Sec-

is extremely sensitive to small-valued parameters. As an altion 3 require the generation of occupation and weighted
ternative, a more robust approximation for the derivatiesw data counts for both the numerator terms which rely on us-

suggested in [18]: ing the correct word sequence and the denominator terms
which use the recognition model.
OF _ Yjm. Yo The calculation of the denominator terms directly is com-

cjm > Yiam B S Vden (8) putationally very expensive and so approximationsto the de
nominator have been suggested. Early work suggested us-
This method was used, for example, by [21, 30]. Unfor- ing N-best lists [3] which are calculated once (from an MLE
tunately this update rule can lead to instability as tragnin model set) to approximate the set of possible sentences dur-
proceeds and so an alternative was sought. ing MMIE training. However, for even moderately complex
The alternative mixture weight update rule suggested hergasks and long sentences only a very small number of the
is free from smoothing constants, and informal experimentsprobable sentences will be included. An alternative is ® us
have shown that normally it results in a faster increaseén th some type of lattice structure to represent the variougylike
overall MMIE objective function than the above approach alternatives. In [23] a looped lattice model was proposed
with the derivative approximation in (8). which could include any pronunciation of a particular word
For a particular statg, the mixture weight update used in at most once. The approach was evaluated using a 2000
this paper consists of finding the mixture weights which word task with a few hours of training data.
maximise the following function: A more sophisticated approach to the use of word lattices
o that fuII_y encode sequentigl acoustic and Ianguage model
Z R log 5, — %_mc 9) constraints was presented in [29, 30]. The Iatucg; used wer
e, " generated by the HTK large vocabulary recognition system
[31]. The HTK lattices are composed of nodes which repre-
subject to the sum-to-one constraint. In (9), thg are the  sent the ends of words at particular points in time and the
original weights and the;,,, are the mixture componentoc- arcs that connect these represent particular word pronun-
cupancies. A proof that maximising (9) will increase the ciations. The denominator lattices often contain repeated



arcs/nodes to encode slightly different start/end time$ an model, lexical and LM) but provides far more “confusable”
different start/end context-dependent HMMs due to variantstates for any particular utterance. This in turn, as would
previous/following words. Lattices are generated oncegisi be expected, reduces training set performance compared to
an MLE HMM set, and then used repeatedly for several iter-MMIE but improves generalisation. In [24] it was shown
ations of MMIE training. The technique also uses latticas fo that the improvements obtained by FD were at least as good
collecting the numerator statistics to represent the pdigi as those reported by MMIE using the same models and task
of alternative pronunciations. In cases where the recegnis setup in [30]. It could be argued that FD over-generalises th
generated denominator lattices did not contain the correctonfusable data set by modelling confusions that will never
sequence, the denominator lattice was formed by mergingn practice arise, and will perform more poorly for the most
the recogniser lattice with the numerator lattice. challenging recognition tasks with greater inherent atious
Given word lattices for the numerator and denominator,confusability. It was reported in [32] that FD didn’t imprev
the technique in [30] performed at each iteration a forward-error rates over MLE trained models for a broadcast news
backward pass at the word lattice node/arc level to generrecognition task.
ate the posterior probability of a particular lattice arcoe  \yeakened Language Models
ring. The Viterbi state-level segmentation for for each arc
was found, and used with the arc posterior probability to
calculate the statistics for the EBW re-estimation fornsula

In [27] it was shown that improved test-set performance
could be obtained using a unigram LM during MMIE train-
) ing, even though a bigram or trigram was used during recog-
The method was used to train HMM sgts for up FO 65k word ion 3 The aim is to provide more focus on the discrimi-
vocabulary tasks for the North American Business Newsy a4 nrovided by the acoustic model by loosening the lan-
corpus udsmg crossrgword triphone agoustlc models, N-granyy;age model constraints. In this way, more confusable data
LMs, and up to 66 hours of training data. is generated which improves generalisation. The use of a

unigram LM during MMIE training is further investigated
5. IMPROVING MMIE GENERALISATION in this paper.

A key issue in MMIE training (and discriminative train-  acqustic Model “Scaling”

ing in general) is the ggneralisation performancei.e. the d_ When combining the likelihoods from an HMM-based
ference b_ereen training set and test .sc-at accuracy. Wh"%coustic model and the LM it is usual to scale the LM log
MMIE training often greatly reduces training set error from probability. This is necessary because, primarily due to in

an MLE baselllne, the reduction in error rate on an indepen- ;i modelling assumptions, the HMM underestimates the
dent test set is normally much less, i.e., compared to MLE,

h lisati ¢ . Furth glrobability of acoustic vector sequences leading to a very
the generalisation performance is poorer. Furthermore, a3 ije dynamic range of likelihood values.

with all statistical modelling approaches the more complex 5, alternative to LM scaling is to multiply the acoustic
the model the poorer the generalisation. Since fairly COM model log likelihood values by the inverse of the LM scale
plex mOdEIS are 'n.eeded tp obtain optimal .performance. W'thfactor (acoustic model scaling). This will produce the same
.MLE’ it can be q|ﬁ|cult to improve these with MMIE tra|n-. effect as language model scaling when considering only a
ing. Therefore it has been widely thought that the majorSingle word sequence as for Viterbi decodihgdowever,
application of discriminative training techniques to larg- when likelihoods from different sequences are added, such
cabulary recognition tasks is to reduce error rates when reIas in the forward-backward algorithm or for the denon’ﬂna-

atively few parameters are used rather than to improve the, ¢ (1) the effects of LM and acoustic model scaling are
best achievable error rates from MLE training: this paper 'Sverydifferent. If language model scaling is used, one parti

aimed at challenging that view. ular state-sequence tends to dominate the likelihood at any

There have been a number of approaches to try to 'Mpoint in time and hence dominates any sums using path like-

prove generalisation performance for MMIE-type training lihoods. However, if acoustic scaling is used, there will be

schemes, some of which are discussed below. These metly, o 5| paths that have fairly similar likelihoods whichkea
ods involve trying to increase the amount of confusable dataa non-negligible contribution to the summations. Therefor

processed during tr;;urjlng |nhsomehway. The Frlar_ng Dis-acoustic model scaling tends to increase the confusatde dat
crimination (FD) technique, that we have previously iniest set in training by broadening the posterior distribution of

gated, is discussed first. In this paper we have experimentegitate occupation?® that is used in the EBW update equa-

; ) . . ) : der
with two other techniques aimed at improving generalisa-(i, s - This increase in confusable data also leads to im-

tion: weaker language models and acoustic model scaling. proved generalisation performance.

Frame Discrimination It should be noted that acoustic scaling is used for similar
Frame Discrimination (FD) [14] replaces the recognition reasons when finding word posterior probabilities from lat-

mOdEI. probability in the denominator of (1) with all Gaps- 3Although a unigram was used in MMIE training, the confusattéa

sians in parallef. FD therefore removes many constraints was also constrained by the word lattices used which werergesd with

that make some Gaussian sequences very unlikely (phongtrigramLM. , , S

4The acoustic model and LM scaling effects will be identical the
2A unigram Gaussian level language model based on trainingeser- Viterbi path only if all components of the acoustic model likglihood are

rences is used. scaled including the contribution from transition probiieis.




tices [17, 4] which are used for either posterior decoding orto the union of the original sets of transitions, with dupli-

confidence estimation. cates removed. This process of lattice reduction is repeate
until no further merges are possible and decreases the aver-
6. CURRENT LATTICE-BASED TRAINING age lattice density by up to an order of magnitude. A full
METHODS forward-backward search on the resulting lattice is than pe

. o i ) , formed, with the time information for each phone, extended
~ The lattice-based training technique used in this papef,y 5 small margin, used for pruning. The acoustic likeli-
is based on that in [30] but has various differences in de+,50q scaling is performed by directly scaling the values of
tail. Fgrther_more several variants of the currentscheme ha 4 state output distribution log probability densitiegpiF
been investigated. cally, the full-search method takes about 1xRT per iteratio

The first step is to generate word-level lattices, normally for the experiments in Section 7.
using an MLE-trained HMM system and a bigram LM ap-

propriate for the training set. This step is normally per- Details of the Exact-Match Implementation .

formed just once and for the experiments in Section 7 the 1h€ exact-maich approach calculates the likelihood of

word lattices were generated in about 5x Real-Time (RT) each phone segment in the lattice, based on its start and end
The second step is to genergibone-marked lattices times, and then accumulates statistics for the EBW updates

which label each word lattice arc with a phone/model se-4sINg the forward-backward algorithm. There are two pos-

guence and the Viterbi segmentation points. These are ar%Ible advantageg to this approach. Flr'stly, only one .fo“’“”?“
ackward pass is necessary for a given model with given

found from the word lattices and a particular HMM set, start and end times. no mater how many fimes it ADDears
which may be different to the one used to generate the orig- : ' W vl 't app

inal word-level lattices. In our implementation, these p@o in thellattice and hence the exact-match typically runséwic
marked lattices also encode the LM probabilities used inds quickly as the fgll—;earch method. Secondly, the segmgnt
MMIE training which again may be different to the LM used level acoustic log likelihoods can be scaled as a whole which

to generate the original word-level lattices. This stags-ty keeps multi_ple parallel confusable models while retaining
cally took about 2xRT to generate triphone-marked latticesS21P transitions between states. However, the fact teat th
for the experiments in Section 7, although the speed of thissegmentanon times in the .phor_1e—m§1rked lattices are tjgate
process could be considerably increased. as constants across multiple iterations of MMIE training
Given the phone-marked lattices for the numerator andCOUId lead to reduced accuracy.
Qenomlnator.of each training audio segment, two alteraatly 7 MMIE EXPERIMENTS WITH HUB5 DATA
implementations have been used to generate the Gaussian-
level occupation probabilities and associated weightetd-d ~ This section describes a series of MMIE-training exper-
statistics needed for EBW updates. Ti-search imple-  iments using the Cambridge University HTK (CU-HTK)
mentation aims to perform a full forward-backward pass System for the transcription of conversational telephone
at the state-level constrained by the lattice. Pruning isdata from the Switchboard and Call Home English corpora
performed by using the phone-marked lattice Segmema(“HubS”data). These experiments were performed in prepa-
tion points extended by a short-period in each direcfion. ration for the NIST March 2000 Hub5 Evaluation.
However in the alternativexact-match case, a state-level The experiments investigated the effect of different train
forward-backward pass for each context-dependent modend set and HMM set sizes and types; the use of acous-
instance in the lattice is performed solely between thetic likelihood scaling and unigram LMs in training and any
Viterbi segmentation points for each model. In both casesossible interactions between MMIE training and maximum
the search was also optimised as far as possible by comlikelihood linear regression-based adaptation. All the ex
bining redundantly repeated models which first requires theP€riments in this section used the full-search latticezing
conversion to a model-level lattice. For the recognition ex implementation and a value @ = 1 to set the Gaussian-
periments in this paper, these model-level lattices tyllyica specificD for EBW updates. The effect of alternatives will
have an average lattice density of several hundred arcs. Difte discussed in Section 8.
ferent optimisations were possible in the two cases an@thesBasic CU-HTK Hub5 System
are discussed below. The CU-HTK Hub5 system is a continuous mixture den-
sity, tied-state cross-word context-dependent HMM system
based on the HTK HMM Toolkit. The full system operates
in multiple passes, using more complex acoustic and lan-
guage models and unsupervised adaptation in later passes.
Incoming speech is parameterised into cepstral coeffi-
cients and their first and second derivatives to form a 39
e?Iimensional vector every 10ms. Cepstral mean and vari-
ance normalisation and vocal tract length normalisation is
5All run times are measured on an Intel Pentium |11 running%aMHz. performed for each conversation side in both training and
6Typically 50ms at both the start and end of each phone. test.

Details of the Full-Search Implementation

For the full-search case, the model-level lattice is com-
pacted by combining instances of the same model which oc
cur in the same position in the same word and overlap in
time. A single instance of the model is created with stad/en
times the minimum/maximum of the two original models.
The set of arcs entering/leaving the new combined arc is s




The HMMs are constructed using decision-tree based Baseline genderindependentsets of triphone HMMs were
state-clustering [33] and both triphone and quinphone mod-<created for each training set and trained using MLE. The
els can be used. The lexicon used in the experiments belowmumber of clustered speech states in each triphone model
was either a 27k vocabulary (as used in [10]) or a 54k vocab-set; the number of Gaussians per state; and the average num-
ulary and the core of this dictionary is based on the LIMSI ber of Gaussians to be trained per hour of training data is
1993 WSJ lexicon. The system uses word-based N-grangiven in Table 2. Note that there are two versions of the
LMs estimated from an interpolation of Hub5 acoustic train- MLE model set for Minitrain.
ing transcriptions and Broadcast News texts. In the experieyperiments with 18 Hours Training
ments reported here, trigram LMs are used unless otherwise Initially we investigated MMIE training using Minitrain

stated. , _ _ with 12 Gaussian/state HMMs which were our best MLE
The system operates in multiple passes. Triphone model§aineq models. Lattices were generated on the training set
are used in word lattice generation. The lattices are used fousing a bigram LM. The bigram 1-best hypotheses had a

both later recognition passes and also during system deveb, o4 word error rate (WER) and a Lattice WER (LWER)
opment. Lattice rescoring was used to generate many of th@l] of 6.2%.

results given below.

Baseline Models and Hub5 Training/Test Data MMIE __%WER .
Three different training sets and three different test sets Iteration | Acoustic Scaling| LM Scaling

were used in the MMIE experiments. The different training 0 (MLE) 50.6 50.6

sets, ranging from 18 hours to 265 hours in size were used 1 50.2 51.0

to investigate how well the MMIE approach scales to very 2 49.9 51.3

large training sets while still allowing many experimerus t 3 50.5 51.4

be run. 4 50.9 -

The characteristics of the three training sets are shown inT ble 3: 18 h ] s with 12 mixt ¢ model

. : . _ laple o! our experiments wi mixture component moaeis

Tablg 1. The M.Im.tram set., defined by. BBN, used BBN (eval97sub): comparison of acoustic model and languagesimod
provided transcriptions, while the h5train00 sets used-tra gcajing.

scriptions based on those provided by Mississippi State Uni

versity (MSU). All the training sets contain data from the  The Minitrain 12 Gaussian/state results given in Table 3

Switchboard | (SWB1) corpus and the h5train00 sets alsacompare acoustic and language model scaling for several it-
contain Call Home English (CHE) data. The h5train00suberations of MMIE training. It can be seen that acoustic scal-

set is a subset of h5train00 and covers all of the traininging he|ps avoid Over_training and the best WER is after 2

speakers in the SWB1 portion of h5train00, and a subset ofterations. The training set lattices regenerated afténa s

CHE. gle MMIE iteration gave a WER of 16.8% and a LWER of
— . — 3.2%, showing that the technique is very effective in reduc-
Traslnlng i Total Conversation Sides ing training set error. However, it was found that these re-
: 'et : Time (hrs)| SWB1 | CHE generated lattices were no better to use in subsequent train
M'”ftra'” 18 398 - ing iterations and so all further work used just the inigall
h5train00Osub 68 862 92 generated word lattices.
h5train00 265 4482 235 The advantage from MMIE training for the 12 Gaussian

per state system is small and so a system with fewer Gaus-
sians per state was investigated. As shown in Table 2 the

The test sets used were a subset of the 1997 Hub5 eva?— Gaussian sy;tgm has approxmate!y the same ratio of pa-
. S : . meters to training data as our h5train0O0sub system.
uation set, eval97sub, containing 10 conversation sides o?a

Table 1: Hubb5 training sets used.

Table 2: Hub5 Triphone Model Sets

Switchboard Il (SWB2) data and 10 of CHE; the 1998 eval- MMIE %WER
uation data set, eval98, containing 40 sides of SWB2 and 40 lteration [ Latfice Bigram| Lattice Unigram
CHE sides (in total about 3 hours of data) and the March
. . . 0 (MLE) 51.5 51.5
2000 evaluation data set, eval0O, which has 40 sides of 1 £0.0 497
WB1 40 CHE sides. - -
S and 40 CHE sides 5 798 796
Training Number of | Gaussiang Gaussiang 3 50.1 50.0
Set Speech States per state | per hour 4 50.8 -
M?n?tra?n 3088 12 2060 Table 4: 18 hour experiments with 6 mixture component models
Minitrain 3088 6 1030 (eval97sub): comparison of lattice LMs.
h5train00sub, 6165 12 1090
h5train00 6165 16 370 The results from MMIE training of the 6 Gaussian/state

Minitrain system (with acoustic scaling) are shown in Ta-
ble 4 and again show the best performance after two MMIE



iterations. Furthermore the gain over the MLE system is We also experimented with data-weighting with this setup
1.7% absolute if a bigram LM is used and 1.9% absoluteduring MMIE training. The rationale for this is that while
if a unigram LM is used: the 6 Gaussian per state MMIE- the test data sets contain equal amounts of Switchboard and
trained HMM set now slightly outperforms the 12 Gaussian CHE data, the training set is not balanced. Therefore we
system. Furthermore it can be seen that using a weakeneghve a 3x higher weighting to CHE data during training.
LM (unigram) improves performance a little and in fact the The results of these experiments on both the eval97sub and
gain from using a unigram is greater if no acoustic scalingeval98 test sets are shown in Table 6. It can be seen that
is performed: both acoustic scaling and the weakened LMwithout data weighting there is an improvement in WER of
increase the amount and diversity of confusable data. 2.6% absolute on eval97sub and 2.7% absolute on eval98.
Data weighting gives a further 0.2% absolute on eval98,
. ) but rather variable results on eval97sub. However if data
~ The effect of using the 68 hour h5train00sub set wasyeighting is applied during MLE training for eval97sub the
investigated next and tests were performed on both the, £ paseline improves by 0.7% absolute. It might be con-

eval97sub and eval98 sets. In this case the phone-markeq,ded that the extra weight placed on poorly recognised
denominator lattices had a LWER of 7.4%. The results of 4514 by MMIE training relative to MLE reduces the need

Experiments with 68 Hours Training

MMIE training are shown in Table 5. for the data weighting technique.
MIMIE oWER Qumphone Model Training .
lteration | eval97sub] eval98 Sd'nfe the (|3U—HTK tHu?SdSI\B/I/i;I?IrEnt also use}st hqumpho(rj]e
models, we also investigate raining of these mod-
0 ('\T‘E) jgg jgg els using the full h5train00 set. The decision tree stats-clu
5 43'7 44.6 tering process for quinphones includes questions reggrdin
: : +2 phone context and word-boundaries. The baseline quin-
3 44.1 44.7 phone system uses 9640 speech states and 16 Gaussians per

Table 5: Word error rates on eval97sub and eval98 using Stateé to giye 580 GaUSSianSP?r hour of tr.aining data.
h5train00sub training. The quinphone MMIE training used triphone-generated

word lattices, but, since the phone-marked lattices were re
Again it can be seen that the peak improvement comegenerated for the quinphone models, it was necessary to fur-
after two iterations, but in this case there is an even largeither prune the word-lattices. The results of MMIE trained
reduction in error rate than was seen for the 6 Gaussiae/statquinphones on the eval97sub set are shown in Table 7. Note
Minitrain experiments: 2.3% absolute on eval97sub andthat these experiments, unlike all previous ones reported
1.9% absolute on eval98. The word error rate for the 1-beshere, include pronunciation probabilities.
hypothesis from the original bigram word lattices measured

on 10% of the training data was 27.4%. The MMIE models MMIE YWER
obtained after two iterations on the same portion of trajnin lteration | eval97sub
data gave an error rate of 21.2%, so again MMIE provided a 0 (MLE) 42.0
very sizeable reduction in training set error. 1 40.4
Further experiments using this same training set/baseline 2 39.9
model set are given in Section 8. 3 40.1
Triphone Experiments with 265 Hours Training Table 7: Quinphone MMIE results on eval97sub. Pronunciation

The good performance on smaller training sets led usProbabilities were used.

to investigate MMIE training using all the available Hub5 . - .
data: the 265 hour h5train00 set. The h5train00 set ContainEarAZs\;v\I}\?Etlgere’\dﬂ l\/(ljltEor':r?zlnir;/g éggil dt'g)c lézi]egs Z?t%\ﬁ’ gh.ei_
267,611 segments and numerator and denominator wor 9 ucti 70 u WOl

ove s vere creted o each taned segment. a0 O G Wie MM Tonn B S oy
from these, phone-marked lattices were generated. i . q 9
the triphone models. This may be because of the extra prun-

NMIMIE %WER ing required for the phone-marked Iatticgs, or becausesther
lteration eval97sub| evalos are rather more HMM parameters to estimate.
0 (MLE) 444 456 Interaction with MLLR
1 42 4 43.7 All the above results used models that were not adapted to
1 (3xCHE) 2.0 235 the particular conversation side. Since model adaptatyon b
) 218 229 parameter transformation using maximum likelihood linear
2 (3xCHE) 219 177 regression (MLLR) [15, 6] is now a well-established tech-

nique, it is important to investigate if there is an interawct
Table 6: Word error rates when using h5train00 training with and between the MMIE trained models and transformation pa-
without CHE data weighting (3xCHE). rameters estimated using MLE.



To measure MLLR adaptation performance, MMIE and scaling on the number of confusable states; the use of the
MLE models (both using CHE data weighting) were used in exact-match and full-search lattice processing methdws; t
a full-decode of the test data, i.e. not rescoring lattiegt effect of different values of the global constaiiton opti-
a 4-gram language model. The output from this first passmisation and test-set performance; and a brief investigati
was used to estimate a global speech MLLR (block-diagonainto a modified objective function.
mean and diagonal variance) transform. If t_anough data} Wafhcreased Confusion Data by Acoustic Model Scaling
available a separate transform was also estimated foicgilen . . .

. To illustrate the effect of acoustic scaling (rather than la

models and the output from the respective non-adapted pass

was used for adaptation supervision. The adapted modelg- 29¢ model scaling) on the distribution of the posterior

were then used for a second full-decode pass. The results &robability of state-occupation, the average number désta
) : pass. with a posterior probability greater than 0.01 was computed
these experiments are shown in Table 8.

for both the full-search and the exact-match lattice search
procedures. The results are shown in Table 9.

Adaptation| % WER eval98
MLE | MMIE Search Scaling
MLLR 42.1 39.9 num den num den
Table 8: Effect of MLLR on MLE and MMIE trained models. Full-search | 3.54| 8.16 | 1.43 | 1.63
Exact-match| 1.78 | 5.58 | 1.26 | 1.45

The results show that the MMIE models are 2.1% abso-
lute better than the MLE models without MLLR, and 2.2%
better with MLLR. In this case, MLLR seems to work just

as well with MMIE trained models: a relatively small num-  as expected, acoustic likelihood scaling significantly
ber of parameters are being estlmgted ywth MLLR and th_eSGbroadens the posterior probability distribution. It isaals
global transforms keep the Gaussians in the same “configupoteworthy that the exact-match procedure reduces the num-
ration” as optimised by MMIE. ber of confusable states quite markedly since models are not
March 2000 CU-HTK Hub5 System computed outside the lattice arc Viterbi segmentationtgoin

The MMIE triphone and quinphone models were included Objective Function Optimisation and Generalisation
in the March 2000 CU-HTK Hub5 evaluation system [11].
Although this system incorporates numerous changes com -0.02
pared to that described in [10], the use of MMIE models in
the system gave the greatest benefit.

Initial lattices were generated using gender independen
MMIE triphone HMMs with a 54k vocabulary and a 4-gram
language model. Subsequent passes through the data us
MMIE triphones and quinphones as well as MLE gender-
dependent soft-tied [16] triphones and quinphones. All
model sets use pronunciation probabilities, iterative NRLL
adaptation combined with a global full-variance transform = 0961 o 1
[7]. The final system output for each model set was gener- " o Ful-search, E=1
ated to minimise the expected word error rate via confusion _L Full-search, E=halfmax
networks [17]. The output of the MMIE and MLE model . ~e~ Exact-match, E=2.0
stages were combined via confusion network combination _g g ‘ ‘ ‘ ~— Exact-match, E-halmax

. . 0 1 2 3 4 5 6
[5] to give the final output. Iteration of MMIE training (starting with MLE-trained models)

On the eval98 data, this system gives an error rate of
35.0%, and on the March 2000 evaluation data (eval00)

25.4%, which was the lowest error rate obtained in the eval- Figure 1: MMIE criterion optimisation.

uation by a statistically significant margin.

Table 9: Average number of states with a posterior probability of
occupation greater than 0.01 with and without acoustidrsgal

-0.04

L

MIE criterion per frame

7

The increase in MMIE obijective function and the corre-
8. FURTHER INVESTIGATION OF THE MMIE sponding test-set error rate (eval97sub) were measured us-
TRAINING SCHEME ing both the full-search and exact-match schemes and also
. ) i ~ several values of the global smoothing constafit:= 1,
In this section, the properties of the MMIE training p _ 2, andE = halfmax. The experiments used the 68

scheme used in Section 7 are investigated along a numbg{oyr h5train00sub training setup with acoustic scalinge Th
of variations. These include the effect of acoustic likebd change in objective function as training proceeds is shown

"The evalOO test-set consistently yields much lower err¢esrahan  IN F_igure 1 a_nd the corresponding error Irates in Figure 2.
eval98 across all recognition systems. While there is no consistent difference in WER between




46 T Eee—— word error rates can be obtained for the transcription of con
* Full-search, E=halfmax versational telephone speech.
sl - Eiiiiimiiﬁﬂj Eiﬁg | The MMIE objective function was reviewed and the two
g —*— Exact-maich, E=halimax key issues for its application to large vocabulary tasksawer
5 discussed: the efficiency of objective function optimisati
S s , « ] and generalisation to test data.
’% ° The Extended Baum Welch algorithm, with Gaussian spe-
g cific D constants, was used and it was shown that two itera-
han ‘ ' ] tions of updating were sufficient to obtain good performance
§ 5 over a large range of data set sizes and model types. Fur-
a4l , thermore, a novel updating formula for the mixture weight
. * parameters was introduced.
* The use of a weakened language model (a unigram), and,
435, 1 2 3 2 5 6 7 8 more importantly, acoustic likelihood scaling were invest
Iteration of MMIE training gated as methods of increasing the amount of relevant con-

fusable data during MMIE training. Both these techniques
improve generalisation and allow better performance to be
obtained with MMIE training using more complex models.
Therefore, in contrast to previously held beliefs, it is pos
sible to use MMIE training for the most challenging large
vocabulary tasks to reduce error rates over the best MLE
models, and not just provide good performance with a re-
duced number of parameters.

Figure 2: Error rates for several MMIE training variants.

full-search and exact-match, our implementation of exact-
match search ran significantly faster.

One problem with using? = 1 is that over-training eas-
ily occurs, although the second iteration of MMIE train-
ing yields good results. Using a higher value of the global ) ) -
smoothing constank which further increases during train- A lattice-based approach to calculating the statistics re-
ing, such asZ = halfmax, results in the objective function 'ated to the objective function denominator was used, and
being optimised to a poorer final value, but with less danged© SPecific implementations of lattice search were de-
of over-training. However, the underlying problem is that scribed. Both methods, unlike previous work on lattice-

improving the objective function past a certain point cause based discriminative training algorithms, perform a full
the test-set accuracy to deteriorate. forward-backward pass at the model level. However they

L — . differ in the constraints used at the model boundaries and
H-Criterion OpJeCt'Ve Functlon o ) were found to be comparable in error rate, although the
An alternative solution to over-training is to modify the  exact-match scheme has a lower computational cost.
objective funct|on.. In_ partlcul_ar, an |r)terpglat|on of the While MMIE training is effective, it is clear that over-
MMIE and MLE objective functions, which gives a type of training can easily occur. One possible solution is to mod-

H-criterion [8], was examined. The function investigated ify the objective function to aid generalisation directne
here was method for doing this is to use an interpolation of the MMIE
0.8Fmme + 0.2FuLE and MLE objective functions and this seems to be effective.
This objective function can be implemented simply by an We intend to further investigate other modifications to im-
appropriate scaling of the MMIE numerator statistics. The prove generalisation performance.
exact-match method was used on the h5trainO0sub training \While this paper has concentrated on the MMIE objective
set with E = 1. Evaluation using the eval97sub test-set function, much of what has been discussed can be directly
showed that the error-rate converged as the objective funcapplied to other objective functions. A general formulatio
tion was optimised to yield 43.7% error on the 5th iteration. to lattice-based discriminative training was propose®@Bi |
While these models gave the same test-set accuracy aghich discuses how other measures, such as MCE, can be
conventional MMIE training, it was noted that the model pa- ysed in the lattice framework.
rameters had changed rather less from the MLE parameter The \MMIE training scheme was applied to transcription
values than the pure MMIE ones with the same accuracyof Hubs data for training sets up to 265 hours in size for
90% of means were within 0.1 standard deviations of thepgth triphone and quinphone models and resulted in a 2-3%
MLE values, compared to 90% within 0.25 standard devia-apsolute reduction in word error rate. The trained MMIE tri-
tions for similarly performing pure MMIE models. phone and quinphone HMMs were used in the March 2000
CU-HTK Hubb5 system which had the lowest error rate in
9. DISCUSSION & CONCLUSIONS the evaluation by a statistically significant margin. Whiie
This paper has discussed the use of discriminative trainmethod is still very computationally expensive, it is now be
ing for large vocabulary HMM-based speech recognition for coming feasible to investigate MMIE training on this scale.
a training set size and level of task difficulty not previgusl We believe that there is much exciting research on large-
attempted. It has been shown that significant reductions irscale discriminative training still to be done.
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