= T E o = I = T W = o = T O > W =]

2 AENNE 8 HEAN fB VUKV B Ditth

.__ :.m o BH

£ JJ g e 9 = L B & Wi ® L ZE -0 2 x> 4

.lrﬁm = Jw > - o =

b e e LM 1

A |
REMNRY BT W
bl

(€ HESN L3 WUEY H.E nE- 8
LI N - JT-N ¥ 4]ﬂ!!ﬁ- F Y

-HJ o
x » T W E WS EXTO®E B = O o« = oL
WURY HE DN .,&J.:in »
- e s+ = o oOg— x hi A
W o
ECE =&MW (2 B8 HESN .r&%&.kl.c e
t HECNE &1 _ P
i : a\m TFEOQa —— TH - b= O i F o e y E T « k= 71 bt iLF > T
_.W, 0 2 Ed=uUL T T SR

E = = R - =

N LAE VUKL BB U.r_..l

—2del=

ORGANIZATION

P OrU N
= == 0 o T _L.A.W.GL..h.m = 1 = s B = L W
Wil Bl s i W,
I n
(el it Ok -1 _ [+)'F‘aﬁ‘
%6 XE HO® 3 ____ 0 NENA LB WURY BB
SeERE | oy

S h o ame O

P ORGERY
s TTE NN

AWy ® O89—= &S
m f D& BIACHNE HE#s N
—

H =~ - T W £ o =
—

-
3 p Y A AR S B
3 L.. u.
.
=
L

_ ik A e Az =
_ =2 =t A e A=

LNE WURY FHE DE+ BH(

C-OMPUEE-

UKL B DR

- W e - @ ol = e @ = L Wi ¥ W ¥ E U =

® OoOfP—= AS AB @

-
e MO o ‘el Bk 1-. s

Agenda

Topics:
1. Multiple cycle implementation — review
2. State Machine

3. Control Unit implementation for Multi-cycle core

Pl ~ii={0} W=

Patterson: Section 4.5, Appendix C

= =
=y

Reminder: Quiz #2 — Wednesday (November 7)

Wi
& 1 ~H T

[Fan

=

10
o

E

i

H

;

t

y

e

i

1-!'1-! & D

Wli-M

Breaking the Instruction Execution into Clock Cycles

Execution of each instruction is broken into a series of steps
— Each step is balanced to do almost equal amount of work
— Each step takes one clock cycle

— Each step contains at the most 1 ALU operation, or 1 register file access, or 1 memory
access

— Operations listed in 1 step occurs in parallel in 1 clock cycle
— Different steps occur in different clock cycles
— Different steps are:
1. IF: Instruction fetch step
ID: Instruction decode and register fetch step

L
.
.
i
¢

EX: Execution, memory address computation, or branch completion step

i oo
e
AR

2
3
4. MEM: Memory access of R-type instruction completion step
5. WB: Write back completion step

R -

-21'1-1'!-

Wli-M

== e ss B
w

—

R -

—

Multicycle Implementation: Control Units added

NextlnstrAddr[31..0]

PCWrit=Cond

PCWrite

IotD

IemWrite

FC3ounx]l..0]
ALUOR]L..0]
ALk

ALU3B]L..0]

PCSource[1..0]

ALUCp[1..0]

ALUSrcA

ALUSrcB[1..0]

RecWrite

uben Cameme sy ok Do

DDL'I[.:]

U_MemDetey

Rezd1.5EDec

a0

[11.24]1 [5.4]

[25.211 [4.0] I'SH._D]

RzpFilz §zDies

U Rzl

| > Re=d Addeald. 0]

[20.16)_[4.0] if4..0]

| = Remdidded 0]

| = Wekeadddd 0]

| > WeeDeif31..0]

I mewsmro

W

DewB[L0] [

i

Ll

aznEn

[5.8] [5..8]

U_SmFre
SgymExs SckDec

FrHmunadl

P

Mdazg

1

ALLEH e

ATTOp[3..0]

ALLEnd

M fanci5 0]

o
i
3

-

Al (1507 RN e
e Larap ol s W
1= 19,161 [3.0]30AM. 0] o EER S 0 =
[at..0] o T JEEERER
EELN R TL6E_4B4X
24 [3.0]30CIA. 4]
TaTeL[3 L. 0] 34 337 [3.0]30063. 4]

ALUOg]L..0]

Wli-M

Action of 2-bit Control Signals

00 ALU performs an add operation

n
>
.
c
®

=

01 ALU performs a subtract operation

10 The function field of Instruction defines the operation of ALU

00 The second operand of ALU comes from Register B
01 The second operand of ALU =4
ALUSrcB 10 The second operand of ALU is sign extended Instruction[15-0]

11 The second operand of ALU is sign extended, 2-bit left shifted Instruction[15-0]

00 Output of ALU (PC + 4) is sent to PC
01 Contents of ALUOut (branch target address = PC + 4 + 4 x offset) is sent to PC

Contents of Instruction|[25-0], shift left by 2, and concatenated with the MSB 4-
bits of PC is sent to PC (jump instruction)

L
|
B
:
£
:

PCSource
10

Wld-M 5

i

q
|

TorD

. MemRead

‘MemWrite

IRWrite

RegDst

RegWrite

ALUSrcA
MemtoReg

PCWrite

PCWriteCond

Action of 1-bit Control Signals

PC supplies address to memory (instruction fetch)
None

None

None

“Write Register” specified by Instruction[20-16] (Iw)

None

PC is the first operand in ALU (increment PC)
“WriteData” of the register file comes from ALUOut

Operation at PC depends on PCWriteCond and zero
output of ALU

Operation at PC depends on PCWrite

Wli-M

ALUout supplies address to memory (Iw/sw)

Memory content specified by address is placed on
“Memdata” o/p (Iw/any instruction)

I/p “Write data” is stored at specified address (sw)
“MemData” o/p is written on IR (instruction fetch)

“WriteRegister” specified by Instruction[15-11] (R-
type)

Data from “WriteData” i/p is written on the register
specified by “WriteRegister” number

Register A is the first operand in ALU
“WriteData” of the register file comes from MDR

PC is written; Source is determined by PCSource

PC is written if zero o/p of ALU = 1; Source is
determined by PCSource

Summary of Steps used in different Instructions

. IF - Instruction
. fetch

ID - Instruction
decode /
Register fetch

EX -

R-type Execution /
address comp. /
Branch /Jump

MEM - Memory
Access /
R-type Completion

WB - Memory Read

Completion

IR = Memory[PC];

PC = PC + 4;
A = Reg[IR[25-21]];
B

= Reg[IR[20-16]];

ALUOut = PC + (sign-extend(IR[15-0])<<2);
B . if (A == B)

ALUOut = A + sign- PC = PC[31-28]]|

ALUOut=A op B then - 5
extend (IR[15-01]) PC = ALUOUL; (IR[25-0)<<2) ;
Reg[IR[15-11]] lw:
= ALUOut: MDR = Memory [ALUOut]
or sw:

Memory [ALUOut] = B

lw:
Reg[IR[20-16]]=MDR;

Wll-M ¢

Multipath Datapath Implementation: Control

— Recall that design of single cycle datapath was based on a combinational circuit
— Design of multicycle datapath is more complicated
1. Instructions are executed in a series of steps
2. Each step must occur in a sequence
3. Control of multicycle must specify both the control signals and the next step

— The control of a multicycle datapath is based on a sequential circuit referred to as a finite
state machine

State 0

A finite state diagram for a 2-bit counter
— Each state specifies a set of outputs

L
.
.
:

— By default, unspecified outputs are assumed disabled

=

— The number of the arrows identify inputs State 1

LB

Wll-M

== a5
i
— .

State 2

Finite State Machine?

* See Appendix C

* A sequential logic function
which has a state and inputs
— the logic function
determines the next state

MNext

and outputs o]y Notsue sate
— Moore machine — outputs T
depend on just the current inputs e
state
Outgut

function — Outputs

— Mealy machine — outputs
depend on current state and
inputs

* Book uses Moore machine
description

Wll-M 1

Finite State Machine Control of Multicycle Datapath (1)

Start

! |

Instruction fetch/decode and register fetch
(Figure 4.36)

1 1 1 1

Memory access

g

L s] | lr-

R-type instructions || Branch instruction Jump instruction

Iﬁstructlons Figure (4.19) (Figure 4.21) (Figure 4.24)
(Figure 4.20)

L
.
.

High-Level View

Wll-M

Finite State Machine Control of Multicycle Datapath (2)

Instruction decode/

Instruction fetch Register fetch

MemRead
ALUSrcA =0

lorD=0

IRWrite ALUSrcA =0
Start ALUSrcB = 01 ALUSrcB = 11

ALUOp =00 ALUOp =00

PCWrite

PCSource = 00

v
Memory reference FSM R-type FSM Branch FSM Jump FSM

Fig. D.3.1: Steps 1 and 2: Instruction Fetch and Decode Instructions
Wll-M 11

11

i

= s oo DR - -

)

f
-
T
t
/

Finite State Machine Control
of Multicycle Datapath (3)

Finite State Machine for

Memory Reference Instructions

From state 1

(Op ="Iw') or (Op ="'sw')
Memory address computation

ALUSIrcA =1
ALUSrcB =10
ALUOp =00

Memory Memory
yaccess access
3
MemRead :\/Iﬁ;nyv?te
lorD = 1 or =

J Write-back step

RegWrite
MemtoReg = 1
RegDst =0

Ig state 0

Finite State Machine Control of Multicycle Datapath (4)

From state 1
(Op = R-type)

Execution

ALUSIrcA =1
ALUSrcB =00

ALUOp = 10

f
:
T
t
7

"R-type completion

)
N

RegDst = 1
RegWrite
Memto Reg = (

Tostate 0
Finite State Machines for R-type Instructions

Wll-M 13

)

f
:
T
t
7

Finite State Machine Control of Multicycle Datapath (5)

From state 1
(Op ='beq’)

Branch completion

ALUSrcA =1
ALUSrcB =00
ALUOp =01
PCWriteCond
PCSource = 01

To state 0

Finite State Machine for Branch Instruction

Wll-M

From state 1
(Op =)

Jump completion

PCWrite
PCSource =10

Tostate 0

Finite State Machine for Jump Instruction

14

vInstruction fetch

MemRead = 1
ALUSrcA=0
lorD =0
IRWrite

Instruction decode/
register fetch

Start >
ALUSrcB = 01
ALUOp =00
PCWrite =1
PCSource = 00
Memory address e) Branch
: . R-E)
computation o) Execution (OP completion
2 =" =
ALUSrcA = 1 \0‘) 6 ALUSIrcA =1 8 ﬁ::gg:gg _ (1)0
ALUSrcB =10 ALUSrcB = 00 ALUOp = 01

ALUOp = 00

a Memory
gv dCCess access
3
MemRead = 1 MemWrite = 1
lorD = 1 lorD = 1

'Write-back step

PCWriteCond =1
PCSource = 01

ALUOp = 10

ALUSrcA =0
ALUSrcB = 11
ALUOp =00

Jump
| completion

,(Op=7)

PCWrite =1
PCSource = 10

Yy

! R-type completion

RegDst = 1
RegWrite = 1
MemtoReg =0

Reg Dsm
RegWrite = 1 . v

MemtoReg = 1 j

Wll-M

15

)

i
C
e
t
!

Finite State Machine
Control of Multicycle Datapath (5)

PCWriteCond
PCWrite)
TotD v
hemWrite
e [s
MemPead
e e e
MemtoReg
— ety
IRWrite ——
RegDst .
RegWrite
L L
Outputs <
ALUSreBL ‘r@
Control logic ALUSIBO |,
ALUSmeA
A=A
ALUOp1 B I—|m
PCSourcel ‘I_@ i
PCSourcel) +
_ |
NextState3 I
NextStatel i
NentStatel =
NextStatel 5
Inputs
LIk 2R 3[3z|3
Sl B = EEE
T FE T n i [on |tn
Op[3..0] I] I I I]] I]] State[3.0]
== Clock
Rords siamee
| = Dl Douta. 0]
L Clock
NextState[3..0]

W1l-M

LG

Control Logic — Truth Table

" oumt | oumestsates | o

Note that control PoWite State0 + state?
PCWriteCond stated
I larD stated + stateb
MemRead statel + state3
| outputs depend only
4 MermWrite stateb
E .
E- on current state (Op @
emtoReg stated
. PCSourcel stateQ
column is blank for
4 ALUOPpL stated
ALUORO stated
ﬁ a I I O u t p u t rOWS) ALUSrcB1 statel +state2
ALUSreBO statel + statel
i ALUSrcA state2 + stateB + state8
¥ RegWrite stated + state7
P Next state depends [ras
MextStateO stated + stateh + state? + state8 + state®
MextStatel state(
2% oncurrentstate and s
- I . MextState3 state? Op="1w")
e inputs (opcode from [l e
-E . MextStateb state2 (Op="sw")
L] . . MextStated statel (Op = "Rtype ')
E‘ - I n St ru Ctl O n) MextState? stated
g MextState8 statel (Op="beq")
k ﬂE MextState9 statel Op="jmp")
]
L'
[W1ll-M 1.7
|

	Slide 1
	Slide 2
	Breaking the Instruction Execution into Clock Cycles
	Slide 4
	Slide 5
	Slide 6
	Summary of Steps used in different Instructions
	Multipath Datapath Implementation: Control
	Finite State Machine?
	Finite State Machine Control of Multicycle Datapath (1)
	Finite State Machine Control of Multicycle Datapath (2)
	Finite State Machine Control of Multicycle Datapath (3)
	Finite State Machine Control of Multicycle Datapath (4)
	Finite State Machine Control of Multicycle Datapath (5)
	
	Slide 16
	Control Logic – Truth Table

