= T E o = I = T W = o = T O > W =]

2 AENNE 8 HEAN fB VUKV B Ditth

.__ :.m o BH

£ JJ g e 9 = L B & Wi ® L ZE -0 2 x> 4

.lrﬁm = Jw > - o =

b e e LM 1

A |
REMNRY BT W
bl

(€ HESN L3 WUEY H.E nE- 8
LI N - JT-N ¥ 4]ﬂ!!ﬁ- F Y

-HJ o
x » T W E WS EXTO®E B = O o« = oL
WURY HE DN .,&J.:in »
- e s+ = o oOg— x hi A
W o
ECE =&MW (2 B8 HESN .r&%&.kl.c e
t HECNE &1 _ P
i : a\m TFEOQa —— TH - b= O i F o e y E T « k= 71 bt iLF > T
_.W, 0 2 Ed=uUL T T SR

E = = R - =

N LAE VUKL BB U.r_..l

—2del=

ORGANIZATION

B8 OxUER
= == 0 o T - € ¥ O 23 ZE B = 1 = s B = L W
Wil _ s seum @R 1
(el it Ok -1 __ [+)'F‘aﬁ‘
®C NE WOE® ____ 0 NESA L6 MURUBE
I w = o — 3 w o a & o 80 w E = = K =~
- L W E a0 C 26 b @ Lo W b 3

ah wome & AR ® O9—= ac

T ORUERY B D= BECNE Sms N

s TTE NN

LALZU-

— 4] > T w F = =

a]
M L
'I
D
u
|
I
T
|
3
T
o

" CHES-SER-

o A e hzn =

HUGH

== =t A e A=

LNE WURY FHE DE+ BH(

C-OMPUEE-

UKL B DR

- W e - @ ol = e @ = L Wi ¥ W ¥ E U =

® OoOfP—= AS AB @

-
e MO o ‘el Bk 1-. s

Quiz/Exam Sample Question

Show the contents of the pipeline registers for instructions going through the pipeline (5
cycles after the first instruction begins), identify any data hazards:

00400024 lw $10,20($1)
00400028 sub $11,$2,$3
0040002c¢ and $12,$10,$5
00400030 or $13,$11,8$7
00400034 and $14,$8,$9

Use the short hand notation from the Green Sheet:
R[reg] — Contents of register file at register 'reg’
M[addr] — Contents of memory at address 'addr’

Operands 'SignExtImm’, 'ZeroExtImm' and 'BranchAddr', JumpAddr' as per
Green Sheet notes 2 - 5

Wle-wW

Pipeline - Cycle # 5

DOUTE L8]
ADDREF. 2]

RONMS_32x3990M

InstrAddr[31..0]

Y]
Instruction

M
I

ID-Ex SciTd R B [
=7 mafaenk 5
| + =
L. -
(== [~ o .
| e £ MemRead
= —
=
3 MemWrite
= = U_ALU2E SNTs =
= ATU il 50T 32 =
o -—
fal S ETiET Branch =
U RepFle E L
¥ FizgFie SxeDis -
oy oy 15[4.0] = — e T 2 a Reuzk[310] :}d C my Dé
.6 e T4 0 | = Rt adaempe. 0] DouBiL 4] [el — 1 L] é
= O = TeaiZero — = —
= = ANDES
—d — WesmAdddge. 0] = = Crves Pl =3
s WmsDmea 1 0] (] &
= e B3I D = =
‘g—}' B Do
L fopEig) = wE
=™
o
£ = -
SoaEs - = -, = =
S0 [t5.0] 0 ek U_AlUCe=ss] (]]
i =]) _ | Ct[S 0-|.u.rc,====1 SckDicc = =
@ s.0] g (s offIN 3= fancf5.0] Cposscald-0] ml f—3| E
pes - LTI 0]
ALUOp[1..0]
5. ti] [4.0] rd[4..{]'| ...%; o
[+
] =
- [T oh
- 8
Lo = =

MemtoReg

)

M
I

n

Wle-wW

ALU Control Actions

Instruction Instruction Desired ALU control
opcode operation Function code ALU action input

il i]

load word XXXXXX 0010

SW 00 store word XXXXXX add 0010
Branch equal 01 branch equal XXXXXX subtract 0110
R-type 10 add 100000 add 0010
R-type 10 subtract 100010 subtract 0110

' | Rtype 10 AND 100100 AND 0000
R-type 10 OR 100101 OR 0001
R-type 10 set on less than 101010 set on less than 0111

C T | N |
[o |
=1

:
K

T

I o |

- =
=g & Fgidd i
— el e SN AR

Wle-wW

e i
e
et 00 B

.

3
g =

&

e
——_

R -

Action of Pipeline Control Signals

Effect when deasserted (0) Effect when asserted (1)

RegDst

The register destination number for the Write
register comes from the rt field (bits 20:16).

The register destination number for the Write register comes
from the rd field (bits 15:11).

RegWrite

None.

The register on the Write register input is written with the value
on the Write data input.

ALUSrc

The second ALU operand comes from the second
register file output (Read data 2).

The second ALU operand is the sign-extended, lower 16 bits of
the instruction.

PCSrc

The PC is replaced by the output of the adder that
computes the value of PC + 4.

The PC is replaced by the output of the adder that computes
the branch target.

MemRead None. Data memory contents designated by the address input are
put on the Read data output.
MemWrite None. Data memory contents designated by the address input are

replaced by the value on the Write data input.

MemtoReg

The value fed to the register Write data input
comes from the ALU.

The value fed to the register Write data input comes from the
data memory.

Wle-wW

Pl ~ii={0} W=

B =

Control for Pipeline — Arranged by Pipeline Stage

Execution/address calculation stage

control lines

Memory access stage Write-back stage
control lines control lines

nogos | uvons | uuonn | wwsre | araen | s | e | v | "mee_
RegDst ALUOPO Read Write Reg
R-format 1 1 0 0 0 0 0 1 0

Tw 0 0 0 1 0 a 0 1 1

SW X 0 0 1 0 0 1 0 X

beq X 0 1 0 1 0 0 0 X

Controls same as before for the single or multi-cycle
implementations, rearranged according to pipeline stage

Wle-wW b

Agenda

Topics:
1. Data Hazards — Forwarding — complete
2. Control Hazards

.
w N B

.rjq
A=A

Patterson: 4.7, 4.8

Pl ~ii={0} W=

R -
—

.
ﬂ
@
¢
:

Wle-wW

Forwarding from MEM/WB Pipeline Register

Conditions:

LJ__E AT USee :W?J :‘a:_:ﬂgn
2 5 <t
= Dgc' MemPea
(MEM/WB.RegWrite & __ E i =
MEM/WB.RegisterRd # 0 & SpalEe I . J -

; — ; _ s i = S | n
MEM/WB.RegisterRd=ID/EX.RegisterRs) -> el —m 3 3 %;i—
ForwardA = 01 2= | = |~ =
(MEM/WB.RegWrite & |_l R 5 3

. | == o h{ %’ é’
MEM/WB.RegisterRd # 0 & 2= ;ﬁ[F= 7=
MEM/WB.RegisterRd=ID/EX.RegisterRt) -> aeia = s =
ForwardB = 01 ! el bl i E

' ForwardA[1..0 ;%ﬁm\' '
ForwardB[1..0] | %_:';;;; £
sub $2, $1, $3
“and $12 $2 $5 Field 0 rs ‘ rt ‘ rd shamt funct
e ! ! Bit positions 31:26 25:21 20:16 15:11 10:6 5:0

or $13, S$6, $2
[Note: Only R-type instructions

a. R-type instruction

covered for forwarding, Field 35 0r 43 rs rt address

Bit iti 31:26 25:21 20:16 15:0
"no I-type, eg - sw $2, 0($13) (Rd = 0) 1t posttions ,)
b. Load or store instruction

Wle-wW v

Additional Condition for WB Forwarding

(MEM/WB.RegWrite &

. MEM/WB.RegisterRd # 0 &

and not (EX/MEM.RegWrite and EX/MEM.RegRd # 0)
and (EX/MEM.RegRd # ID/EX.RegRd)

and MEM/WB.RegisterRd=ID/EX.RegisterRs) ->

| ForwardA = 01

add $1, $1, s2 M

add $1, $1, s$3

(MEM/WB.RegWrite & add $1, $1, $4
MEM/WB.RegisterRd # 0 &

and not (EX/MEM.RegWrite and EX/MEM...Ccgy.ww. - o,

and (EX/MEM.RegRd # ID/EX.RegRd)

and MEM/WB.RegisterRd=ID/EX.RegisterRt) ->
ForwardB = 01

Wle-wW 1

f
-
T
t

Pl

Stalls

Consider the code sequence

1w $2, 20($1)
and S4, $2, $5\‘;>
or $8, $2, $S6
add $9, $4, $2
slt $1, S6, $7

Hazard condition — identify at ID/EX stage

if (ID/EX.MemRead and
((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt)))

stall the pipeline - 9 controls deasserted, PC not
incremented

Wle-wW

16

Data Hazard - Stall

Time (in clock cycles)
CC1 ccz2 CcC3 CC4 CC5 CCs6 CCc7 cCs8 CC9

Program
execution
order

(in instructions)

Iw $2, 20($1)

and $4, $2, $5

\
.
§
f.

1

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

.-=u i
el & N AT

Wle-wW

Hazard Detection Unit

By detecting the hazard at the IF/ID phase, PC and Control lines can be altered

(Hazard ‘ ID/EX.MemRead
detection

—-L unit
ID/EX

m M I"E EX/MEM
u M we thEM/WB
X — — —
OU LEX > M WB—

IF/DWrite

PCWrite
T
w)
\ A
<)
[=]
=

I‘

f
-
T
t

)
M
u
s X
5 Registers \y
2 4 ™ M
. B —~ ALU u
Instruction =
PC = — M X
memory i Data
u memory
X
N/
IF/ID.RegisterRs

IF/ID.RegisterRt
|IF/ID.RegisterRt Rt
IF/ID.RegisterRd Rd

GeD -

— ID/EX.RegisterRt —

Wle-wW 1e

Control Hazards

Three methods to minimize stalls

— Always assume branch not taken — must “flush” results if
the branch IS taken

— Reduce branch delays — separate branch adder to calculate
branch target address, move execution (test) earlier
(“equality unit” — XOR)

— Dynamic branch prediction — remember if the branch was
taken the last time the branch instruction was executed —
branch history table

-RHI - D a

L
.
:
i
:
c
¢
-
ll
1

Wle-wW 13

Proceed with
instructions as if
branch not there

— “Flush”
instructions in the
pipeline if taken

— Effectively this
creates a stall if
branch is taken

Time (in clock cycles)

Assume Not Taken

CC1

Program
execution
order

(in instructions)

44 and $12, $2, $5
48 or $13, $6, $2
52 add $14, $2, $2

—

172 W $4, 50($7)

Wle-wW

CC2

40 beq $1, $3, 28 [Il—I—UrF;

CC3

CC4

DM

CC5

Reg!

CcCe6

cCc7

CcCs8

14

CCo

Assume Branch Not Taken — Minimize Stall

36 sub $10, $4, ii//////'PCF PC+ 4+ BranchAddr= 40+ 4+ 704 = 72
40 beq $1, $31 /

and $12, $2, $5 E beq §1, $3,7 E sub $10, $4, $8 i before<1> E before<2>
44 and $12, $2, $5 __—* ; | e s

IF.Flush

|
EX/MEM

72 1w $4, 50(S7)

Branch adder and decision

¥ decided during ID phase g ; Foman W
r..t. a8 Clock 3 ’
W1-W | | 1

Branch to be taken — Flush current pipeline
Instructions

sub $10, $4, S8

beg $1, $3, 7 \\\\\\\\\\\\\\\w
Iw $4, 50($7) ! Bubble (nop) E eq$1,$3,7 : sub $10, . . . E before<1>

and $12, $2, S5

lw $4, 50($7) {m»ﬂ

Clock 4

Wle-wW LG

Branch to be taken — Flush current pipeline
Instructions

sub $10, $4, S8

beg $1, $3, 7 \\\\\\\\\\\\\\\w
Iw $4, 50($7) ! Bubble (nop) E eq$1,$3,7 : sub $10, . . . E before<1>

and $12, $2, S5

lw $4, 50($7) {m»ﬂ

Clock 4

Wle-wW 17

Dynamic Branch Prediction

Prediction of branches while the program is executing

g

L s] | lr-

* A portion of memory is utilized which indicates whether or
not the branch was taken last time the instruction was
executed

-
E
1

f b . .
i ®* FSM implementation is...
Ll
: . Predict taken) Not taken p
i Control Logic Predict taken) ‘ Predict taken
Outputs - 11 Taken N R
NSO Not taken‘ [Taken

Inputs ,

1 1 Not taken

: Predict not taken
n Taken 01
Branch taken Stats_)reg'ger

Wle-wW 1v

Finite State Machine

Control of Branch Prediction

Branch State Next Predict
Taken State taken
i 0 00 00 0 Control Logic Predict taken
& E Outputs -
i o oa o
3 Inputs
A & 0 01 00 O h __
E f'i'l 1 01 10 0 Branch taken Stat‘%regiug:er
e O 10 01 1
2 . 10 11 1
s B¢
& Ef' 0 11 10 1
e 1 11 11 1

L kL

Wle-wW

e

	Slide 1
	Quiz/Exam Sample Question
	Pipeline - Cycle # 5
	Slide 4
	Slide 5
	Slide 6
	Agenda
	Slide 8
	Slide 9
	Stalls
	Slide 11
	Hazard Detection Unit
	Control Hazards
	Assume Not Taken
	Assume Branch Not Taken – Minimize Stall
	Branch to be taken – Flush current pipeline instructions
	Slide 17
	Dynamic Branch Prediction
	Finite State Machine Control of Branch Prediction

