
W5-M

HUGH CHESSER
CSEB 1012U

CSE 2021
COMPUTER ORGANIZATION

HUGH CHESSER
CSEB 1012U

W5-M 2

Category Instruction Example Meaning Comments

Arithmetic

FP add single add.s $f2,$f4,$f6 $f2 ← $f4+$f6 Single Prec.

FP subtract single sub.s $f2,$f4,$f6 $f2 ← $f4-$f6 Single Prec.

FP multiply single mul.s $f2,$f4,$f6 $f2 ← $f4×$f6 Single Prec.

FP divide single div.s $f2,$f4,$f6 $f2 ← $f4/$f6 Single Prec.

FP add double add.d $f2,$f4,$f6 $f2 ← $f4+$f6 Double Prec.

FP subtract double sub.d $f2,$f4,$f6 $f2 ← $f4-$f6 Double Prec.

FP multiply double mul.d $f2,$f4,$f6 $f2 ← $f4×$f6 Double Prec.

FP divide double div.d $f2,$f4,$f6 $f2 ← $f4/$f6 Double Prec.

Data Transfer
load word FP Single lwc1 $f2,100($s2) $f2 ← Mem[$s2+100] Single Prec.

store word FP Single swc1 $f2,100($s2) Mem[$s2+100] ← $f2 Single Prec.

Conditional
branch

FP compare single
(eq, ne, lt, le, gt, ge)

c.lt.s $f2,$f4 if($f2<$f4)cond = 1,
else cond = 0 Single Prec.

FP compare double
(eq, ne, lt, le, gt, ge)

c.lt.d $f2,$f4 if($f2<$f4)cond = 1,
else cond = 0 Double Prec.

Branch on FP true bc1t 25 if cond==1 go to
PC+100+4

Single/
Double Prec.

Branch on FP false bc1f 25 if cond==0 go to
PC+100+4

Single/
Double Prec.

Floating Point Instructions

W5-M 3

Example
calculate area of a circle

 .data

Ans: .asciiz "The area of the circle is: "

Ans_add: .word Ans # Pointer to String (Ans)

Pi: .double 3.1415926535897924

Rad: .double 12.345678901234567

Rad_add: .word Rad # Pointer to float (Rad)

.text

main: lw $a0, Ans_add($0) # load address of Ans into $a0

addi $v0, $0, 4 # Sys Call 4 (Print String)

syscall

#---------------- # load float (Pseudoinstruction)

la $s0, Pi # load address of Pi into $s0

ldc1 $f2, 0($s0) # $f2 = Pi

#---------------- # load float (MIPS Instruction)

lw $s0, Rad_add($0) # load address of Rad into $s0

ldc1 $f4, 0($s0) # $f4 = Rad

mul.d $f12, $f4, $f4

mul.d $f12, $f12, $f2

addi $v0, $0, 3 # Sys Call 3 (Print Double)

syscall

exit: jr $ra

W5-M 4

Agenda for Today

1. Floating Point – Round off

2. Introduction to Hardware – Logic Design

Patterson: Section 3.5, Appendix C.1 – C.4

Wednesday: Appendix C.5

Reminder: Midterm next Wednesday

W5-M 5

Floating Point Round off

▪ Floating Point arithmetic operations can lead to overflow (like integer
arithmetic) and underflow

– Overflow – value is too large to be represented by the precision
chosen (single or double)

– Underflow – value is too small to be represented by the precision
chosen

– This situation leads to an exception – program/user is alerted
(usually by an error message)

– What happens when the answer takes on a value that is between
the floating point values that can be represented?

W5-M 6

Example – Floating Point Addition
Add: 9.999ten x 101 and 1.610ten x 10-1 (assume 3 digits of precision
only)

111

1

1

10002.11000151.11001510.10

1001610.0

1099900.9

×=×=×
×

×

IEEE 754 specifies three extra digits for representation of FP calculations – “guard”
and “round” – 2 bits used for multiplication operation

• > 50 – round up, <50 round down, =50?
Rounding modes: always round up, always round down, truncate, round to nearest even

Third bit – “sticky” – set when there are digits to the right of the round bit

W5-M 7

Hardware – Logic Design

▪ Appendix C goes through the basics of logic devices and how they
implement the instructions we have been talking about

▪ Reference is made to the “Verilog” hardware description language
(HDL)

– HDL – allows the “designer” (not programmer) to configure all of
the programmable logic gates in a FPGA, ASIC or similar device

– HDL is “synthesized” (not compiled) to give a “netlist” (not
machine code) which is downloaded to the device

– As the name suggests, HDL describes how the resulting logic
circuits will manipulate “signals” (not variables)

W5-M 8

Logical Operations: AND, OR, NOT, Multiplexer

1. AND Gate:

2. OR Gate

Notation
Symbol

Truth Table

111
001
010
000

c = a · bba

Notation
Symbol

Truth Table

111
101
110
000

c = a + bba

c=a⋅b=ab

c=a+ bc
a
b

c
a
b

W5-M 9

Logical Operations: AND, OR, NOT, Multiplexer

3. NOT Gate (Inverter):

4. Multiplexer

)(ac =

NotationSymbol
Truth Table

01
10
ca

NotationSymbol
Truth Table

D11
D00
cS0

ca

if (S0==0), c = D0;
else c = D1;

c

W5-M 10

Boolean Algebra (1)

1. Logic Operations can be expressed in terms of logic equations

2. For the above figure, the output

3. To implement the above digital circuit, 2 AND, 1 NOT and 1 OR gates are required

4. Can we simplify the above circuit?

C=AB+ A B̄

Inverted input

W5-M 11

Boolean Algebra (1)

Expressions

Identity Law
A + 0 = A

A · 1 = A

Zero and One Law
A + 1 = 1

A · 0 = 0

Inverse Law
A + Ā = 1

Ā · 0 = 0

Commutative law
A + B = B + A

A · B = B · A

Associative Law
A + (B + C)= (A + B) + C

A · (B · C) = (A · B) · C

Distributive Law
A · (B + C) = (A · B) + (A · C)

A + (B · C) = (A + B) · (A + C)

DeMorgan Law

(A+ B)= Ā⋅B̄

(A⋅B)= Ā+ B̄

Simplification RulesSimplification Rules

A⋅B+ A⋅B=A

A+ A⋅B=A+ B
A+ A⋅B=A

W5-M 12

Boolean Algebra (2)

Activity 1:

Simplify the expressions:

Activity 2:

Implement simplified expressions for (a) – (e) using OR, AND, and NOT gates

))(()(
)()(

))(()(
)(
)(

DCBADACBe
zwwzxxyd

yxyxc
xzyzxb

CABABCBAa

++
++

++
+

++

W5-M 13

Combinational Logic: Design of a 1-bit adder (1)

Example: Design a 1-bit adder with Carry-in

Step 1: Construct the truth table for a 1-bit adder

3 binary inputs imply (23 = 8) entries in the truth table

INPUTS OUTPUTS

A0 B0
CI
(Carry-In)

CO
(Carry-Out)

S0 (Sum)

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Truth Table for 1-bit adder Schematic of a 1-bit adder

CI

CO

W5-M 14

Combinational Logic: Design of a 1-bit adder (2)

Step 2: Derive the Boolean expression for each output from the truth table

INPUTS OUTPUTS

a b
c
(Carry-In)

Carry-Out Sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Sum=ā b̄ c+ ā b c̄+ a b̄ c̄+ abc
Carry-Out=ā bc+ a b̄ c+ ab c̄+ abc

W5-M 15

Combinational Logic: Design of a 1-bit adder (3)

Step 3: Simplify the Boolean expression

Step 4: Implement the simplified Boolean expression using OR, AND, and NOT gates

Activity: Implement the hardware for the Sum output of the 1-bit adder

Carry-Out=ā bc+ a b̄ c+ ab c̄+ abc=bc+ ac+ ab

	Slide 1
	Floating Point Instructions
	Example
	Agenda for Today
	Floating Point Round off
	Ex – Floating Point Addition
	Hardware – Logic Design
	Logical Operations: AND, OR, NOT, Multiplexer
	Slide 9
	Boolean Algebra (1)
	Slide 11
	Boolean Algebra (2)
	Combinational Logic: Design of a 1-bit adder (1)
	Combinational Logic: Design of a 1-bit adder (2)
	Combinational Logic: Design of a 1-bit adder (3)

