
W7-W

HUGH CHESSER
CSEB 1012U

CSE 2021
COMPUTER ORGANIZATION

HUGH CHESSER
CSEB 1012U

W7-W 2

Agenda

Topics:
1. Register files, Decoder, Data Memory, Instruction Memory –

Building Blocks
2. Complete hardware implementation of goal instructions

Patterson: Appendix C, Section 4.1, 4.2, 4.3
Reminder: Next week make-up for Labs A-D

W7-W 3

Overview (1)

Goal: Implement a subset of core instructions from the MIPS instruction set, given below

Category Instruction Example Meaning Comments

Arithmetic
and Logical

add add $s1,$s2,$s3 $s1 ← $s2+$s3

subtract sub $s1,$s2,$s3 $s1 ← $s2-$s3

and add $s1,$s2,$s3 $s1 ← $s2&$s3 & => and

or or $s1,$s2,$s3 $s1 ← $s2|$s3 | => or

slt slt $s1,$s2,$s3 If $s1 < $s3, $s1←1
else $s1←0

Data Transfer
load word lw $s1,100($s2) $s1 ← Mem[$s2+100]

store word sw $s1,100($s2) Mem[$s2+100] ← $s1

Branch
branch on equal beq $s1,$s2,L if($s1==$s2) go to L

unconditional jump j 2500 go to 10000

W7-W 4

Basics: Clocked D Latch (4)

1. For a D-latch: output Q = 1 when D = 1 (set condition)

output Q = 0 when D = 0 (reset condition)

2. D Latch requires clock to be asserted for output to change

0

1

1

0

Unchanged

Q

Outputs

X0

CommentsInputs

Set11

Reset01

DC

Logic Diagram Function Table

D

C

Q

Setup Time Hold

Time

Q'=Q̄

W7-W 5

Basics: Falling Edge Triggered D flip-flop (5)

Output Q follows D but changes only at the clock falling edge

Logic DiagramLogic Diagram
Latch changes
state on falling
edge of clock

W7-W 6

Basics: 32-bit Registers (6)

Falling edge triggered D flip-flops can be combined to form a register

W7-W 7

Basics: Register Files (6)

1. Register files consist of a set of registers that can be read or written individually

2. In MIPS, register file contains 32 registers

3. Two registers can be read simultaneously

4. One register can be written at one time

W7-W 8

Basics: Write Enabled 1-bit Register (7)

Write Operation:

— Slight change to D
flip-flop to include a
”Write” input

— Din (Data input)
changes flip-flop state
only if “Wen” (Write
enable) is true

— Clock that controls the
write operation timing

W7-W 9

Basics: 32-bit Register (8)

Register:

— We duplicate the Flip-
flops from the previous
slide to form a 32-bit
register

— Each bit receives the
same “Write” and
Clock inputs which
enable the writing of
data “Din”

— A single set of Dout
lines allows the
register to be read

W7-W 10

Basics: Write Operation in Register Files (9)

We now duplicate the 32-bit
registers from the previous
slide to provide 32 registers
of the Register File

Write Operation:

— Register number of the
register to be written is one
input (WriteAddr bus)

— Data to be written is the
second input (WriteData
bus)

— Clock that controls the write
operation is the third input

— Decoders are used in the
write operation

W7-W 11

Basics: Read Operation in Register File (10)

Read Operation:

— Register number (address)
of the register to be read is
provided as input

— Content of the read register
is the output of the register
file

— Multiplexers (2 stages
shown) are used in the read
operation

W7-W 12

Basic Building Blocks (1)

1. Program counter:
contains address of next instruction

2. Sign-extension unit:
extends a 16-bit integer to a 32-bit integer

3. Adder:
adds two 32-bit integers 4. ALU:

add/subtract/and/or/compare two 32-bit integers

W7-W 13

Basic Building Blocks (2)

5. Instruction memory

7. Register File6. Data memory unit

W7-W 14

Datapath: Fetch Instruction

1. Provide address from PC to
Instruction Memory

2. Increment PC by 1 word (4 bytes)

3. Fetch the instruction

W7-W 15

Datapath: R-type Instructions

R-type instructions include arithmetic and logical instructions (add, sub, or, and, slt)

Example: add $s1,$s2,$s3

1. Read two registers ($s2,$s3) specified in the instruction

2. ALU performs the required operation (add) on the two operands

3. Output of ALU is written to the specified register ($s1)

W7-W 16

Datapath: Data transfer Instruction (1)

Store instruction:
sw $s1,offset($s2)

1. Read two registers ($s1,$s2)
specified in the instruction.

2. Offset is extended to 32 bits.

3. ALU adds offset with
specified register ($s2) to obtain
data memory address.

4. Address along with data of
the register ($s1) to be stored
passed to data memory.

W7-W 17

Datapath: Data transfer Instruction (2)

Load instruction lw $s1,offset($s2)

1. Read register ($s2) specified in the instruction. 2. Offset is extended to 32 bits.

3. ALU adds offset with specified register ($s2) to obtain data memory address.

4. Data memory transfers data from provided address to Register file where it is stored in
the specified register ($s1).

W7-W 18

Datapath: Data transfer Instruction (3)

Load and store instruction combined

W7-W 19

Datapath: Branch Instructions

Example: beq $s1,$s2,Loop

Compiler translation:
beq $s1,$s2,w_offset

#if $s1==$s2, goto (PC+4+4*w_offset)

1. Read two registers

($s2,$s3) specified

in the instruction

2. ALU compares

content of specified

registers ($s1,$s2)

3. Adder computes

the branch address

4. If equal (zero = 1),

branch address is

copied to PC

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Basics: Register Files (6)
	Basics: Write Operation in Register Files (9)
	Slide 9
	Basics: Write Operation in Register Files (8)
	Basics: Read Operation in Register Files (7)
	Basic Building Blocks (1)
	Basic Building Blocks (2)
	Datapath: Fetch Instruction
	Datapath: R-type Instructions
	Datapath: Data transfer Instruction (1)
	Datapath: Data transfer Instruction (2)
	Datapath: Data transfer Instruction (3)
	Datapath: Branch Instructions

