= T E o = I = T W = o = T O > W = ]

2 AENNE 8 HEAN fB VUKV B Ditth

.__ :.m o BH

£ JJ g e 9 = L B & Wi ® L ZE -0 2 x> 4

.lrﬁm = Jw > - o =

b e e LM 1

A |
REMNRY BT W
bl

(€ HESN L3 WUEY H.E nE- 8
LI N - JT-N ¥ 4 ]ﬂ!!ﬁ- F Y

-HJ o
x » T W E WS EXTO®E B = O o« = oL
WURY HE DN .,&J.:in »
- e s+ = o oOg— x hi A
W o
ECE =&MW (2 B8 HESN .r&%&.kl.c e
t HECNE &1 _ P
i : a\m TFEOQa —— TH - b= O i F o e y E T « k= 71 bt iLF > T
_.W, 0 2 Ed=uUL T T SR

E = = R - =

N LAE VUKL BB U.r_..l

—2del=

ORGANIZATION

B8 OxUER
= == 0 o T - € ¥ O 23 ZE B = 1 = s B = L W
Wil _ s seum @R 1
(el it Ok -1 __ [+ )'F‘aﬁ‘
®C NE WOE® ____ 0 NESA L6 MURUBE
I w = o — 3 w o a & o 80 w E = = K =~
- L W E a0 C 26 b @ Lo W b 3

ah wome & AR ® O9—= ac

T ORUERY B D= BECNE Sms N

s TTE NN

LALZU-

— 4] > T w F = =

a]
M L
'I
D
u
|
I
T
|
3
T
o

" CHES-SER-

o A e hzn =

HUGH

== =t A e A=

LNE WURY FHE DE+ BH(

C-OMPUEE-

UKL B DR

- W e - @ ol = e @ = L Wi ¥ W ¥ E U =

® OoOfP—= AS AB @

-
e MO o ‘el Bk 1-. s




Agenda

Topics:
1. Sample Exam/Quiz Q - Review
2. Multiple cycle implementation

:

Patterson: Section 4.5

Pl ~ii={0} W=

P e

Reminder: Quiz #2 — Next Wednesday

Wi
& 1 ~H T

e e . -+ o= i
i ®&E I

WM



|

g

L s ] |

11

&

e
——_

g o T - - |

Main Control (4)

Instruction[31..07 | §

DOUT]

ADDR[.]

InstrAddr[31..0]

U_MsmCemmz]

PCSrc

RzFilz faiDae U RapFils
[ Readaddeafd.0] Dourdf3 L8] [
(% RemdaddeB[4.0] DewB[3 .01 [
[ Wessadddd 0] E 4
o
[ WeiseDeslit.01]
RegWrite

Immediate/Offsat

oy ioy

U_ALU3 Jbdler kT
ALU3bwkr ST SchDoc

Rezul31..0] B

Ta Branch Logic

TestZeo

Orverdlow B

MemtoReg




Activity (Sample Quiz, Exam Q)

We wish to add jr (jump register) to the single cycle datapath
from the previous slide. Add the necessary connections to the
single cycle datapath block diagram to implement the jr
iInstruction. Also, append the table below to add the necessary
control signals needed for the jr instruction.

R-format 1 0 0 1 0 0 0 1 0
1w 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
. beq X 0 X 0 0 0 1 0 1

WI-M 4



Answer (Part 1):

Jum;:r Register jr R PC=R[rs] ’ l}fﬁlghm
Modifv the datapath as shown

U PeegCenzss
ALV ik 36T2 S Dias
s FogFik SciTice U RegFi I i A[31..0]
PN s Rmdddeals. 0] Deusagat.0] [~
Fezult[31..0] HiH=
M :
To Branch Logic
& Do Instruction[31..0] P etadian. il st [ [FesiZem N
ADDRL] =8 Orverflow Hl
b R
> WekeDe[i1 0]
InstrAdde[31..0 o
[ ] RegWmte
MMemtoReg

J
JL5.0] . Jis o C1K D]
DOUT-]
I diate/Offset .
mmediate 38 . MemWrite

L = MemRead




Answer (Part 2):

... append the table below to add the necessary control signals
needed for the jr instruction.

f
E R-format 1 0 0 1 0 0 0 0 1 0
; 1w 0 1 1 1 1 0 0 0 0 0
! B\ X 1 X 0 0 1 0 0 0 0
3 . beqg X 0 X 0 0 0 1 0 0 1
Jr X 0 X 0 0 0 0 1 X X
Jum;:b Register = p-;::l;{[rs] | ‘ h m-:‘;é;ex

WiI-M B



Why Multicycle?

Example: Assume that the operation times for major functional unit in a microprocessor are:
Memory unit ~ 2ns, ALU and adders ~ 2ns, Register file ~ 1ns
Compare the performance of the following instruction mix
Loads: 24%; Stores: 12%; ALU instructions: 44%; Branches: 18%; Jumps: 2%

on the two implementations

11

Implementation I: All instructions operate in 1 clock cycle

Implementation II: Each instruction is as long as it needs to be.

| MstuctionClass  Functional units used (Stepsimvolved)
|
i ALU type Instruction fetch Register Access ALU  Register Access 6ns
. Load word Instruction fetch Register Access ALU Memory Access Register Access 8ns
E Store word Instruction fetch Register Access ALU Memory Access Tns
: Branch Instruction fetch Register Access ALU Sns
Branch Instruction fetch 2ns

Average time per instruction: Implementation 1: ~ 8ns
Implementation 2: ~0.24(8)+0.12(7)+0.44(6)+0.18(5)+0.02(2) = 6.34ns
WiI-M ?




Multicycle Implementation

Instruction:

—  Execution of each instruction is broken into different steps
—  Each step requires 1 clock cycle

—  Each instruction takes multiple clock cycles

Functional Unit:

f
-
T
t

—  Can be used more than once in an instruction (but still only once in a clock cycle)
Advantages:

Pl

—  Functional units can be shared
— ALU and adder is combined

—  Single memory is used for instructions and data

WM




Multicycle Implementation: Abstract Diagram

NextlnstrAddr[31..0]

U ALU A

U kakicy _1_:5:'\;:?;] ALV 9L - 2T Sk T
Bzpil fesDac
[ a3l Fzgfils Saxlac U RFikc Deadit 0] [ il A[31..0] AL e
Dewdit 01 [ [ RmdAddedld 0] Deurafil. 0] [ i Rzgdl faslies
— T Fesult{31..0] I s rent o
= CLE DDY-1 _— :
DOUTL ] (o RadAddeBI4.0] DewBat.01 [} > Q ek
B 3 s - i
RAMSE 1 Dial3L0] {» WekmAdddd..0] % i
W L. L 3
Addr]31.0] w‘% [ WixDuslsL.0] ol - i £[51..0)

Data memory and Instruction memory are combined

5 additional registers are added
1.

2
3.
4

An instruction register (IR) to hold instructions before distributing data to register file or ALU
A memory data register (MDR) to hold data before distributing to register file or ALU
Registers A and B that hold data before the ALU

Register ALUout that hold data computed by ALU

WiI-M ]




Multicycle Implementation: Multiplexers added

NextInstrAddr[31..0]

U_ALL_A
17_InsRex Reed2 SchDac

U_ALU Res

: U_ALUSZhillnvSNTz
ALUTZbillnS 1T Schpe
R?;\-[r;:;] Tl - _I-D Dinl31.0] ol A[31.0]
. ) eplile SchDoc ] RegFile 5
25 7 i - . Doaif31.0] | 11.5] .

Dol 1] [ el et rs[4.0] ¥ RendAddra[d, §] DoutAB 10 = | g 2232 SchDo:
M-Dhatn Clock Result[31..0] 1 Din[31.4]
= CLE DI .| fer— YT Dawtf31,.0] )
e 120 160 [4.0] rt[“u.O] “UMIZ BRI -
Muxs
: =

F— ReadAddrR[4,.0] DautB31 0] [ =y 1_ALU_B
unl | Repd2 Schiae

Testdero

. AL, 5] - 1 Dinf31.0] Overflow
= R i rd|'4 0] VS WriteAdd]4,0] 3 2 Doatf31.0] [ [31.10
T AN NI - ,, 1= s o
F— WriteData[31,,0] = Clock Y4 0]
4 <1t
fuxl . bisL
Lo Add[31.0] 2
pei=2 1 ! "I-'.-Jn 1.0 I.L’_Ii-lltl
Ll
“UM3z_BIBI U_MemDatareg
RiZ Schilhoe
b Dinf31.0)
Doutf31.4) [ f
[ Clock

Because functional units are shared, multiplexers are added to select data between different devices

.

2
3.
4.
5

MUX before memory selects either the PC output (fetch instruction) or ALU output (storing data)

MUX before “write register” selects write-register number (instruction [15-11] or instruction[20-16])
MUX before “write data” selects data from “ALUOut” (R-type instruction) or “MemData” (Iw instruction)
Upper MUX before ALU selects PC output (increment PC) or “Read data 1” (R-type instruction)

Lower MUX before ALU selects “Read data 2”, or “sign extended instruction[15-0] or shift left sign

extended instruction[15-0], or 4
WiI-M 14



Multicycle Implementation: Controls added

NextlnstrAddr|31..0]

PCWriteCond
PCWrite ; PESuaefl 1]

PCSource[1..0]
ALUCH[1..0]

ALOgL..0]

ALUSrcA .

ALUEmA . iz
ALUE=B[L_ 0] :'JLLLS'I’.CBH__D] E ;
R"i“b"‘ n[? & & pt LT
U MmConssliblye 0 JLi.n]
Pumn Conmn Mulelye S Wendl .".\'.- L6l 3070415, 8]
0| Aol e R
5 2320 1]X0B[. 4
[nstr[5..0] L
[27.24] [3.0]30CHH. 0]
Tzamuced | ..0] i Trevoaned]
JaRiiEL.0) [3t.25 [3..0]30003. 0]
1AL M ST 11 B4E
31261 [5..0] ALUI ek SkTr Sk T
_— - ol Rz File Sk D L] 1:;}".'.:J _i..'l.:_'__]:‘.:
35310 [4.9] I’EH'D] [ i o u Tl REATEEr
E Desf3t. 0]
:E£CUC P o || | I’[Fi]- I:I_l 3 p—
e S — |~ Resd AddeB.0] DewsB[3L 0] [ =] vt et
ADDRL] Dduxd 1 =
WE fo ) =
= . ]
L [l r|j|'_1|]'| | Wemadida ] 2 E:
i M WeisDeslit 0] 5
=
Mi_BIE
cara ] Addr[31..0]
Gl
SanEx
0] [15.0] :
U_MemTimeerny -
Repdl.SciDec =
U_figmEat 5| =
A :1?:;}:* idTizz % =
Dougdl.i] [
Clack
0] 5 ALvogll.o
0] ] ]

MUX before memory selects either the PC output (fetch instruction) or ALU output (storing data)
MUX before “write register” selects write-register number (instruction [15-11] or instruction[20-16])
WI-M 1l




Multicycle Implementation: Control Units added

NextlnstrAddr[31..0]

PCWrit=Cond

PCWrite

IotD

IemWrite

FC3ou

e l.0]

ALUOR]L..0]

ALk

ALU3E]L..0]

RecWrite

uben Cameme sy ok Do

DDL'I[.:]

a0

[11.24]1 [5.4]

[25.211 [4.0] I'SH._D]

RzpFilz §zDies

U Rzl

U_MemDetey
R

[20.16)_[4.0] if4..0]

| > Re=d Addeald. 0]

| = Remdidded 0]

| = Wekeadddd 0]

| > WeeDeif31..0]

I mewsmro

W

DewB[L0] [

i

Ll

aznEn

U_SmFre
SgymExs SckDec

PCSource[1..0]

ALUC[1..0]

ATUSrcA = =
ALUSTcBI1..0]

Mdazg

1

ALLEH e

ATTOp[3..0]

ALLEnd

1e




i

q
|

TorD

. MemRead

‘MemWrite

IRWrite

RegDst

RegWrite

ALUSrcA
MemtoReg

PCWrite

PCWriteCond

Action of 1-bit Control Signals

PC supplies address to memory (instruction fetch)
None

None

None

“Write Register” specified by Instruction[20-16] (Iw)

None

PC is the first operand in ALU (increment PC)
“WriteData” of the register file comes from ALUOut

Operation at PC depends on PCWriteCond and zero
output of ALU

Operation at PC depends on PCWrite

WM

ALUout supplies address to memory (Iw/sw)

Memory content specified by address is placed on
“Memdata” o/p (Iw/any instruction)

I/p “Write data” is stored at specified address (sw)
“MemData” o/p is written on IR (instruction fetch)

“WriteRegister” specified by Instruction[15-11] (R-
type)

Data from “WriteData” i/p is written on the register
specified by “WriteRegister” number

Register A is the first operand in ALU
“WriteData” of the register file comes from MDR

PC is written; Source is determined by PCSource

PC is written if zero o/p of ALU = 1; Source is
determined by PCSource

13



Action of 2-bit Control Signals

00 ALU performs an add operation

n
>
.
c
®

=

01 ALU performs a subtract operation

10 The function field of Instruction defines the operation of ALU

00 The second operand of ALU comes from Register B
01 The second operand of ALU =4
ALUSrcB 10  The second operand of ALU is sign extended Instruction[15-0]

11 The second operand of ALU is sign extended, 2-bit left shifted Instruction[15-0]

00 Output of ALU (PC + 4) is sent to PC
01 Contents of ALUOut (branch target address = PC + 4 + 4 x offset) is sent to PC

Contents of Instruction|[25-0], shift left by 2, and concatenated with the MSB 4-
bits of PC is sent to PC (jump instruction)

L
|
B
:
£
:

PCSource
10

WI-M 14




Multicycle Implementation: Control Units added

NextlnstrAddr[31..0]

PCWrit=Cond

PCWeiie S PCSource[1..0]
TorD e IO LU 1..0]
MemWrite RN A1USrcA
I A US:cB1..0]
RegWrite ElOF| e
2 3

uben Cameme sy ok Do

a0

T2 B4E
UALU &
e 2232 SenDee
b —: Difil 0]
Yy RegFik SciDice U ResFike
[25.211 [4.0] I':H..D] J Deudat 1] [
T T
ETa— i s |
C1K D] frm I | y ;—
e L I’[H..D] | = Remdidded 0] DeusB[i 0] [ =] v a1 B
ADDRL] Mz -l Tegdd SckDoc _|
WE |o 4 W me=mat =
= L 1d[4.0] = Wamsdsa 0] 2 Deudal ] [ 2
| = WekeDasgal. 0] ﬁﬂ“‘* =
T =
L
a1 Addr[31. 0]
ul|
5.0 [15.0]
[ — NE
8] o [5.0]

WI-M L5




f
-
T
t

Pl

Shift Left 27

What two instructions require the “Shift Left 27
block?

if(R[rs]==R[rt
Branch On Equal ~ beg | fﬁ:ESP:L:‘+4£El?3_nchﬁddr 4y Hoex

(4) BranchAddr = § 14{immediate[15]}, immediate, 2"bl §

Jump ] J PC=lumpAddr (5)  Zhex

(5) lumpAddr=  { PC+4[31:28]. address, 2'b0 1+

WM

LG



Breaking the Instruction Execution into Clock Cycles

Execution of each instruction is broken into a series of steps
— Each step is balanced to do almost equal amount of work
— Each step takes one clock cycle

— Each step contains at the most 1 ALU operation, or 1 register file access, or 1 memory
access

— Operations listed in 1 step occurs in parallel in 1 clock cycle
— Different steps occur in different clock cycles
— Different steps are:
1. IF: Instruction fetch step
ID: Instruction decode and register fetch step

L
.
.
i
¢

EX: Execution, memory address computation, or branch completion step

i oo
e
AR

2
3
4.  MEM: Memory access of R-type instruction completion step
5. WB: Write back completion step

R -

-21'1-1'!-

WiI-M 1?

== e ss B
w

—

R -

—



)

f
:
T
t
7|

Fetch instruction from memory and compute the address of next sequential instruction

Step 1: Instruction Fetch

IR = Memory[PC];

PC = PC + 4;
Operation:
1. Send PC to the memory as address (IlorD = 0)
2. Read memory cell defined by PC (MemRead = 1)
3.  Copy output of memory (MeMdata) into IR (IRwrite = 1)
4. Increment PC by 4 (ALUSrcA =0, ALUSrcB =01, PCSrc = 00)
5.  Store (PC + 4) into PC (PCWrite = 1)

WM

1v



Step 2: Instruction Decode and Register Fetch

Read register rs in register file and store content of rs in register A
Read rt in register file and store content of rt from register file
Compute branch target address

A = Reg[IR[25-21]];
B = Reg[IR[20-16]];
ALUOut = PC + (sign-extend(IR[15-0]) << 2);

Operation:

1. Access register file to write rs in A.

2. Access register file to write rt in B.

3. Compute branch target address and store in ALUOut (ALUSrcA = 0; ALUSrcB =11)
Remember that ALU must add (ALUOp = 00)

After this step, one of the four actions are possible: Memory reference (Iw/sw), R-type,

Branch, or Jump
WiI-M 11



Step 2: Instruction Decode and Register Fetch

Read register rs in register file and store content of rs in register A
Read rt in register file and store content of rt from register file
Compute branch target address

A = Reg[IR[25-21]];
B = Reg[IR[20-16]];
ALUOut = PC + (sign-extend(IR[15-0]) << 2);

Operation:

1. Access register file to write rs in A.

2. Access register file to write rt in B.

3. Compute branch target address and store in ALUOut (ALUSrcA = 0; ALUSrcB =11)
Remember that ALU must add (ALUOp = 00)

After this step, one of the four actions are possible: Memory reference (Iw/sw), R-type,

Branch, or Jump
WiI-M el



Step 3: Execution, Memory address Computation, or Branch Completion

Memory Reference (sw/lw):

ALUOut = A + sign-extend(IR[15-0])
ALU adds content of A and sign-extend(IR[15-0]) (ALUSrcA = 1, ALUSrcB = 10),
(ALUOp = 00)
R-type (add/sub/or/and):
ALUOut = A op B
ALU performs specified operation on A and B (ALUSrcA = 1, ALUSrcB = 00),
Operation of ALU is determined by the function field code (ALUOp = 10)
Branch (beq):
if (A == B) PC = ALUOut;
ALU does the equal comparison operation on A and B (ALUSrcA = 1, ALUSrcB = 00),
ALU must subtract (ALUOp =01)
Update PC with ALUOut if A == B (PCWriteCond = 1, PCSource = 01)
Jump (J):
PC = PC[31-28] || (IR[25-0) << 2);
PC gets overwritten by output of jump address MUX (PCSource = 10, PCWrite = 1)

WiI-M el




Step 4: Memory Access or R-type Instruction Completion

Memory Reference (sw/lw):
MDR = Memory[ALUOut] ; (for 1w)
or Memory |[ALUOut] = B; (for sw)

1. Address from ALUOut is applied at “address” i/p of memory (lorD = 1)
2. For sw, MemWrite = 1. For lw, MemRead = 1.

f
-
T
t

Pl

R-type Instruction (add/sub/or/and):
Reg[IR[15-11]] = ALUOut;

ALUOut is stored into the register specified by IR[15-11] (MemtoReg = 0, RegWrite = 1)

WiI-M ee




f
-
T
'
'

B =

Step 5: Memory Write Back (Completion)

load (Iw):
Reg[IR[20-16]] = MDR;

MDR is stored into the register specified by IR[20-16] (MemtoReg = 1, RegWrite = 1,
RegDst = 0)

WiI-M 23



	Slide 1
	Agenda
	Slide 3
	Activity (Sample Quiz, Exam Q)
	Answer (Part 1):
	Answer (Part 2):
	Why Multicycle?
	Multicycle Implementation
	Multicycle Implementation: Abstract Diagram
	Multicycle Implementation: Multiplexers added
	Multicycle Implementation: Controls added
	Multicycle Implementation: Control Units added
	Action of 1-bit Control Signals
	Action of 2-bit Control Signals
	Slide 15
	Shift Left 2?
	Breaking the Instruction Execution into Clock Cycles
	Step 1: Instruction Fetch
	Step 2: Instruction Decode and Register Fetch
	Slide 20
	Step 3: Execution, Memory address Computation, or Branch Completion
	Step 4: Memory Access or R-type Instruction Completion
	Step 5: Memory Write Back (Completion)

