
1 

CSE 3221 
Operating System Fundamentals 
 

 

Prof. Hui Jiang 
Dept of Computer Science and Engineering 

York University 

No.4 
 

                 CPU scheduling 

CPU Scheduling 
·  CPU scheduling is the basis of multiprogramming 
·  CPU scheduling consists of two components: 

–  CPU scheduler: when CPU becomes idle, the CPU scheduler 
must select from among the processes in ready queue. 

–  Dispatcher: the module which gives control of CPU to the 
process selected by the CPU scheduler. 
•  Switching context 
•  Switching to user mode 
•  Jumping to the proper location in user program to restart 

–  Dispatch latency: the time it takes for the dispatcher to stop one 
process and start another running 
•  Dispatcher should be as fast as possible  

CPU burst vs. I/O burst 

·  Process (thread) execution  
     =  CPU burst + I/O burst 

·  Process (thread) alternates 
between these two states. 

·  Length of these bursts is 
very different. 

     

Histogram of CPU-burst Times 

Non-preemptive vs. Preemptive 
scheduling 

·  CPU scheduling decisions may take place when a process: 
1. Switches from running to waiting state. 
2. Switches from running to ready state. 
3. Switches from waiting to ready. 
4. Terminates. 

·  Non-preemptive scheduling takes place under 1 and 4. 
–  Once the CPU has been allocated to a process, the process 

keeps the CPU until it releases CPU. 
·  Preemptive scheduling takes place in 1,2,3,4. 

–  A running process can be preempted by another process 
–  Not easy to make OS kernel to support preemptive scheduling  
–  How about if the preempted process is updating some critical 

data structure? 
•  Process synchronization 
•  Disable interrupt 

Scheduling Criteria 

·  CPU utilization – keep the CPU as busy as possible. 
–  Usage percentage (40% -- 90%) 

·  Throughput – # of processes that complete their execution per 
time unit. 

·  Turnaround time – amount of time to execute a particular 
process. 
–  The interval from the time of submission a process to the 

time of completion. 
·  Waiting time – amount of time a process has been waiting in the 

ready queue. 
·  Response time – amount of time it takes from when a request 

was submitted until the first response is produced, not the final 
output  (for time-sharing environment). 



2 

Scheduling Algorithms 

·  First-come, first-served (FCFS) scheduling 

·  Shortest-Job-First (SJF) Scheduling 

·  Priority Scheduling 

·  Round-Robin (RR) scheduling 

·  Multi-level Queue Scheduling 

·  Multilevel Feedback Queue Scheduling  

First-Come, First-Served (FCFS) 
Scheduling 

  Process  Burst Time   
  P1  24 
   P2  3 
   P3   3  

·  Suppose that the processes arrive at time 0 in the order: P1 , P2 , P3   
The Gantt Chart for the scheduling is: 
 
 
 
 
 

·  Waiting time for P1  = 0; P2  = 24; P3 = 27. 
·  Average waiting time:  (0 + 24 + 27)/3 = 17. 

P1" P2" P3"

24" 27" 30"0"

FCFS Scheduling (Cont.) 
Suppose that the processes arrive in the order: 

   P2 , P3 , P1 . 
·  The Gantt chart for the schedule is: 

 

·  Waiting time for P1 = 6; P2 = 0; P3 = 3. 
·  Average waiting time:   (6 + 0 + 3)/3 = 3. 
·  FCFS is easy to implement (as a FIFO sequence). 
·  FCFS results in long wait in most cases and suffers convoy effect. 

–  Convoy effect : all the other processes wait for one big process 
to get off the CPU. 

P1"P3"P2"

6"3" 30"0"

Shortest-Job-First (SJF) Scheduling 
·  Associate with each process the length of its next CPU burst. 

Schedule CPU to process with the shortest time. 
–  The shortest one is the first. 

·  Implementation: ready queue  sorted list. 
·  Two schemes:  

–  nonpreemptive – once CPU given to the process it cannot be 
preempted until it completes its CPU burst. 

–  preemptive – if a new process arrives with CPU burst length 
less than remaining time of current executing process, it 
preempts.  This scheme is know as the Shortest-Remaining-
Time-First (SRTF). 

·  SJF is optimal – gives minimum average waiting time for a given 
set of processes. 

  Process  Arrival Time  Burst Time 
  P1  0.0  7 
   P2  2.0  4 
   P3  4.0  1 
   P4  5.0  4 

·  SJF (non-preemptive) 

·  Average waiting time = (0 + 6 + 3 + 7)/4 = 4 

Example of Non-Preemptive SJF 

P1" P3" P2"

7"3" 16"0"

P4"

8" 12"

Example of Preemptive SJF 
(shortest-remaining-time-first) 

  Process  Arrival Time  Burst Time 
  P1  0.0  7 
   P2  2.0  4 
   P3  4.0  1 
   P4  5.0  4 

·  SJF (preemptive) 

·  Average waiting time = (9 + 1 + 0 +2)/4 = 3 

P1" P3"P2"

4"2" 11"0"

P4"

5" 7"

P2" P1"

16"



3 

Determining Length  
of Next CPU Burst 

·  Length of next CPU burst is unknown. 
·  Can only estimate the length. 
·  Can be done by using the length of previous CPU 

bursts, using exponential averaging, to predict 
the next one. 

 
 

:Define  4.
10 ,  3.

burst CPU next the for value predicted   2.
burst CPU of lenght actual  1.

≤≤
=

=

+

αα
τ 1n

th
n nt

( ) .1 1 nnn t ταατ −+=+

Examples of Exponential Averaging 
·  α=0 

–  τn+1 = τn = … = τ0 

–  Recent history does not count. 
·   α=1 

–   τn+1 = tn 

–  Only the actual last CPU burst counts. 
·  If we expand the formula, we get: 

τn+1 =  α tn+(1 – α) tn-1 + … 
            +(1 - α )j  tn-j + … 
            +(1 - α )n-1 t0 

·  Since both α and (1 - α) are less than or equal to 1, each 
successive term has less weight than its predecessor. 

Prediction of the Length of the 
Next CPU Burst 

Priority Scheduling 

·  A priority number (integer) is associated with each process 
·  The CPU is allocated to the process with the highest priority 

(smallest integer  highest priority). 
–  Preemptive 
–  Nonpreemptive 

·  SJF is a priority scheduling where priority is the predicted 
next CPU burst time. 

·  Problem  Starvation – low priority processes may never 
execute. 

·  Solution  Aging – as time progresses increase the priority 
of the process. 

Round Robin (RR) 

·  Each process gets a small slice of CPU time (time quantum), 
usually 10-100 milliseconds.  After this time has elapsed, the 
process is preempted and added to the end of the ready queue. 
–  Ready queue is a circular queue or FIFO queue. 

·  Fairness: If there are n processes in the ready queue and the time 
quantum is q, then each process gets 1/n of the CPU time in 
chunks of at most q time units at once.  No process waits more 
than (n-1)q time units.   

·  Performance: 
–  q large  FCFS 
–  q small  too many context switches, so overhead is high. 
–  q must be large with respect to most CPU bursts’ lengths. 

Time Quantum and Context 
Switch Time 



4 

Example of RR with Time 
Quantum = 20 

  Process  Burst Time 
  P1  53 
   P2   17 
   P3  68 
   P4   24 

·  The Gantt chart is:  
 
 
 
 
 
 

·  Typically, higher average waiting time than SJF, but 
better response. 

P1" P2" P3" P4" P1" P3" P4" P1" P3" P3"

0" 20" 37" 57" 77" 97" 117" 121" 134" 154" 162"

Turnaround Time Varies With The 
Time Quantum 

Multilevel Queue 

·  Ready queue is partitioned into separate queues: 
–  foreground (interactive) 
–  background (batch) 

·  Any process is permanently assigned to one of these queues 
·  Each queue has its own scheduling algorithm, i.e., 

–  foreground – RR 
–  background – FCFS 

·  Scheduling must be done between the queues. 
–  Fixed priority scheduling; (i.e., serve all from foreground then 

from background).  Possibility of starvation. 
–  Time slice – each queue gets a certain amount of CPU time 

which it can schedule amongst its processes; i.e.,  
•  80% to foreground in RR 
•  20% to background in FCFS  

One example of  
multilevel Queue Scheduling 

Multilevel Feedback Queue 
·  A process can move between the various queues; aging can be 

implemented this way. 
–  If used too much CPU time  lower-priority queue 
–  If waited too long   higher-priority queue 

·  Multilevel-feedback-queue scheduler defined by the following 
parameters: 
–  number of queues 
–  scheduling algorithms for each queue 
–  method to determine when to upgrade a process 
–  method to determine when to demote a process 
–  method to determine which queue a process will enter when 

that process needs service 
·  It is the most general CPU scheduling algorithm. Can be 

configured to match a specific system under design. 

Example of Multilevel Feedback Queue 
·  Three queues:  

–  Q0 – time quantum 8 
milliseconds 

–  Q1 – time quantum 16 
milliseconds 

–  Q2 – FCFS 
·  Scheduling 

–  A new job enters queue Q0. 
When it gains CPU, job 
receives 8 milliseconds.  If it 
does not finish in 8 
milliseconds, job is moved 
to queue Q1. 

–  At Q1 job is again served RR 
and receives 16 additional 
milliseconds.  If it still does 
not complete, it is 
preempted and moved to 
queue Q2. 

–  Always preemptive. 



5 

Scheduling in multi-CPU Era 

·  Multiple-Processor Scheduling 
– Multi-core scheduling 

·  Scheduling for multiple systems 

– Load balancer (long-term scheduler) 

– Scheduling for distributed systems 

Multiple-Processor Scheduling 
·  CPU scheduling more complex when multiple CPUs are available. 

·  Homogeneous processors within a multiprocessor. 
–  Any available processor can then be used to run any process in 

the queue. 

·  One common ready queue vs. a separate queue for each CPU. 

·  Asymmetric multiprocessing – one processor (master) schedules                                               
for all processors  
–  only one processor accesses the system data structures 
–  alleviating the need for data sharing. 

·  Symmetric multiprocessing – each processor is self-scheduling 
–  Each processor select its processes from the queue 
–  Process synchronization when accessing common queues  

 

Real-Time Scheduling 
·  Hard real-time systems – requires to complete a critical task within 

a guaranteed amount of time. 
–  Hard to achieve in a general-purpose computer. 

·  Soft real-time computing – requires that the real-time processes 
receive priority over others (no aging). 

·  The dispatch latency must be small  preempt system call (kernel) 
–  Adding preemption points (safe points) in system calls 
–  Making the entire kernel preemptive by using process 

synchronization technique to protect all critical region 

Linux Scheduling 

·  Linux scheduling algorithm is preemptive, priority-based, with 
complexity O(1). 

·  Priority values are dynamically adjusted. 

·  Use two so-called run-queues for READY queue: 

Scheduling Algorithm Evaluation 

·  Analytic evaluation: deterministic modeling 
–  Given a pre-determined workload, calculate the performance 

of each algorithm for that workload. 
·  Queuing Models 

–  No static workload available, so use the probabilistic 
distribution of CPU and I/O bursts. 

–  Use queuing-network analysis. 
–  The classes of algorithms and distributions that can be 

handled in this way are fairly limited. 
·  Simulation: use a simulator to model a computer system 

–   simulator is driven by random-number generator according 
to certain distributions. 

–  Simulator is driven by a trace file, which records actual events 
happened in a real system. 


