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                 CPU scheduling 

CPU Scheduling 
·  CPU scheduling is the basis of multiprogramming 
·  CPU scheduling consists of two components: 

–  CPU scheduler: when CPU becomes idle, the CPU scheduler 
must select from among the processes in ready queue. 

–  Dispatcher: the module which gives control of CPU to the 
process selected by the CPU scheduler. 
•  Switching context 
•  Switching to user mode 
•  Jumping to the proper location in user program to restart 

–  Dispatch latency: the time it takes for the dispatcher to stop one 
process and start another running 
•  Dispatcher should be as fast as possible  

CPU burst vs. I/O burst 

·  Process (thread) execution  
     =  CPU burst + I/O burst 

·  Process (thread) alternates 
between these two states. 

·  Length of these bursts is 
very different. 

     

Histogram of CPU-burst Times 

Non-preemptive vs. Preemptive 
scheduling 

·  CPU scheduling decisions may take place when a process: 
1. Switches from running to waiting state. 
2. Switches from running to ready state. 
3. Switches from waiting to ready. 
4. Terminates. 

·  Non-preemptive scheduling takes place under 1 and 4. 
–  Once the CPU has been allocated to a process, the process 

keeps the CPU until it releases CPU. 
·  Preemptive scheduling takes place in 1,2,3,4. 

–  A running process can be preempted by another process 
–  Not easy to make OS kernel to support preemptive scheduling  
–  How about if the preempted process is updating some critical 

data structure? 
•  Process synchronization 
•  Disable interrupt 

Scheduling Criteria 

·  CPU utilization – keep the CPU as busy as possible. 
–  Usage percentage (40% -- 90%) 

·  Throughput – # of processes that complete their execution per 
time unit. 

·  Turnaround time – amount of time to execute a particular 
process. 
–  The interval from the time of submission a process to the 

time of completion. 
·  Waiting time – amount of time a process has been waiting in the 

ready queue. 
·  Response time – amount of time it takes from when a request 

was submitted until the first response is produced, not the final 
output  (for time-sharing environment). 
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Scheduling Algorithms 

·  First-come, first-served (FCFS) scheduling 

·  Shortest-Job-First (SJF) Scheduling 

·  Priority Scheduling 

·  Round-Robin (RR) scheduling 

·  Multi-level Queue Scheduling 

·  Multilevel Feedback Queue Scheduling  

First-Come, First-Served (FCFS) 
Scheduling 

  Process  Burst Time   
  P1  24 
   P2  3 
   P3   3  

·  Suppose that the processes arrive at time 0 in the order: P1 , P2 , P3   
The Gantt Chart for the scheduling is: 
 
 
 
 
 

·  Waiting time for P1  = 0; P2  = 24; P3 = 27. 
·  Average waiting time:  (0 + 24 + 27)/3 = 17. 

P1" P2" P3"

24" 27" 30"0"

FCFS Scheduling (Cont.) 
Suppose that the processes arrive in the order: 

   P2 , P3 , P1 . 
·  The Gantt chart for the schedule is: 

 

·  Waiting time for P1 = 6; P2 = 0; P3 = 3. 
·  Average waiting time:   (6 + 0 + 3)/3 = 3. 
·  FCFS is easy to implement (as a FIFO sequence). 
·  FCFS results in long wait in most cases and suffers convoy effect. 

–  Convoy effect : all the other processes wait for one big process 
to get off the CPU. 

P1"P3"P2"

6"3" 30"0"

Shortest-Job-First (SJF) Scheduling 
·  Associate with each process the length of its next CPU burst. 

Schedule CPU to process with the shortest time. 
–  The shortest one is the first. 

·  Implementation: ready queue  sorted list. 
·  Two schemes:  

–  nonpreemptive – once CPU given to the process it cannot be 
preempted until it completes its CPU burst. 

–  preemptive – if a new process arrives with CPU burst length 
less than remaining time of current executing process, it 
preempts.  This scheme is know as the Shortest-Remaining-
Time-First (SRTF). 

·  SJF is optimal – gives minimum average waiting time for a given 
set of processes. 

  Process  Arrival Time  Burst Time 
  P1  0.0  7 
   P2  2.0  4 
   P3  4.0  1 
   P4  5.0  4 

·  SJF (non-preemptive) 

·  Average waiting time = (0 + 6 + 3 + 7)/4 = 4 

Example of Non-Preemptive SJF 
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Example of Preemptive SJF 
(shortest-remaining-time-first) 

  Process  Arrival Time  Burst Time 
  P1  0.0  7 
   P2  2.0  4 
   P3  4.0  1 
   P4  5.0  4 

·  SJF (preemptive) 

·  Average waiting time = (9 + 1 + 0 +2)/4 = 3 

P1" P3"P2"
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P4"

5" 7"

P2" P1"

16"



3 

Determining Length  
of Next CPU Burst 

·  Length of next CPU burst is unknown. 
·  Can only estimate the length. 
·  Can be done by using the length of previous CPU 

bursts, using exponential averaging, to predict 
the next one. 
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Examples of Exponential Averaging 
·  α=0 

–  τn+1 = τn = … = τ0 

–  Recent history does not count. 
·   α=1 

–   τn+1 = tn 

–  Only the actual last CPU burst counts. 
·  If we expand the formula, we get: 

τn+1 =  α tn+(1 – α) tn-1 + … 
            +(1 - α )j  tn-j + … 
            +(1 - α )n-1 t0 

·  Since both α and (1 - α) are less than or equal to 1, each 
successive term has less weight than its predecessor. 

Prediction of the Length of the 
Next CPU Burst 

Priority Scheduling 

·  A priority number (integer) is associated with each process 
·  The CPU is allocated to the process with the highest priority 

(smallest integer  highest priority). 
–  Preemptive 
–  Nonpreemptive 

·  SJF is a priority scheduling where priority is the predicted 
next CPU burst time. 

·  Problem  Starvation – low priority processes may never 
execute. 

·  Solution  Aging – as time progresses increase the priority 
of the process. 

Round Robin (RR) 

·  Each process gets a small slice of CPU time (time quantum), 
usually 10-100 milliseconds.  After this time has elapsed, the 
process is preempted and added to the end of the ready queue. 
–  Ready queue is a circular queue or FIFO queue. 

·  Fairness: If there are n processes in the ready queue and the time 
quantum is q, then each process gets 1/n of the CPU time in 
chunks of at most q time units at once.  No process waits more 
than (n-1)q time units.   

·  Performance: 
–  q large  FCFS 
–  q small  too many context switches, so overhead is high. 
–  q must be large with respect to most CPU bursts’ lengths. 

Time Quantum and Context 
Switch Time 
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Example of RR with Time 
Quantum = 20 

  Process  Burst Time 
  P1  53 
   P2   17 
   P3  68 
   P4   24 

·  The Gantt chart is:  
 
 
 
 
 
 

·  Typically, higher average waiting time than SJF, but 
better response. 

P1" P2" P3" P4" P1" P3" P4" P1" P3" P3"
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Turnaround Time Varies With The 
Time Quantum 

Multilevel Queue 

·  Ready queue is partitioned into separate queues: 
–  foreground (interactive) 
–  background (batch) 

·  Any process is permanently assigned to one of these queues 
·  Each queue has its own scheduling algorithm, i.e., 

–  foreground – RR 
–  background – FCFS 

·  Scheduling must be done between the queues. 
–  Fixed priority scheduling; (i.e., serve all from foreground then 

from background).  Possibility of starvation. 
–  Time slice – each queue gets a certain amount of CPU time 

which it can schedule amongst its processes; i.e.,  
•  80% to foreground in RR 
•  20% to background in FCFS  

One example of  
multilevel Queue Scheduling 

Multilevel Feedback Queue 
·  A process can move between the various queues; aging can be 

implemented this way. 
–  If used too much CPU time  lower-priority queue 
–  If waited too long   higher-priority queue 

·  Multilevel-feedback-queue scheduler defined by the following 
parameters: 
–  number of queues 
–  scheduling algorithms for each queue 
–  method to determine when to upgrade a process 
–  method to determine when to demote a process 
–  method to determine which queue a process will enter when 

that process needs service 
·  It is the most general CPU scheduling algorithm. Can be 

configured to match a specific system under design. 

Example of Multilevel Feedback Queue 
·  Three queues:  

–  Q0 – time quantum 8 
milliseconds 

–  Q1 – time quantum 16 
milliseconds 

–  Q2 – FCFS 
·  Scheduling 

–  A new job enters queue Q0. 
When it gains CPU, job 
receives 8 milliseconds.  If it 
does not finish in 8 
milliseconds, job is moved 
to queue Q1. 

–  At Q1 job is again served RR 
and receives 16 additional 
milliseconds.  If it still does 
not complete, it is 
preempted and moved to 
queue Q2. 

–  Always preemptive. 
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Scheduling in multi-CPU Era 

·  Multiple-Processor Scheduling 
– Multi-core scheduling 

·  Scheduling for multiple systems 

– Load balancer (long-term scheduler) 

– Scheduling for distributed systems 

Multiple-Processor Scheduling 
·  CPU scheduling more complex when multiple CPUs are available. 

·  Homogeneous processors within a multiprocessor. 
–  Any available processor can then be used to run any process in 

the queue. 

·  One common ready queue vs. a separate queue for each CPU. 

·  Asymmetric multiprocessing – one processor (master) schedules                                               
for all processors  
–  only one processor accesses the system data structures 
–  alleviating the need for data sharing. 

·  Symmetric multiprocessing – each processor is self-scheduling 
–  Each processor select its processes from the queue 
–  Process synchronization when accessing common queues  

 

Real-Time Scheduling 
·  Hard real-time systems – requires to complete a critical task within 

a guaranteed amount of time. 
–  Hard to achieve in a general-purpose computer. 

·  Soft real-time computing – requires that the real-time processes 
receive priority over others (no aging). 

·  The dispatch latency must be small  preempt system call (kernel) 
–  Adding preemption points (safe points) in system calls 
–  Making the entire kernel preemptive by using process 

synchronization technique to protect all critical region 

Linux Scheduling 

·  Linux scheduling algorithm is preemptive, priority-based, with 
complexity O(1). 

·  Priority values are dynamically adjusted. 

·  Use two so-called run-queues for READY queue: 

Scheduling Algorithm Evaluation 

·  Analytic evaluation: deterministic modeling 
–  Given a pre-determined workload, calculate the performance 

of each algorithm for that workload. 
·  Queuing Models 

–  No static workload available, so use the probabilistic 
distribution of CPU and I/O bursts. 

–  Use queuing-network analysis. 
–  The classes of algorithms and distributions that can be 

handled in this way are fairly limited. 
·  Simulation: use a simulator to model a computer system 

–   simulator is driven by random-number generator according 
to certain distributions. 

–  Simulator is driven by a trace file, which records actual events 
happened in a real system. 


