
1

CSE 3221.3
Operating System Fundamentals

Prof. Hui Jiang
Dept of Computer Science and Engineering

York University

No.8

 Memory Management (1)

Memory Management
·  A program usually resides on a disc as a binary

executable file.
·  The program can be moved between disk and memory.
·  Program must be brought into memory and placed

within a process for it to be executed.
·  In multiprogramming, we keep several programs in

memory.
·  Memory management algorithms:

–  Contiguous Memory Allocation
–  Paging
–  Segmentation
–  Segmentation with paging

·  Memory management needs hardware support – MMU.

2

Background
·  Physical memory consists of a large array of words or bytes, each with

its own address.
·  In a typical instruction-execution cycle:

–  CPU fetches an instruction from memory according to PC .
–  The instruction is decoded.
–  CPU may fetch operands from memory according to the address in

the instruction. (optional)
–  CPU execute in registers
–  CPU saves results into a memory address (optional)

·  CPU generates address from program counter, program address,etc.
·  CPU sends the address to a memory management unit (MMU), which is

hardware to actually locate the memory at certain location.
–  Memory mapping (address translation).
–  Memory protection.

Program
Generation

&
Address

Re-locatable address:
e.g. 14 bytes from beginning
 of module

Symbolic address:
 e.g., count,i,j,etc

Physical address:
0x14398, 0xFF083

3

Program
Generation

&
Address

Re-locatable address:
e.g. 14 bytes from beginning
 of module

Symbolic address:
 e.g., count,i,j,etc

Logical address:
e.g. 4014, 1058, etc.

Physical address:
0x14398, 0xFF083

Using Logical Memory Space
·  Address binding: binding the logical memory addresses in

instructions and data to physical memory addresses.!
–  In source programs: symbolic addresses (e.g., count, i, j, etc.)
–  A compiler will bind each symbolic address to a relocatable

address (e.g. 14 bytes from the beginning of the module)
–  The linkage editor or loader will bind each relocatable address

to a logical address (e.g., 4014)
–  In run-time, MMU will bind each logical address to a physical

address (e.g., 074014)
–  The final physical address is used to locate memory.

·  Allow a user program to be loaded in any part of the physical
memory address binding in run-time

 completely separate physical address from logical address

4

Logical vs. Physical Address
·  Physical address: the address loaded into the memory-

address register to actually address the memory.
·  Logical (virtual) address: an address generated by the

CPU and the address referred by user program; address
used in binary codes.

CPU

MMU

0346:
logical address

logical address

Physical
Memory

physical address
User

Program

Jump 0346

14346

logical address
space

physical address
Space

14398

Memory-Management Unit (MMU)
·  MMU: maps logical address to physical address.
·  The user program deals with logical addresses; it never

sees the real physical addresses.
·  A simple MMU scheme, the value in the relocation

register is added to every address generated by a user
process at the time it is sent to memory.

5

Logical vs. Physical address (2)

·  Separating logical address from physical address:
–  Requires hardware support – MMI does address

mapping dynamically.

·  Why separating logical address from physical address?

–  Easier for compiler

–  More benefits to OS memory management

–  Consider two old methods …

Address Binding: compile-time
·  In compiling, physical address is generated for every

instruction.

·  The compiler has to know where the process will reside
in memory.

·  The code can not change location in memory unless it is
re-compiled.

·  No separation of logical and physical address spaces.

·  Example: .COM format in MS-DOS.
–  Not a choice for a multiprogramming system.

6

Address Binding: load-time

·  The compiler generate re-locatable code.

·  When OS loading code to memory, physical address is
generated for every instruction in the program.

·  The process can be loaded into different memory
locations.

·  But once loaded, it can not move during execution.

·  Loading a program is slow.

Benefits to separate LA from PA

·  Easier for compiler:
–  Generate binary codes in separate logical spaces.
–  All instructions use LA.

·  Maximum flexibility for OS to manage memory:
–  Program loading is fast, just direct copy.
–  The same binary code can be loaded anywhere in memory.
–  A loaded program can be re-located in memory.

·  Need hardware MMU support.

7

regular linking & loading

mainA.c

subA.c

libm.a

mainB.c

subB.c

Compiling

mainA.o

subA.o

mainB.o

subB.o

Linking

mainA

subA

libm

Program A

Memory Loading

mainB

subB

libm

Program B

mainA
subA

libm

mainB
subB

libm

Kernel

Dynamical Loading

·  Routine is not loaded until it is called.
·  Better memory-space utilization; unused routine is

never loaded.
·  Useful when large amounts of code are needed to

handle infrequently occurring cases.
·  No special support from the operating system is

required; Implemented through program design.
·  Each program maintains an address table to indicate

which module is in memory and which is not.

8

An example: Dynamic loading

mainA.c

subA.c

libm.a

mainB.c

subB.c

Compiling

mainA.o

subA.o

mainB.o

subB.o

Program A

Memory Relocatable
Linking Loader

Program B

Kernel

mainA

subA

libm

mainB

subB

libm

Duplicated

Dynamical Linking
·  Linking postponed until execution time.
·  In dynamic linking, a stub, is included in the

executable image for each library-routine reference.
·  Stub: used to locate the appropriate memory-resident

library routine or load the library of it is not in
memory.
·  Stub replaces itself with the address of the routine,

and executes the routine.
·  Operating system needed to check if the routine is in

other processes’ memory address, and allow multiple
processes to access the same memory space
·  Dynamical linking is useful for shared libraries.

9

An example: Dynamic linking

mainA.c

subA.c

libm.a

mainB.c

subB.c

Compiling

mainA.o
(stubs)

subA.o

mainB.o
(stubs)

subB.o

Program A

Memory Relocatable
Linking Loader

Program B

Kernel

mainA

Stub for sub

Stub for lib

subA

libm

mainB

Stub for sub

Stub for lib

subB

reference

libm

Memory Management Approaches

·  Contiguous Memory Allocation

·  Paging

·  Segmentation

·  Segmentation with paging

10

Contiguous Memory Allocation

·  Every process is allocated to a single contiguous section of physical
memory.

OS"

process 1"

process 2"

process 3"

OS"

process 1"

process 3"

OS"

process 1"

process 3"

OS"

process 1"

process 4"

process 3"

process 4"

process 5"

Memory Management Unit (MMU)
·  Two registers:

–  Limit register: the range of logical address
–  Relocation register: starting position of physical memory

·  In context switch, the dispatcher load both registers with correct
values.

·  Every memory access is checked by MMU hardware as:

MMU

11

Free Memory Management
·  OS must keep the information on which parts of memory are

available and which are occupied.
–  allocated partitions
–  free partitions (holes)

·  Hole: a block of free memory.
–  holes of various size are scattered throughout memory

·  When a process arrives, it is allocated memory from a hole
large enough to accommodate it.

·  Use linked lists:

Free Memory
start

size

next

start

size

next

start

size

next

start

size

next

start

size

next

start

size

next

Dynamic Storage-Allocation Problem

·  First-fit: Allocate the first hole that is big enough.
·  Best-fit: Allocate the smallest hole that is big enough;

must search entire list, unless ordered by size. Produces
the smallest leftover hole.

·  Worst-fit: Allocate the largest hole; must also search
entire list. Produces the largest leftover hole.

How to satisfy a request of size n from a list of free holes  
that have various size.!

1.  First-fit and best-fit are better than worst-fit in terms of speed and
memory utilization.!

2.  First-fit is faster than best-fit.!

12

Contiguous Memory Allocation:
External Fragmentation

·  External fragmentation – total memory space exists to satisfy a
request, but it is not contiguous.

·  Contiguous memory allocation suffers serious external
fragmentation; Free memory is quickly broken into little pieces.

–  50-percent rule for first fit (1/3 is wasted).
·  Reduce external fragmentation by compaction:

–  Shuffle memory contents to place all free memory together in
one large block.

–  Compaction is possible only if relocation is dynamic, and is
done at execution time.

–  Compaction is very costly.
·  Reduce external fragmentation by better memory management

methods:
–  Paging.
–  Segmentation.

Contiguous Memory Allocation:
Expanding memory

·  How to allocate more memory to an existing process?

–  Move-and-Copy may be needed.

·  It is difficult to share memory among different
processes.

