CSE 3221.3
Operating System Fundamentals

No.8
Memory Management (1)
Prof. Hui Jiang

Dept of Computer Science and Engineering
York University

Background
Physical memory consists of a large array of words or bytes, each with
its own address.
In a typical instruction-execution cycle:
— CPU fetches an instruction from memory according to PC .
— The instruction is decoded.

— CPU may fetch operands from memory according to the address in
the instruction. (optional)

— CPU execute in registers
— CPU saves results into a memory address (optional)
- CPU generates address from program counter, program address,etc.

- CPU sends the address to a memory management unit (MMU), which is
hardware to actually locate the memory at certain location.

— Memory mapping (address translation).
— Memory protection.

Prerar_n (@ Symbolic address:
Generation b e, countijetc
Address I
(, "“’2{‘*:;’ Re-locatable address:
e N e.g. 14 bytes from beginning
»,\moémes of module
T linkage
editor
= r/ load . load
7 systom p\ R time Logical address:
\ torary S e.g. 4014, 1058, etc.

ibrary~ in-memory
binary

memory

image

execution Physical address:
Fumetn 0x14398, 0xFF083

time)

linking

Memory Management

- A program usually resides on a disc as a binary
executable file.

- The program can be moved between disk and memory.

- Program must be brought into memory and placed
within a process for it to be executed.

- In multiprogramming, we keep several programs in
memory.

- Memory management algorithms:
— Contiguous Memory Allocation
— Paging
— Segmentation
— Segmentation with paging
- Memory management needs hardware support — MMU.

=
ProQ ra I:n (e Symbolic address:
Generat'on S e.g., count,ijetc
& =
Address J e

- " object
/ module
7 otner N
linkage
editor
p
{ toad | toad
/ | module tme
system \.

| forary
S

Re-locatable address:
e.g. 14 bytes from beginning
of module

P A foader
/ dynamically

loaded l
system

\ .
. ibrary_~ in-memory I

wecion PHYsical address:
{imemm 0x14398, OXFF083

time)

" oynamic binary
linking memory
image

Using Logical Memory Space
- Address binding: binding the logical memory addresses in
instructions and data to physical memory addresses.
— In source programs: symbolic addresses (e.g., count, i, j, etc.)

— A compiler will bind each symbolic address to a relocatable
address (e.g. 14 bytes from the beginning of the module)

— The linkage editor or loader will bind each relocatable address
to a logical address (e.g., 4014)

— In run-time, MMU will bind each logical address to a physical
address (e.g., 074014)

— The final physical address is used to locate memory.

- Allow a user program to be loaded in any part of the physical
memory =» address binding in run-time

= completely separate physical address from logical address

Logical vs. Physical Address

- Physical address: the address loaded into the memory-
address register to actually address the memory.

- Logical (virtual) address: an address generated by the

CPU and the address referred by user program; address
used in binary codes.

physical addres:

space

Logical vs. Physical address (2)

- Separating logical address from physical address:

— Requires hardware support — MMI does address
mapping dynamically.

- Why separating logical address from physical address?
— Easier for compiler
— More benefits to OS memory management

— Consider two old methods ...

Address Binding: load-time
- The compiler generate re-locatable code.

- When OS loading code to memory, physical address is
generated for every instruction in the program.

- The process can be loaded into different memory
locations.

- But once loaded, it can not move during execution.

- Loading a program is slow.

Memory-Management Unit (MMU)

- MMU: maps logical address to physical address.

- The user program deals with logical addresses; it never
sees the real physical addresses.

- A simple MMU scheme, the value in the relocation

register is added to every address generated by a user
process at the time it is sent to memory.

relocation
register

logical physical
address address

©

memory.

346 14346

MMU

Address Binding: compile-time

- In compiling, physical address is generated for every
instruction.

- The compiler has to know where the process will reside
in memory.

- The code can not change location in memory unless it is
re-compiled.

- No separation of logical and physical address spaces.

- Example: .COM format in MS-DOS.
— Not a choice for a multiprogramming system.

Benefits to separate LA from PA

- Easier for compiler:
— Generate binary codes in separate logical spaces.
— All instructions use LA.

- Maximum flexibility for OS to manage memory:
— Program loading is fast, just direct copy.
— The same binary code can be loaded anywhere in memory.
— A loaded program can be re-located in memory.

- Need hardware MMU support.

regular linking & loadin

Program A - . H Kernel
. mainA
subAc (i subA.o subA
: : mainA
libm SubA
libm
Program B
mainB
subB mainB
subB
libm
................... libm
Compiling Linking Loading Memory

An example: Dynamic loading

Program A . H Kernel

H mainA
: -
ProgramB -) fibm
m : mainB Duplicated
roac]—{owee]
H libm

" . Relocatable M
Compiling Linking Loader emory

An example: Dynamic linking

Program A . Kernel

: mainA.o

mainA

E subA

Program B libm
m i (Btubs) |- mainB

reference

A —

" . Relocatable M
Compiling Linking Loader emory

Dynamical Loading

- Routine is not loaded until it is called.

- Better memory-space utilization; unused routine is
never loaded.

- Useful when large amounts of code are needed to
handle infrequently occurring cases.

- No special support from the operating system is
required; Implemented through program design.

- Each program maintains an address table to indicate
which module is in memory and which is not.

Dynamical Linking

- Linking postponed until execution time.

- In dynamic linking, a stub, is included in the
executable image for each library-routine reference.

- Stub: used to locate the appropriate memory-resident
library routine or load the library of it is not in
memory.

- Stub replaces itself with the address of the routine,
and executes the routine.

- Operating system needed to check if the routine is in
other processes’ memory address, and allow multiple
processes to access the same memory space

- Dynamical linking is useful for shared libraries.

Memory Management Approaches

- Contiguous Memory Allocation

- Paging

- Segmentation

- Segmentation with paging

Contiguous Memory Allocation

Every process is allocated to a single contiguous section of physical

memory.
os os [os
process 1 process 1 process 1 process 1

process 4 process 4

process2 | —> 0| processs

process 3 process 3 process 3 process 3

Free Memory Management

- OS must keep the information on which parts of memory are
available and which are occupied.

— allocated partitions
— free partitions (holes)
- Hole: a block of free memory.
— holes of various size are scattered throughout memory

- When a process arrives, it is allocated memory from a hole
large enough to accommodate it.

Use linked lists:

Contiguous Memory Allocation:
External Fragmentation

External fragmentation — total memory space exists to satisfy a

request, but it is not contiguous.

Contiguous memory allocation suffers serious external
fragmentation; Free memory is quickly broken into little pieces.

— 50-percent rule for first fit (1/3 is wasted).
Reduce external fragmentation by compaction:

— Shuffle memory contents to place all free memory together in
one large block.

— Compaction is p
done at execution time.

— Compaction is very costly.

Reduce external fragmentation by better memory management
methods:

Y 1 <

onlyifr 1 is dy ic, and is

Memory Management Unit (MMU)
- Two registers:
— Limit register: the range of logical address
— Relocation register: starting position of physical memory
In context switch, the dispatcher load both registers with correct

values.
Every y is checked by MMU hardware as:
limit relocation
register register
logical physical
addres: yes address
CPU < memory
no
MMU
v
trap; addressing error

Dynamic Storage-Allocation Problem

How to satisfy a request of size n from a list of free holes
that have various size.

First-fit: Allocate the first hole that is big enough.

Best-fit: Allocate the smallest hole that is big enough;
must search entire list, unless ordered by size. Produces
the smallest leftover hole.

- Worst-fit: Allocate the /argest hole; must also search
entire list. Produces the largest leftover hole.

1. First-fit and best-fit are better than worst-fit in terms of speed and
memory utilization.

2. First-fit is faster than best-fit.

Contiguous Memory Allocation:
Expanding memory

- How to allocate more memory to an existing process?

— Move-and-Copy may be needed.

- It is difficult to share memory among different
processes.

