CSE3221.3
Operating System Fundamentals

No.9
Memory Management (2)
Prof. Hui Jiang

Dept of Computer Science and Engineering
York University

Memory Management Approaches
- Contiguous Memory Allocation
- Paging
- Segmentation

- Segmentation with paging

Contiguous Memory Allocation suffers serious external fragmentation

Paging(1)

*® Logical space is contiguous and consists of pages
® Physical space is broken into frames
® Page size = Frame size

Physical Memory

Logical address Logical space
00(

- Each page is independently o 2ol

mapped to (or physically H Page 1

supported by) one frame. 2 Page 2
- User program sees a contiguous « Page 3

logical space. M P

'age

- But the supporting frames are g

scattered in physical memory. Page S | Frames |
- The mapping is automatically Page 6

done by hardware or OS based

on a page table.

Paging Example(1)

frame
number

page 0
page 1 page 0
page 2
page 3 page 2
logical page 1
memory
page 3
physical
memory

Address Translation Architecture

® Convert logical address into page # and offset :
Logical address (X) = page number (p) + page offset (d).
® Assume page size k:
p = X/k (quotient).
d = X%k (remainder).

et e —, -
number or base CPU
physical address of this
page.
dis the offset in the p{

physical
memory

mapped frame.

The physical address Y:
Y= f*k+d
(fis frame number).

f

page table

Translation of logical address
(for binary address)

- Page size (frame size) is typical a power of 2. (4k — 16M).

Logical address is a concatenated bit stream of page number
and page offset.

- An example: 1) logical space is 2**m: logical address is m bits.
2) page size is 2**n: page offset is n bits.

3) a logical space needs at most 2**(m-n) pages:
page table contains at most 2**(m-n) elements

page number needs (m-n) bits to index page table

page b page offset
| P : |
m-n bits n bits

Given a binary logical address, the last n bits is page offset

and the first m-n bits is page number.

Paging Example (2)

- Physical memory: 32-byte (2**5).

- Logical memory: 16-byte (2**4).

- Page size: 4-byte (2**2).

- Logical memory needs up to 4
pages: 4 entries in page table.

- m=4, n=2.

\

I

page table

16

cocw

Logical address 9 :

-

nhusical mamon.

Paging Example (2)

- Physical memory: 32-byte (2**5).

- Logical memory: 16-byte (2**4).

- Page size: 4-byte (2**2).

- Logical memory needs up to 4
pages: 4 entries in page table.

- m=4, n=2.

\

32

Foes

page table

Logical address 9

Y

Physical address 5 :

Paging Hardware

- OS maintains a page table for every process.
- All page tables are kept in physical memory.
- The currently active page table is page table of the currently
running process.
- For small active page-table (<256 entries): using registers
- For large page-table: using two indexing registers
— page-table base register (PTBR) points to the active
page table.
— page-table length register (PTLR) indicates size of the
active page table.

— In this scheme every data/instruction access requires two
memory accesses. One for the page table and one for
the data/instruction.

Paging Hardware: TLB

- Caching: using of a special fast-lookup hardware cache called
associative registers or translation look-aside buffers (TLBs)

— Associative registers (expensive) — parallel search
— speedup translation from page # > frame # :
Assume page number is P:
-- If P is in associative register, get frame # out. (hit)
-- Otherwise get frame # from page table in memory (miss)
Save to TLB for next reference, replace an old one if full

Page # Frame #

P1 F1
P2 F2
P
{ o s } ——>>Fx

Paging Hardware with TLB:
MMU in Paging

Togical
address

page frame
number number

TLB hit

physical
address

TLB

’ {
TLB miss

1
ST physical
memory

page table

Need to flush TLB’ s in context switch

Effective Access Time of
paging after TLB

- Assume memory cycle time is a time unit.
- One TLB Lookup = b time unit.

- Hit ratio — percentage of times that a page number is found in the
associative registers; ration related to number of associative
registers.

- Hit ratio = A.
- Effective Access Time (EAT):
EAT=(a+b)A+(2a+b)(1-A)
=(2-Na+b

Example: a = 100 nanoseconds, b = 20 nanosecond.

If A=0.80, EAT =140 nanoseconds (40% slower).
IfA=0.98, EAT =122 nanoseconds (22% slower).

Paging (2)
No external fragmentation in paging.

Internal fragmentation: process size does not happen to
fall on page boundaries.

— Average one-half page per process.
How to choose page size:
— Smaller page size:
« less internal fragmentation.
« large page table (more overhead).
— Typical 4K—8KB

If each page table entry is 4 bytes long, it can point to
one of 2**32 frames

— Maximal physical address: frame size * (2**32)

(from this we can deduce bit number in physical
address)

Paging (3): Memory Allocation
OS keeps track of all free frames.
- Torun a program of size n pages, OS needs to find n free frames and load program.
OS sets up a page table to translate logical to physical addresses.
Each process has its page table and saved in memory pointed by its PCB.

ree-frame list TEeea] Tree-frame list
14 13 15 13 |page 1
m 14 fpage 0
5| 15
o | w©
17 | 17 |-
Inew process| 18 (| 18 fpage 2|
o | 19
ol | 20 page 3
21 | new-process page table 21

& b)

OS data structure for Paging

- OS maintain a page table for each process in memory, pointed by PCB of
this process.

— Used to translate logical address in a process’ address space into
physical address.

— Example: one process make an I/O system call and provide an
address as parameter (logical address in user space). OS must use
its page-table to produce the correct physical address.

- OS maintains a global frame table:
— One entry for each physical frame in memory.

— To indicate the frame is free or allocated, if allocated, to which page
of which process.

In context switch, the saved page-table is loaded by CPU dispatch to
MMU for every memory reference and flush TLB. (This increases context
switch time)

Memory Protection in paging
- How is memory protected from different processes?
— In paging, other process memory space is protected automatically.

- Memory protection can be implemented by associating protection bits
with each frame in page table

— One bit for read-only or read-write
— One bit for execute-only
— One Valid-invalid bit

“valid” indicates that the associated page is in the process’
logical address space, and is thus a legal page.

“invalid” indicates that the page is not in the process’ logical
address space.

Use page-table length register (PTLR): to indicate the size of
page table

« Valid-invalid bit is mainly used for virtual memory

- In every memory reference, the protection bits are checked. Any invalid
access Wwill cause a trap into OS.

Example:

--14-bit address

2| page 0 :
00000 frame number valid-invalid bit - page size 2KB
page 0 3| page 1 -- valid space
0 0-16383 (2**14)
page 1 1 v 4| page 2
- 2[4 v 5
5
page 3 4[8]v]| 6
5
page 4 6 i 7| page 3
10468 pages 7[o]i] o [
12,287 page table
9| page5

Sharing Memory in Paging
- Different pages of several processes can be mapped to the
same frame to let them share memory.
- Shared-memory for inter-process communication.
- Private code and data:
— Each process keeps a separate copy of the code and data.

— The pages for the private code and data can appear
anywhere in the logical address space.

- Shared code:

— One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, window systems).

— Shared code must appear in same location in the logical
address space of all processes (i.e. same locations in the
page tables).

Shared Pages Example

ed1 0

1| data1

2| data3

data1 | page table 3| edi

for Py ed1
process P, 4| ed2
ed2 \ shared

memory
6| ed3 /
data2 | page table

for P, 7| data2

process P,

data3 | page table
for Py

process P,

Shared Pages

- How to share pages with cogg__whi,gh has a direct address reference?

Frame # Physical address “.., Assume each page has 100 bytes:
0 " Process 1: .,
H PT i <0,10> > 10*100+10=1010
1000 3 o[10 H

4000 :': '"-
§ PT i <0,10> > 50*100+10=5010

Incorrect reference

Copy-on-Write

- For quick process Creation: fork()

- Traditionally, fork() copies parent’s address space for the
child.

- Copy-on-Write: without copying, the parent and child process
initially share the same pages, and these pages are marked as
copy-on-write.

— If either process needs to write to a shared page, a copy of
the shared page is created and stop sharing this page.

- Advantages of copy-on-write:

— Quick process creation (no copying, just modify page
table for page sharing)

— Eventually, only modified pages are copied. All non-
modified pages are still shared by the parent and child
processes.

» Better memory utilization

Copy-on-Write

physical
process, memory process,

I | (1% ‘—I_

| a8 e

L e e—

physical
process, memory process,

T L— pageB «— |
pageC «— |

Copy of C

Hierarchical Paging
(multilevel paging)
[
In modern computer, we
require a large logical- | B L
address space, which : :
results in some huge / fEEseins) 00—
page table. .
No contiguous memory : |- 500
space for the large page : : :
table. o~ L_*
g 708
Hierarchical paging: outer page iy oo+
using paging technique :
to divide the large page o0 1 8
table into smaller pieces el P
page table
page table :

Address-Translation in two-level paging

Logical address 32-bit, page size 4K, maximal physical address 2**32 frames
A logical address is divided into 20 bits page number and 12 bits page offset.
Since page-table is paged, the logical address is as follows:

page number | page offset
lﬂ-

10 10 12

where p; is an index into the outer page table, and p, is the displacement within
the page of the outer page table.

logical address

by 4-byte

o { 4-byte

b, { 1-byte
outer-page o
table {

Physical address

page of

page table

Multilevel Paging and Performance

- 64-bit logical address may require 7-level paging.
- Since each level is stored as a separate table in memory,

converting a logical address to a physical one may take seven
memory accesses.

- TBL-based caching permits performance to remain reasonable.
- Cache hit rate of 98 percent yields:
effective access time = 0.98 x 120 + 0.02 x 820
= 134 nanoseconds.

which is only 34 percent slowdown in memory access time.
¢ But the overhead is too high to maintain many page-tables
® In 64-bit Linux, it uses 4-level paging to page 48-bit address.

Hashed Page Tables

Logical address

Physical
Memory

L als | dlple | e

Hash Table

Inverted Page Table

- One entry for each real frame of memory.

- Each entry consists of the virtual page number stored in this frame, with
information about the process that owns that page.

- Only one table in the system: decreases memory needed to store page
tables.

- But increases time needed to search the table when a page reference
occeurs.

- Use hash table to limit the search to one — or at most a few — page-table
entries.

— To speedup further, TLB is used.

Inverted Page Table Architecture

logical hysical

address physica

_ _ address physical
CEUR~TE NN EEEN—— (onoy

search l i

pid [p

page table

Another view of logical space

logical memory space physical memory space

Segmentation
- Alogical-address space is a collection of segments.
- Each segment has a name (segment number) and a length.
- Alogical address consists of: a segment number and an offset.
<segment-number (s), offset (d)>
* Physical memory address is still one-dimension linear array.

® MMU Translates logical address (2-D) into physical address (1-D) based
on a segment table.

* Including all segments in the program.
« Each entry has a segment base and a segment limit.
* An array of base-limit pairs.
- The active segment table is pointed by two CPU registers for MMU:

— Segment-table base register (STBR) points to the segment table’ s
location in memory.

— Segment-table length register (STLR) indicates number of segments
used by a program; segment number s is legal if s < STLR.

10

Segmentation Hardware

— limit |base

segment
table

CPU s

trap: addressing error physical memory

Segmentation Example

)\

m

subroutine
1400
/ s A 'segment 0
2400
symbol
segment 0 table
[limit [base
Sart segment 4 071000 | 1400
| 1| 400 | e300 | 3200
\ main /2| 400 | 4300
program 3| 1100 | 3200 lsegment 3
41000 | 4700
A segment table

Al

segment 1 segment 2 4300 e
4700 ———
~ =

logical address space segment 4
5700 =t

6300
'segment 1

6700

hysical memor

Memory Protection in Segmentation

- Limit check for every memory reference.

- Each segment is a semantically defined portion of
data. They tend to be used in the same way. We
can define protection bits for every segment:

— Read-only, read-write, and so on.

— The segment hardware will check protection
bits for each memory reference.

Segment Sharing(1)

- Every process s
has a segment /

table. Segments e |
are shared when sogment0 o2
the entries point | T
to the same ot /1 tizs ossi eator
: S o ‘segment table
phys!cal o el
location. process P, 723
pat T ~\
/ N
/ \ 90003
edtor s
- Sharing has to = aasss
pro—
D[]

be at the
segment level. of mase [4062 oyl memory
.

segment | 18850 | 90003

S~ - segmenttable
process P,

logical memory
process P,

Segment Sharing(2)

" Process 1:
ig base limit
O 1024 | 2500
300

<0,1000> > 1024+1000=2024

1024 Code

Jump <0,1000>

Process 2:

fs [bmse lmit_ % .44000> - 5200+1000=6200
i O s200| 1200 |

11024 | 2500

Incorrect reference

Segment Sharing(3)

If processes share a code segment with the direct
address reference, all processes should have the same
segment number for this segment.

- The following segments can be shared freely:
— Read-only data segment.

— Code segment with only indirect address reference
(by offset from the current position or segment
beginning).

— Code segment with address relative to a register
which contains the current segment number.

12

Fragmentation in Segmentation

- No internal fragmentation.

- External fragmentation:
— Since segments have various size.
— Dynamic storage-allocation problem.
— Best-fit, first-fit, worst-fit.
— External fragmentation depends on average segment size.

— If the average segment size is small, external
fragmentation will also be small.

Segmentation with Paging

- Both segmentation and paging have advantages and
disadvantages. We can combine them to improve on each.

- Two most popular CPU’ s, Motorola 68000 line and Intel
80x86 and Pentium uses a mixture of paging and
segmentation.

- Example: Intel Pentium uses segmentation with paging for
memory management.

— Based on segmentation primarily.

— The varying-length segments are paged into a set of
fixed-sized pages.

Intel Pentium addressing

- A process can have up to 16K (2**14) segments, divided into two
segment tables:

— Local descriptor table (LDT)

— Global descriptor table (GDT)

— Each entry in the tables is 8 bytes (base+length+others).
- Each segment can be 4GB (2**32) in maximum.
- Alogical address is 48 bits, consists of:

— 16 bits selector: 13-bit segment number, 1-bit indicate LDT or
GDT, 2-bit for protection.

— 32 bits segment offset: a segment can be up to 2**32 bytes
— Each segment is paged: page size 4KB & 2-level paging:
10-bit page directory # +10-bit page # + 12-bit page offset
- CPU has six segment registers (caches), allowing 6 segments to be

addressed at any time (avoid reading descriptor for each memory
reference).

- In Pentium, physical address is 32-bit (max 4GB).

Pentium Addressing Architecture

logical address | selector | offset |

16 bit 32 bit

descriptor table

segment descriptor

including base & " 32bit

limit of the segment 8 byt
linear address | directory | page | offsot page frame

10{bit 10 bit 14bit
physical address
page directory page table e _____|

directory entry L—»{ page table entry

page directory
base register

Pentium Addressing Architecture

(logical address)

_ bage directory . page table . offset
31 22 21 l 121 l
page 4-KB
table page
page

directory

CR3 4-MB
register page

page directory . offset |

31 22 21

Comparing Memory-Management
Strategies

(1)Contiguous allocation, (2)paging, (3)segmentation,
(4)Segmentation with paging

- Hardware support
- Performance

- Fragmentation

- Relocation

- Swapping

- Sharing

- Protection

